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Abstract. Recent advances in the field of genomic trait prediction has paved the
way for developing futuristic plant breeding programs. The objective of our study
is to predict a single or multiple traits of rapeseed (Brassica napus) based on the
RNA sequence data. We analyzed 12 different traits of rapeseed and evaluated how
their pair-wise correlation impact on the yield production. Further, for predicting
single or multi-traits of rapeseed, four state-of-art machine learning (ML) mod-
els, namely - Lasso Regression (Lasso), Random Forest (RF), Support Vector Ma-
chine (SVM) and Multi-layer Perceptron (MLP) were evaluated. For both single
and multi-trait predictions, our RF and SVM models performed most consistently,
where the lowest mean squared error was achieved by RF (0.045 and 0.016 for the
single and multi-trait prediction respectively). A comparative analysis with related
works showed the potentiality of our model for future multi-modal model devel-
opment. Future study in this context could comprise of evaluating our models with
other transcriptome dataset from related crops or deep learning-based methods for
better outcomes.
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1. Introduction

Rapeseed (Brassica napus), aka Canola, is the second most important oilseed crop
around the world, widely used for oil production and livestock feed [1, 2]. Different
usages of Rapeseed include biodiesel production, maintaining soil fertility, producing
compound animal feed, forage for cattle, etc. In Europe, more than 80% of biodiesel
production is done from rapeseed [3]. Canada, producing approximately one-fourth of
the total rapeseed worldwide, is the largest rapeseed producer [4]. Australia is widely
known for it’s high quality exports of rapeseed. In the year 2020/21, Australia exported
3.132 million tonnes of rapeseed. [5]. Therefore, rapeseed significantly contributes not
only as a food element, but also as a patron in the economy of many countries [6].
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Due to its diverse usages, it has caught the eye of many researchers and multiple
studies have been conducted on different phenotypic traits of rapeseed and how these
traits impact yield production. A recent study by Xu et al. [7] showed that multilocular
trait is exemplary for rapeseed breeding. According to Zhao et al. [8], seeds per pod
played a vital role in rapeseed yield. It is also evident that high yield can be achieved
through high-density planting. Experiments by Kuai et al. [9] showed that even though
high density planting initially resulted in lower yields per plant, combined with increased
row spacing the yield increased as well. They achieved the highest yield With the in-
creased row spacing of 15 cm and a plant density of 45×104 plants ha-1. Ali et al. [10]
found positive and significant correlation between seed yield and harvest index, seed
weight and flower duration in winter rapeseed varieties.

Transcriptome analysis has been proved to be very efficient for experiments such as
trait prediction. Transcriptome is the snapshot of the gene expression of a cell or tissue
in a specific moment [11]. Transcriptome sequencing or RNA sequencing method has
an edge over the traditional approaches because of the low throughput and poor cost
efficiency [12]. Canales et al. [13] performed a transcriptome analysis to examine the
trade-off between seed weight and seed number and showed the impact of those traits
on rapeseed yield production. Luo et al. [14] used transcriptome analysis to enumerate
plant immunity trait against fungal infection, in respect to growth and defence. Azodi
et al. [15] used transcriptome data for gemonic prediction of 3 important traits in maize
- flowering time, height, and grain yield and in many cases they found transcriptome
data to be performing similarly to the genotype-based models. Even though there are nu-
merous transcriptomic studies focused of different economically important traits, there
is indeed scarcity of machine learning (ML) model for single or multi-trait prediction
tasks.

In recent years, ML techniques are very popular among researchers for predictive
analysis or works in the similar domain. Kong et al. [16] used hyper-spectral imaging to
detect Sclerotinia stem rot, which is one of the major diseases of rapeseed crops, causing
great loss in yield production [17]. Przybyl et al. [18] used numerous deep-learning mod-
els to detect fungal contamination in rapeseed with a classification error ranging from
14% to 21%. According to Wei et al. [19], sophisticated ML approaches with a large
ensemble of markers can provide improved disease risk assessment.Recent advances of
statistical methods and machine learning has enabled determination of complex patterns
in high dimensional settings [20] which helps with the analysis of traits and making pre-
dictions. Kurtulmus and Unal [4] used computer vision and ML to classify seven differ-
ent varieties of rapeseed. Nitze et al. [21] conducted an experiment on crop type classifi-
cation, an application on remote sensing, and did a comparative analysis on the used ML
methods. Even though their classification accuracy varied greatly, they achieved the best
results for the classification of rapeseed (over 90% for all the methods). ML techniques
have been proved to be exceptionally efficient for problems such as trait prediction and
classification. Traditional methods for genome based predictions such as shrinkage or
regularization caused major over-fitting problems and dimensionality issues. ML models
can counter these issues in effective way [22]. Azodi et al. [23] conducted an experiment
which involved 18 traits of 6 different plant species. They used 6 linear and 6 non-linear
ML algorithms for genomic prediction. Their experiments showed that different algo-
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rithms performed better on different species and different traits. However, a generalized
prediction model is yet to be validated [24].

