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Abstract. Future intelligent environments will operate in dynamic and unpre-
dictable situations. Thus, they will have to be able to dynamically learn how to act,
interact, and adapt, with little or no a priori knowledge and without human inter-
vention. That is, such systems should become able to self-develop causal models
of themselves and of the environment in which they act (i.e., what their actions im-
ply and what actions induce what effects on the environment), and of their social
relationships (i.e,, what interactions induce what impact on other systems). In this
paper, we introduce key concepts of self-development in intelligent environments,
both at the individual and collective level, by framing its key concepts and its rela-
tion with causal models. Then, we introduce two case studies, focus of our current
(preliminary) experiments. Finally, we discuss related work and some key research
challenges.
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1. Introduction

Infants, since their early weeks, start experiencing with their own body, moving hands,
touching objects, and interacting with people around. Such activities are part of an overall
process of self-development (aka autonomous development), which lets them gradually
develop cognitive and behavioural capabilities [1]. These skills include the capability
to recognise situations around, the sense of self, the so called “sense of agency” (i.e.,
understanding the causal effect of own actions in an environment), which subsequently
enable the capability to act purposefully towards a goal, and some social capabilities (i.e.,
knowing how to act in the presence of others). Building machines capable to replicate
these learning mechanisms is increasingly recognised as a key challenge in many areas
of artificial intelligence (AI), such as robotics [2], autonomous vehicles management [3],
and of course intelligent IoT systems and environments [4].

For small-scale and rather static environments, it is possible to “hardwire” a model
of the environment within a system, alongside some pre-designed plans of action to
achieve specific and well-defined goals. However, for larger and dynamic environments,
and for more complex tasks, individual components of the system should be able to au-
tonomously (i.e., without human supervision and with little or no innate knowledge): (i)
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build environmental models and continuously update them as situations evolve; (ii) de-
velop the capability of recognising and modelling causal relations, and specifically the
causal effect of their own actions on the environment (which variables of the environ-
ment can or cannot be directly affected by which actuators, which variables and actu-
ators relate to each other); (iii) learn to achieve goals on this basis and depending on
the current situation; (iv) learn how to organise and coordinate actions among multiple
distributed components whenever necessary (e.g., by learning that a desired effect on the
environment can be caused only by cooperating with others).

Building systems enriched with fully-fledged self-development capabilities is defi-
nitely an ambitious objective. Yet, the idea per se is not new, and its worthiness has been
already advocated since several years [5]. However, the topic is now even more timely.
Many recent research results in areas such as unsupervised and self-learning, causal anal-
ysis, multi-agent systems, and collective behaviours, have started shedding light on the
various mechanisms that have to be involved in the overall process of self-development,
hinting at the fact that the vision (at least in specific application areas) is close to be-
come reality. Furthermore, unfolding the key concepts and mechanisms underlying self-
development can also somewhat contribute to understand the many mental mechanisms
behind artificial general intelligence [6].

In this context, the contribution of this paper is to frame the key concepts behind
self-development and its relation with causality. Specifically, we first introduce a gen-
eral conceptual framework for the continuous and adaptive process of self-development,
both at the individual and at the collective level. Then, we illustrate two representative
case studies, subject of some preliminary experiments we have performed toward self-
development. Finally, we discuss related works and identify some key research chal-
lenges to be attacked.

2. Conceptual Framework

Self-development, besides being the process that infants carry out during the early stages
of their life [1], may also involve any “agent” whenever it is incarnated in a new body
and immersed in a new environment. As an example to quickly and intuitively introduce
our general framework (Figure 1) let us consider what we do whenever we start playing
a new video-game. At first, we observe the game environment and the commands (poten-
tial causes) available; that is, we get acknowledged with our embodiment and perception
on the video-game. We try the commands to assess their effects; that is, we try to acquire
a sense of agency, i.e., a causal model of ourselves in the environment. Then, we under-
stand what is the goal of the game and how we can use the sense of agency to achieve it;
that is, we start acting in a goal-oriented way.

