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Abstract. In decision-making problems reward function plays an important role
in finding the best policy. Reinforcement Learning (RL) provides a solution for
decision-making problems under uncertainty in an Intelligent Environment (IE).
However, it is difficult to specify the reward function for RL agents in large and
complex problems. To counter these problems an extension of RL problem named
Inverse Reinforcement Learning (IRL) is introduced, where reward function is
learned from expert demonstrations. IRL is appealing for its potential use to build
autonomous agents, capable of modeling others, deprived of compromising in per-
formance of the task. This approach of learning by demonstrations relies on the
framework of Markov Decision Process (MDP). This article elaborates original
IRL algorithms along with their close variants to mitigate challenges. The purpose
of this paper is to highlight an overview and theoretical background of IRL in the
field of Machine Learning (ML) and Artificial Intelligence (AI). We presented a
brief comparison between different variants of IRL in this article.

Keywords. Inverse Reinforcement Learning, Markov Decision Process, Intelligent
Environment

Introduction

ML is an application of AI that focuses on learning and improving itself from experience
and without being explicitly programmed. ML emphasizes on developing algorithms that
can access data and use it for self-learning [1,2,3] in an intelligent environments [4,5,6].
We are dealing with a certain number of sensors, which enable the IE [7] to be aware
of the user’s current action and goal. Human activities are observable through different
sensors [8] and observations can be assumed to teach another environmental device or
system to perform the task in a better way [9]. A typical way of teaching a system in
a decision-making problem requires direct coding. However, another paradigm called
Learning from Demonstrations has emerged to teach devices via demonstrations [10].
RL techniques provide a solution for decision-making problems [11]. RL agent interact
with the dynamic environment, gains experience and improve itself [12]. The result of an
agent’s interaction is a policy that can provide solutions to complex tasks without having
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specific information about the underlying problem [13]. Unlike supervised learning, RL
does not need output labels that are sometimes not available or maybe expensive to find
in real-time application. RL has better generalization abilities and can easily be applied
to more complex scenarios [14] e.g. minimize medication errors [15], [16] and risk man-
agement [17].
However, the problem associated with RL is the reward function that has to be specified
in advance. For complex and large problems, it is very difficult to specify and exhaustive
to tune the reward function. To counter design difficulties of RL, IRL is introduced. IRL
is an extension of RL problem where reward function is learned through expert demon-
strations. In this paper, we present fundamental and advanced techniques of IRL [18] for
finding the best-fitting reward function for expert trajectories.
The rest of the paper is organized as follows: Section-1 comprises a brief review of the
background and problem formulation, where basics about the MDP is presented. Origi-
nal IRL algorithm is discussed in section-2. This section describes the problem of learn-
ing the reward function not explicitly, but through observing an expert demonstration.
Section-3 introduces an overview of different variants and extensions of IRL in emerging
and existing fields. We summarize the paper in section-4 by giving a conclusion.

1. Theoretical Background

1.1. Markov Decision Process

Generally, RL algorithms satisfy Markov Decision Process (MDP) that are based on
Markov property. It does not consider past information while taking actions in current
state. MDP is a form of tuple (S,A,T,R,γ) [19] explained below:

• S = s1,s2,s3, .....sn represent set of all possible states in the given environment.
Based upon the chosen action and transition function the agent can move to any
of these states.

• A = a1,a2,a3, .....an is a set of all possible actions that an agent can take in a state
at every time step.

• T (st ,at ,s(t +1)) is a transition function which tells the probability of having into
the state s(t +1) by taking action a in current state s in time step t.

• R(st ,at ,s(t +1)) is a reward function which tells about the cost of taking action a
in state s in time step t.

• γ ∈ [0,1] : is a discount factor that takes the value between zero and one. A value
close to zero gives more weight to current rewards while a value close to one gives
more weight to long term rewards.

1.2. Value Function

A policy π is a function of mapping state s to an action a. It can be stochastic
π : S → Prob(A) or deterministic π : S → A [20]. For a policy π , V π is the value function
which estimates the accumulated reward value in state st and follow the policy π . The
value of a policy V π for a given state s is given as:
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V π(s) = Eπ{Rt |st = s}= ∑
a∈A(s)

π(s,a) ∑
st+1∈S

T a
sst+1

{r(s,a)+ γV π(st+1)} (1)

Where V π is the value function to estimate the accumulated reward and Rt is the reward
function which is calculated as given below.