The objective of our study was to predict different traits of rapeseed from RNA-
seq data, and transform the knowledge towards high yield production. Beside correla-
tion study among different traits, we implemented and evaluated four different ML algo-
rithms to predict the traits. We also used weighted averaging for feature combination to
perceive the impact of other features on the yield production. Mean squared error(MSE)
and standard error were calculated for each trait and each method and the most promising
results were discussed compared to other existing methods. Current study is a baseline
for future multi-modal model for rapeseed trait prediction or models for other crops.

2. Methods

2.1. Dataset

We adopted the dataset from [13], which is a detailed transcriptome study of different
rapeseed plants. The RNAseq RAW count matrix and sample trait metadata are collected
from online2. The trait dataset included 12 different phenotypic traits including - Plant
height (cm), Branch per plant, Siliques per plant, Yield (mg/ silique), Yield (kg/ ha),
Seed number (n/ silique), Seed number (n/ m2), Thousand Seed Weight (g), Seed oil
(%), Protein (%), Total Biomass (kg/ m2) and Harvest index (%). Total biomass refers
to the volume of habitat, which is the weight of living plant material that are above or
below the ground surface at a specific point of time. Harvest index is the weight of a
harvested product, measured as a percentage of the total plant weight. The seed oil and
the protein percentage refers to their concentration which can be obtained from the seed
or the plant. Even though the raw count matrix had 48 bio-samples, sample metadata was
available only for 24 bio-samples. Therefore, we subset the count matrix and match with
the metadata.

2.2. Statistical Analysis of the Traits

A comprehensive statistical analysis was performed on the trait dataset. Firstly, all trait
data were individually plotted to visualize the data distribution. Normality of individ-
ual traits were measured using Shapiro-Wilk test. Then a correlation matrix was gener-
ated for all traits. Correlation determine the relationship between two variables and how
strongly they are related [25]. As we were particularly interested on rapeseed yield pro-
duction, correlation coefficient was subset for each traits in respect to Yield (mg/ silique).
Furthermore, a linear regression model was fitted, by considering Yield (mg/ silique) as
dependent variable, and all other traits as independent variable to measure how the Yield
trait can be impacted by other traits.

2Dataset: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169511
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2.3. RNASeq Data Preprocessing and Evaluating ML Models

For the trait prediction, a Min-Max normalization was applied column-wise to the RAW
count data to ensure that the data is scaled to a specific range (0 to 1) and to maintain
the relation among the original data [26]. Principal Component Analysis (PCA) was
performed for dimension reduction as PCA provides a simpler view of the data while
preserving most of the information [27].

Normalised count matrix was used as the input, and from the input, we made pre-
dictions for individual or multiple traits using the ML methods. We used four different
ML methods namely, Lasso Regression (Lasso), Random Forest (RF), Support Vector
Machine (SVM) and Multi-layer Perceptron (MLP). The experiment was conducted in
two phases. In the first phase, our model evaluated each trait individually. On the sec-
ond phase of the experiment, a multi-trait evaluation was implemented on all the traits
combined. The feature combination was carried out by weighted averaging.We selected
MSE as the evaluation metrics. The reason for choosing MSE as the evaluation metrics is
its simplicity of implementation and small computational complexity [28]. After calcu-
lating MSE, we also cross-validated our result. Cross-validation is a type of data resam-
pling method that is used for the estimation of prediction error of the ML models [29].
It is also used for preventing and detecting overfitting of data [30]. However, a rigor-
ous use of cross-validation may also be the reason of overfitting [31]. Amongst different
cross-validation techniques, we have used 10-fold cross-validation. Further, Standard er-
ror of measurement shows the approximate standard deviation of a test score for a spe-
cific group of takers [32]. Standard error allows the comparison between the estimated
populations to be intuitive via graphs or tables [33].