Typically, we recognise the presence of other “agents”, virtual characters that are
not under our control; that is, we distinguish between self and non-self. This implies that
we acknowledge that we should act also in dependence of the actions of other agents
(strategic thinking). All this process is typically repeated in a cyclic way (i.e., when
reaching a new level in the game) to adapt to new environments, new situations, new
tools available, new goals, and new enemies.

In the case of multiplayer games, besides recognising the presence of other players,
and the need to act also accounting for them, we should understand: whether we have
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Figure 1. The conceptual framework of self-development.

communication tools available and how to use them to affect and influence the actions of
others, i.e., to coordinate with them, so that eventually institutional ways to act together
towards a goal can be established. Again, this process may be cyclically repeated as the
game advances. Truly intelligent and adaptive ICT systems should undergo a similar
process and autonomously develop through similar phases.

2.1. The Individual Level

Let us consider a single agent X (purely software or physically embodied) immersed in a
(virtual or physical) environment. The agent can observe a set of environmental variables
V = {v1,v2, . . . ,vm}. As the agent is part of the environment, internal variables of the
agent itself (i.e., its current status and configuration) are included in the set. In addition,
the agent has a set of possible actions A = {a0, . . . ,an−1,null}, including the null action.

Embodiment and Perception. In this early phase, the agent should autonomously recog-
nise the existence of A and V , that is, it should get acknowledged to its actuation (cau-
sation) and sensorial capabilities. Without resorting to complex AI techniques, methods
from the reflective and self-adaptive programming systems can effectively apply in this
phase [7] to let the agent dynamically self-inspect its capabilities and start analysing the
observed variables. The agent can also start acquiring some understanding of the rela-
tions between the observed variables over time, as well as some simple prediction skills.

Sense of Agency. In this exploratory phase, the agent starts trying to understand what are
the effects of A on V , by trying to apply actions (even without any goal in mind) to see
their effects. That is, it will eventually recognise that, given the current state Vcurr, the
application of an action ai (or of a sequence of actions) will eventually lead (with some
probability) to state Vnext . This mechanism enables the construction of the basic sense of
agency [1], and of the sense of causality.

Goal-orientedness. In this exploitation phase, the agent starts applying A with goals in
mind. That is, given the current state Vcurr and a desired future state Vg (the goal, aka the
desired “state of the affairs”), the agent exploits its sense of agency by applying the action
that can possibly cause the environment to move to state Vg. This implies achieving the
capability of planning the required sequence of actions to achieve a specific goal.

Self and Non-Self. As soon as an agent starts exploring its own actions A , and recognizes
that they have effect on the environment, it also understands that there are effects that are
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not under its own control. That is, there are “non-self” entities acting in the environment,
too. By learning how to apply A , the agent also learns the limits of such actions because
of the non-self entities affecting some variable vi.

Strategic Thinking. The agent has built a causal model of the world, that is, of how A
affects V , and it starts somehow including in such model the models of others (non-
self) [8] while acting and while designing strategies. That is, it can recognize that there
are goals it can possibly (or hopefully) attain only by accounting for the actions of others.

As in the videogame example, self-development is not to be conceived as a “once-and-
for-all” process. Rather, it is a continuous, never-ending process: environmental condi-
tions can change, new sensors may become available, and new actions become feasible
(or vice versa, some sensors and actions may no longer be available). This requires the
agents to re-tune their learned causal sense of agency, and re-think how to achieve goals
in isolation and in the presence of non-self entities.

In the related work section, we discuss how individual self-development roughly
correspond to the Pearl’s “ladder of causation” [9].