Rt = rt+1 + γrt+2 + γ2rt+3 + .....
∞

∑
k=0

γkrt+k+1 (2)

Q function is the expected aggregated return when you take action a in state s.

Qπ(s,a) = ∑
π
{Rt |st = s,at = a} (3)

The goal of solving MDP is to find optimal policy π∗. The state-action value function
(Q) or state value function (V ) for optimal policy π∗ can be calculated by using Bellman
equations as given below:

V ∗(s) = maxa ∑
st+1∈S

T a
sst+1

(Ra
sst+1

+ γV ∗(st+1)) (4)

Q∗(s,a) = ∑
st+1∈S

T a
sst+1

(Ra
sst+1

+ γmaxat+1V ∗(st+1,at+1)) (5)

Eqs. (4) and (5) explains the objective of learning the policy that provides the maxi-
mum reward return. Other machine learning techniques have successfully been applied
to many real-world problems i.e. skill transfer to robots [8] and autonomous navigation
[7] etc. However, these techniques are usually suffering from fewer training samples and
poor generalization. The conventional terminologies of MDP and RL are usually accept-
ing fix and predetermined reward functions. However, it is difficult to specify appropri-
ate reward functions particularly for complex and large problems [10]. Therefore, the
researcher gave a solution in form of IRL to tackle these limitations. IRL methods flip
the RL problem and rather than finding optimal policy it tries to find underlying rewards
for some given policies.

2. Inverse Reinforcement Learning (IRL)

Generally, IRL supposes that the expert is acting according to an underlying policy πE .
In some cases, the policy may not be known, and learners observe sequences of the ex-
pert’s state-action pairs called trajectories. It follows some composition of a model that
helps in learning the unknown rewards function for these trajectories. Conventional mod-
els include, a linearly weighted combination of reward features, non-linear (probability
distribution over reward functions) or a neural network representation [21].
Typical framework of IRL is shown in Figure-1. Expert trajectories are supposed to gen-
erate optimal policy. Rather than the policy, the reward function is the briefest, robust,
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Figure 1. Inverse Reinforcement Learning Problem

and convenient definition of the task. It computes how bad or good certain actions are.
Therefore, the goal here is to find the reward function that is being implicitly optimized
by the optimal policy π∗. Once we have the true reward function, the problem is concen-
trated on finding the right policy, and standard reinforcement learning methods can be
applied to solve the problem.
IRL as an optimization problem and proposed Linear Programming (LP) approach to
solve the problem by considering three types of state spaces [22].

2.1. LP for finite state space

First, consider the set of optimal policies π for a MDP with a finite state space S and
policy transition matrix T¬π

n∗n . For each state only one action provide an optimal solution
from set of K possible actions and all other k− 1 actions are non-policy actions hence
non policy transition matrix are T¬π = T 1, . . .T k−1. Action is considered optimal only
when the reward function satisfy the following equation:

(T¬π −T π)(I − γT π)−1R0 (6)

Where T¬π is non policy transition matrix and T π represents policy transition matrix.
Many solutions satisfy Eq. (6). let say assigning zero reward value to all the states is
always a solution. To remove this problem two methods are proposed.

Costly single-step deviation. It maximizes the distance between the optimal policy
Q value and the second-best value among all the others.

maximize : Σs ε S Qπ(s,π(s))− max
a ε A|π(s)

Qπ(s,a) (7)

Eq. (7) successfully removes several degenerate reward functions but the reward function
that is learned by this kind of heuristics might be different from the real one. To tackle
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this issue, a second method is introduced which assumes that reward function with many

small rewards are more natural and should be preferred. Maximization of many terms
leads to a minimization of the reward vector’s norm i.e. l1 −norm: −λ ‖ R̂‖1. A suitable
value for parameter λ can be searched automatically. In addition, an upper bound value
for reward function is also imposed.

∀(s ε S) | R̂ | ≤ Rmax (8)

However, this approach cannot be applied to very large state spaces.

2.2. LP for Infinite State Space

For this kind of state-space researcher have used the function approximation to find a
linear combination of d known, fixed and bounded basis function Φi [23].

R̂(s) = α1 φ1(s) + α2 φ2(s) . . . . . . + αd φd (9)

Where α → [0,1] is a constant. However, this linear combination comes with a huge
disadvantage. We are not sure that the estimated reward function is the one with true
value. Eq. (9) only expresses a smaller subset of all the possible reward functions. On the
other hand, V π can be expressed in term of basis function as follows:

V π = α1 V π
1 + .......+ αd V π

d (10)

Transition probabilities can’t be expressed in the term matrix anymore because of infinite
state space. Instead, the expected value based on sampled subset s0 ⊂ S is estimated and
it is enforced that non-optimal actions always lead to lower expected value than optimal
actions.