For the multi-trait prediction, we have used weighted averaging method for the
combination of the features and calculated a single MSE for that combined fea-
ture. The weight used for averaging were approximately equal (0.083 for all except
Yield(mg/silique), which had a weight of 0.087). For weighted averaging, the sum of
the weights of the traits requires to be 1. Therefore, keeping the weight of Yield (mg/
silique) slightly higher than the others, while the weight for the other traits were divided
equally3.

3. Results and Discussion

3.1. Data Distribution and Variances

Data distribution is used to characterize quantitative variation of original data [34]. Our
statistical tests showed, most of the traits data (except for Yield (mg/ silique) and SN
(n/ silique)) were normally distributed. Figure 1 shows the data distribution of all twelve
traits. A correlation matrix was also generated to understand the pair-wise correlation
among different traits. A correlation heatmap is a two-dimensional graphical representa-
tion of correlation matrix. Figure 2 shows the correlation heatmap of the traits. The light
colored boxes indicate stronger correlation and the dark colored boxes indicate weaker
correlation. Correlation coefficient of each traits against Yield (mg/ silique), showed -

3Github repository: https://github.com/Ayshikrk/Trait_Prediction_1.git
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Branch per plant, Siliques per plant, and TSW (g) were negatively correlated to yield
while the rest of the traits were positively correlated.

Figure 1. Data Distribution of Traits

Figure 2. Correlation Heatmap

Further, we performed a regression analysis on the trait dataset and generated an
Ordinary Least Squares (OLS) regression table as shown in Table 1. In this analysis,
Yield (mg/ silique) was the dependent variable, while the rest of the traits were the inde-
pendent variable. The intercept of Yield (mg/ silique) had a coefficient value of -0.3126
with a standard error of 0.233. The R-squared value of the OLS regression was 0.991 and
F-statistics value was 116.5. We found SN(n/silique) independently have a statistically
significant relationship (p=0.007) with Yield (mg/ silique), followed by TSW (p=0.05).
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Table 1. OLS Regression Results

Traits Coefficient Standard Error t P-Value

Plant height (cm) -0.066 0.44 -1.473 0.166

Branch per plant -0.0233 0.062 -0.360 0.725

Siliques per plant 0.297 0.422 0.703 0.495

Yield (kg/ ha) -0.827 1.443 -0.573 0.577

Total Biomass (kg/ m2) 1.346 1.196 1.125 0.283

Harvest index (%) 0.244 0.261 0.937 0.367

SN (n/ silique) 1.707 0.529 3.229 0.007

SN (n/ m2) -0.943 0.338 -2.789 0.16

TSW (g) 0.302 0.143 2.113 0.056

Seed oil (%) -0.022 0.055 -0.402 0.694

Protein (%) 0.0009 0.051 0.018 0.986

Table 2. MSE for all the traits with Standard Error

Traits Lasso RF SVM MLP

Plant height (cm) 0.131 ±0.02 0.102 ±0.025 0.089 ±0.021 0.132 ±0.029

Branch per plant 0.091 ±0.023 0.078 ±0.022 0.071 ±0.021 0.07 ±0.029

Siliques per plant 0.16 ±0.047 0.09 ±0.032 0.096 ±0.031 0.095 ±0.036

Yield (mg/ silique) 0.075 ±0.044 0.074 ±0.044 0.074 ±0.044 0.095 ±0.057

Yield (kg/ ha) 0.105 ±0.023 0.081 ±0.017 0.082 ±0.018 0.09 ±0.018

Total Biomass (kg/ m2) 0.106 ±0.03 0.83 ±0.023 0.01 ±0.022 0.08 ±0.023

Harvest index (%) 0.109 ±0.021 0.101 ±0.023 0.093 ±0.022 0.157 ±0.057

SN (n/ silique) 0.057 ±0.031 0.045 ±0.026 0.049 ±0.031 0.067 ±0.03

SN (n/ m2) 0.08 ±0.021 0.098 ±0.023 0.104 ±0.024 0.1 ±0.022

TSW (g) 0.112 ±0.023 0.112 ±0.03 0.119 ±0.027 0.131 ±0.026

Seed oil (%) 0.075 ±0.028 0.091 ±0.027 0.084 ±0.026 0.104 ±0.033

Protein (%) 0.15 ±0.052 0.112 ±0.046 0.12 ±0.039 0.151 ±0.044

3.2. Performance of ML Models

Firstly, we calculated MSE for individual traits using RNA-seq data. The results were
cross validated using 10-fold cross-validation. We have also calculated the standard error
for the cross-validated results. Table 2 shows the cross-validated MSE for all the traits,
along with the standard error of them for the four different methods.