2.2. The Collective Level

In the presence of multiple agents acting in the same environment, an agent recognises
that there are goals that cannot be achieved in isolation or by simply applying strategic
thinking. Thus as part of their self-development, they should collectively develop some
forms of “autonomous social engagement”. Formally, this corresponds to considering a
set of K agents X0, . . . ,XK−1, where (i) each agent can choose the actions to perform
from its own set (either disjoint or partially overlapping with those of the others); (ii)
not necessarily all the agents can observe the whole set of environmental variables, but
more likely each agent Xj can perceive and/or control a subset of them. Thus, for specific
goals Vg to be achieved, there is the need of properly combining and sequencing actions
by different agents, e.g. Xi executes ai

w whereas Xj executes a j
z , and so on.

Communication. To overcome the limitations of strategic thinking, agents should be pro-
vided with a specific set of communication actions, i.e., actions that are devoted to cause
a change in the actions of others. These could take the form of explicit communication
acts, i.e., messages, that the agent should learn how to receive and send as an additional
– social – form of perception and action. However, they could also take the form of im-
plicit actions aimed at affecting the behaviour of others, i.e., leaving signs in the environ-
ment (stigmergy) or adopting peculiar behaviours aimed at being noticed by others (be-
havioural implicit communication) [10]. All these cases can be formalized by including
in the A set communication actions, and in V observable signs in the environment.

Coordination. By exploring their available communication actions, agents start under-
standing how such acts can be used to get access and to affect some of the variables
of the environment, and in particular those that are not observable and controllable by
themselves. For instance, they can learn how to use communication acts to get access to
the value of some non-observable variables vi or to direct other agents in executing the
actions that can affect its values as required for a goal to be achieved. In other words,
such explorations enable learning basic forms of coordination, which can be thought of
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as a social form for the sense of agency establishing causal relationships amongst agents
issuing and receiving communications.

Institution. Eventually, after exploring coordination protocols, the agents can “institu-
tionalise” their patterns of interaction towards collective actions. That is, they will learn
those acceptable social patterns of coordination, and the set of social norms and social
incentives that enables them to systematically achieve goals together [11]. Formally, this
corresponds to having agents in the collective recognise and adhere to a set of constraints
C (A ,V ) ruling the way (communication) actions A can be performed in specific con-
ditions V , as well as the commitments and expectations (causes) motivating agents’
compliance to the communication protocol (effect).

As for the case of the individual level, the dynamics of the environment or of the
agent population may require the above process to assume a continuous cyclic nature.
We emphasise that communication, coordination, and institutions are not strictly neces-
sary to promote complex goal-oriented collective actions [12]. Nevertheless, whenever
communication mechanisms are available, learning to exploit them is a natural part of
the self-development process, and can facilitate collective action.

3. Case Studies

There are diverse application scenarios that can potentially take advantage of systems ca-
pable of self-development. In the following, two case studies will be presented. The first
one has been also physically implemented with a proof-of-concept framework, represent-
ing a smart home scenario, where the application of the described technology demon-
strates its potential. The second one, only theoretically designed, illustrates the possible
benefits that such solutions can bring to an industrial environment.

3.1. Smart Homes

Smart homes can facilitate our interaction with the environment and increase our safety
and comfort. We envision that once a new home is built, its smart devices could start
exploring their own individual and collective capabilities, so as to eventually learn how
they can causally affect the environment, and apply such capabilities once users will start
populating it. This will also require to continuously adapt to habits and preferences of
users, accommodate new devices and services, tolerate partial failures. Our preliminary
experience suggests the feasibility of the vision [4].

We designed and performed several experiments, following the steps outlined in our
proposed self-development framework. The experiments focus on both the individual
and collective level there described. We hereby summarise the two most relevant exper-
iments, while the reader can refer to [4] for a comprehensive description. We employ
a Bayesian Network to learn dependencies between the observed variables. We remark
that Bayesian Networks are not causal models, since edges only represent conditional
dependencies between nodes. Nevertheless, in the considered domain, one can reason-
ably assume that the connections between the actions performed by the home actuators
and the relevant effects on the sensors can be considered not only as a correlation, but
as a cause-effect relation. Clearly, this is a simplifying assumption that will need to be
refined in more complex scenarios.
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(a) (b)

Figure 2. Learning sense of agency. We show the smart home setup (a) and the associated Bayesian network
for learning sense of agency (b). The lightning bolt represents the actuator controlled by the room agent. The
room eventually learns the actions to be taken (cause) to achieve the goal “complete darkness” (effect).