∀s0 ε S,∀a ε A: Eś T (ś|s,π(s){V π(ś)} ≥ Eś T (ś|s,a){V π(ś)} (11)

A penalization factor p is introduced that define how much constraints can be penalized
[18].

max ∑
s∈S0

min
a∈A|π(s)

p [Eś T (ś|s,π(s))(V π(ś))− (Eś T (ś|s,a)(V π(ś))] (12)

This formulation maximizes the smallest difference between the expected value gener-
ated by policy action and all the other expected values it could find.

2.3. LP with Sampled Trajectories

This third algorithm is more closer to the real-world problem. It deals with the scenario
where the knowledge about the exact policy is not given. we only observe trajectories
that are combinations of states and actions. Optimal policy based on some unknown re-
ward function generates these trajectories.
However, the goal is to calculate the empirical value of a trajectory rather than the ex-
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Algorithm 1 Generic Algorithm for IRL

1: Given: Expert demonstrations, discount factor γ , termination criteria ε ,
2: Initialize: Feature matrix φ , number of iteration n.
3: while (Termination criteria fulfil) do

4: for ∀ (s,a) do

5: Solve optimal value function V ∗ for MDP.
6: Use V ∗ to define policy π̂ .
7: Choose parameter αi to make π̂ more similar to demonstration;
8: end for

9: end while

10: Return: ˆR(s,a)

pected value of the policy. By using current estimated reward function R̂ corresponding
value estimate V̂i(ξ ) for each value function can be calculated as given below:

V̂i(ξ ) = ∑
s j∈ξ

γ iφi (s j) (13)

γ is a discount factor. Empirical value for overall trajectory is :

V̂ (ξ ) =
d

∑
i=1

αi V̂i(ξ ), |αi| ≤ 1 , i = {1, ....,d} (14)

There are might be many expert trajectories generated at different initial positions. Now
the goal is to find such a value of i that yields a higher empirical reward for optimal
trajectory.

V̂ (ξπ∗) ≥ V̂ (ξπ i) (15)

Eq. (15) represent that optimal expert trajectory always generates higher empirical value
V̂ (ξπ∗) than any other policy. Linear programming is used to find the best fitting param-
eter αi. There are two important assumption made here [23]:

1. For any given policy trajectories can be generated.
2. Given any reward function, a policy which is optimal for this reward function can

be generated.

To find the true empirical value, limit the maximum value of factor αi and a penalization
factor p (as stated in the previous section)is also introduced.

maximize [
m

∑
i=1

p{V̂ (ξπ∗) − V̂ (ξπ i)}] (16)

A generic algorithm for IRL is given in Algorithm-1. The key idea is to use observation
from the expert policy and find information about the underlying MDP. Estimation of
the optimal policy is performed through the execution of the algorithm iteratively.
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3. Foundation of IRL Variants

Many changes have been made in the fundamental IRL algorithm depending upon the
nature of the application. We will try to give a brief introduction to some of them in this
section.

3.1. Maximum Margin Planning

Let consider an MDP without reward MDP/R. In this context we have the same com-
ponent as regular MDP except for the reward model. Given some expert’s feature ex-
pectation μE and feature mapping φ , the goal is to find a policy that explains expert
behavior perfectly on an unknown reward function. Reward function might be a linear
combination of features.

R(s,a) = w1φ1(s,a)+w2φ2(s,a)+ . . . . . . +wkφk(s,a) (17)

R(s,a) = ∑
i
{wiφi(s,a)} (18)

Where feature function φi : S → R and weights wi ∈ R. To find a policy π̂ such that
||μπ̂ −μE ||2 ≤ ε we define:

E[
∞

∑
t=1

tR(st)|πE ]−E[
∞

∑
t=1

tR(st)|π̂] = ||Wt || ||μE −μ(π̂)||2 (19)

where W : (||w||1 ≤ 1). Maximum margin algorithm are used to find such a policy π̂ that
minimize the difference between expert feature expectation μE and other random chosen
policy expectation μπ̂ .

3.2. Maximum Entropy IRL

Maximum entropy uses the probability approach to resolve the ill-posed issue associated
with original IRL. Maximum entropy [24] is based on the principle that makes it free
from the arbitrary assumption about the missing information of the system. The trajec-
tories of experts also weighted with the estimated rewards and preference given to those
policies with high rewards [25].