Amongst the four ML methods used for the single trait prediction, Lasso and MLP
had comparatively higher MSE than RF and SVM. On the other hand, SVM and RF
maintained a consistency in their result for most of the traits. From Table 2, it can be
discerned that all the methods performed the best for the trait SN (n/ silique). For this
trait, Lasso, RF, SVM, and MLP had MSE of 0.057, 0.045, 0.049, and 0.067 respectively.
However, on the other hand, the worst performing traits were different for different meth-
ods. Lasso and SVM exhibited highest MSE for protein (%). They had a MSE of 0.15
and 0.12 respectively. Highest MSE for RF was 0.112, which was seen for two traits -
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protein (%) and TSW (g), where MLP showed its worst MSE (0.157) for harvest index
(%).

Finally, we focused to predict multi-traits using RNA seq dataset. Weighted averaing
was used for feature combination. The result was cross validated and standard error was
also calculated. Both the outcomes of MSE and standard error of the multi-trait predic-
tion had shown a notably better output than our single trait prediction. The MSE reduced
significantly for all the methods in the case of multi-trait prediction (both RF and SVM
had MSE of 0.016). We also tried to adjust the weight of the traits based on the p-values,
showed in Table 1. However, the approach didn’t improve the outcomes much. The over-
all outcome for multi-trait prediction is illustrated in Figure 3.

Figure 3. MSE for multi-trait prediction

3.3. Comparative Analysis

A few research works have been seen in recent years where different ML or deep learn-
ing methods were used for trait prediction. Zingaretti et al. [35] conducted an experiment
similar to ours where they proposed a generalized deep learning approach for single trait
prediction from wheat data. They used MLP model on non-normalised data and got a
MSE of 1.518 which is quite higher than ours. Another notable experiment was con-
ducted by Riley Mcdowell [36] on multiple traits of three different datasets (Arabidop-
sis, maize and wheat). Even though the study utilised numerous ML and neural network-
based models, most of the models performed poorly (accuracy as low as 15%) and none
of the models showed consistent performance. However, the regularized neural network
methods performed slightly better than the unregularized methods. Therefore, regular-
ization was recommended. It is also observable that similar to our experiment, Lasso did
not perform too well in this experiment. A similar eventuality is observed in the exper-
iments of liu et al [37]. Their experiment on the grain yield trait on soybean and stem
height trait on loblolly pine dataset showed that Convolutional Neural Network (CNN)
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outperformed lasso models. According to Washburn et al. [38], deep neural networks
show promise in the field of trait predictions. However, in our experiment, MLP did not
perform as good as RF or SVM. Even though the study by Bellot et al. [39] was done ge-
netic traits of humans, their study also showed that the results obtained from MLP were
not consistent as they largely depended on SNPs and phenotypes. So, for future model
development, a well-annotated and trustworthy dataset is a pre-requisite.

4. Conclusion

Trait prediction models can play a vital role in the field of plants and breeding. Use of
ML or deep learning methods for trait prediction has manifested satisfactory results and
they are already outperforming the traditional methods. In our study, we evaluated differ-
ent traits of Rapeseed and the relationship among different traits in respect to yield. Our
study showed seed number per silique is a significant trait for yield production. There-
fore, considering its positive correlation with yield, increasing the number of seed per
silique can increase the yield of rapeseed. Our Prediction models, namely Lasso, RF,
SVM and MLP, showed low MSE scores for predicting single or multi-traits of rapeseed.
While we got low MSE score from RF and SVM, the results from Lasso and MLP were
a little inferior in comparison. These models will be beneficial in terms of real-life re-
turn of experience, where yield or seed characteristics can be predicted easily from their
molecular-based data. Even though we took an unique approach of multi-trait prediction,
scope of further research still remains. Beside the four ML models, different ensemble
ML methods can be applied in future studies. To fine-tune our models for other crops,
different transcriptome datasets could be taken into consideration. Trait heritability was
not considered in our experiments, which may have some level of impact on the out-
come. Therefore, the experiments could be designed while taking the trait heritability
into consideration for better outcomes.
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