Px(Ox|θ) = [1/Zi]exp(αx E(Ox,θ)) (20)

In Eq. (20), θ represents the parameters of the reward function and R is a linear combi-
nation of features as discussed in the previous section. Through the maximum likelihood
approach of observed trajectory, we can get the optimum value of θ [26].

θ ∗ = argmax
θ

L(θ) (21)
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θ ∗ = argmax
θ ∑

o
logPx(Ox|θ) (22)

Gradient-based optimization method can be used to obtain the optimum values for de-
terministic MDP. The gradient is presented by the difference between expected feature
values by the learner and expected empirical feature values. Early IRL based methods
are countered with the problem of label bias mentioned in [27]. It only considers ac-
tions in run time while trajectories are compared later-on by taking the actions instead
of comparing before. Consequently, the best policy having the highest reward may not
be the one with the highest probability [28]. Maximum entropy encounters this problem
by focusing on distribution over trajectories rather than actions. This algorithm applied
in many applications i.e. to predict the driver behavior, route recommendation for taxi
driver [29].

3.3. Non-linear Programming

Max-Margin Planning (MMP) still assumes a linear form of reward function but another
approach LEArning and seaRCH (LEARCH) [30] have introduced for nonlinear behav-
ior of reward function. This algorithm is tested in autonomous navigation where an agent
(vehicle) was operated in complex unstructured terrain [31]. A parallel approach was
also introduced and used in a visual navigation system where costs to detected objects
and a suitable path to the drivers in the current situation have been assigned automati-
cally [32]. Self-Imitation Learning (IL) [33] proposes that without any feedback from an
external expert, the policy can be learned iteratively after the agent makes mistakes and
decisions.

3.4. Maximum Likelihood IRL

Maximum Likelihood IRL (MLIRL) [34] problem utilizing an estimate of the gradient
of the likelihood function. The algorithm defines that likelihood of the expert data-set
Lθ (O) can be represented by the product of the likelihood of the state-action pairs.

Lθ (O) =
k

∏
i=1

lθ (si,ai) (23)

Where O represents experts demonstration. The reward function is estimated by Maxi-
mizing the log-likelihood function.

R∗
θ = argmax

R
logLθ (O) (24)

Eq. (24) assumes that actions are more likely to be selected having higher Q∗ values.

3.5. Gradient-based IRL

The neural gradient [29] approach was used to refine the reward function instead of
directly modifying the policy. Policies are derived from the RL algorithm for the current
reward function in MMP. Therefore, policy space depends on the reward function, and
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any change in the parameter space θ ∗ affects the policy space. So a neural network is used
to solve θ ∗ by gradient approach. By using the gradient descent method, IRL stretched
to several target settings [35]. In [27] an idea was introduced where any deviation from
the expert’s trajectory was corrected.

3.6. Monte-Carlo Markov Chain (MCMC)

To approximate the posterior P(R|Ox) a Monte-Carlo Markov Chain (MCMC) algorithm
proposed in [36]. This algorithm generates a sample set of reward function distributions
{r1,r2, . . . ..rN} according to the targets distribution.

P(R|Ox)≈ [1/N]
N

∑
i=1

δ (R,ri) (25)

These ri samples are related to a trajectory of a Markov chain. It is considered that
its invariant distributions are the counterpart of the target distribution [36]. For a large
dimension problem, the drawback of this algorithm is that it requires a large number of
sample rewards distributions to guarantee that the estimation is precisely represented by
the sample set [37].

4. Conclusion

The reward function is an essential parameter for RL to estimate the best policy. In many
applications, it is difficult to specify the true reward function. IRL provide a solution to
this problem and has been an attractive field for a researcher for the last decades. It fo-
cuses on determining the true underlying reward function for given demonstrations in IE.
In this paper, we have presented a conventional model of IRL while some modification
and advancement of existing IRL techniques are also discussed here. The experiences
of IRL have altered a lot from its first introduction. Improvements empower IRL to be
implemented in more complex and practical applications.

List of Acronyms

AI Artificial Intelligence
MDP Markov Decision Process
RL Reinforcement Learning
IRL Inverse Reinforcement Learning
IL Imitation Learning
ML Machine Learning
MLIRL Maximum Likelihood IRL
MMP Max-Margin Planning
LP Linear Programming
IE Intelligent Environment
LEARCH LEArning and seaRCH
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