• Learning sense of agency. This experiment applies at the individual (i.e., single-
room) level. The goal is to assess whether the agent of a single room is able to
learn the effect of an action (sense of agency), which is the necessary precondi-
tion for learning goal-orientedness. The experiment has been performed using a
room luminosity sensor l, two light bulbs b1 and b2 which cannot be controlled by
the agent, and two controllable curtains c1 and c2, positioned to hide the light of
the related light bulb when in closed position. During training, the agent contin-
uously performs actions in order to move the curtains and to understand the rela-
tionship between its actions and the sensed environment. Once the learning phase
is completed, the agent is eventually able to understand what to do to reach the
state where the light in the room is low. In other words, it has acquired a sense of
agency, according to our conceptual framework.

• Learning to coordinate. This experiment applies at the collective level (i.e., with
two connected rooms). In this setup, two agents are involved, each monitoring its
room. Rooms are connected by a common window, so that the light of sensors in
one room also affects the other. The window can be controlled by either agent. By
learning from the joint set of observations, the two agents learn that they need to
cooperate in order to reach a common state of the affairs: for example, closing the
window together in order to obtain the dark. In terms of our conceptual framework,
they need to coordinate actions.

(a) (b)

Figure 3. Learning to coordinate. We show the smart home setup (a) and the associated Bayesian network for
learning to coordinate (b). The window can be actuated only through joint action of both room agents, which
have to agree on the desired state of the affairs. Agents eventually learn how to cooperate.
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The described experiments show how using Bayesian Networks merged with explo-
rative actions it is possible to pave the way for systems that autonomously learn cause-
effects relations, making a step towards the development of an individual and collective
sense of agency (coordination).

3.2. Smart Manufacturing

Manufacturing operations in Industry 4.0 also represent an ideal scenario to model and
evaluate our framework of self-development. Let us take as an example two manufactur-
ing nodes called A and B, as depicted in Figure 4. A single process carried out in node A
takes 1 batch of base modules and 3 batches of 3 kind of components to be attached on
it. Then, the processed base modules are taken from node A and moved to node B where
it is assembled with another component. The base modules are moved by an automated
guided vehicle (AGV) while the components are moved by human picking operators. To
illustrate the importance of self-development within this kind of domain, we exemplify
two possible situations.

Causality. Consider the following scenario: a workstation places a request to an AGV.
Sometimes it may occur that the request is not fulfilled in the expected time. Slowly the
delivery performance may start to deviate from its average, causing more and more de-
lays. In a traditional scenario, time delays are only tracked at workstations: if the person-
nel is well trained and disciplined, the only information available at the given workstation
is that a logistic delay occurred. In the opposite scenario – for example with new opera-
tors not trained or sufficiently skilled – the information would be not so reliable. There-
fore, the workstation performance tracking is only the starting point for the root cause
investigation, which may involve not only the aforementioned workstation, but also other
workstations and equipment. With the help of a self-organised and autonomous system
empowered by causal relations capabilities, the workstation may compute the causal re-
lation with all the entities that interacted with them and that may have affected its perfor-
mance in the last time span. If the strongest causal relation for its delays is with the AGV,
then the workstation may share the information with the AGV, asking for a diagnosis
check. The AGV may then find an unexpected value produced by a wheel sensor which,
in turn, may suggest a broken bearing forcing the AGV to move slowly. The AGV may
then also share this information with other workstations, that might be affected by the
same delays as well. The root cause analysis would thus result much faster and effective.

Figure 4. The considered production setting scheme in the smart manufacturing scenario.
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Coordination. Following the planning control system, coordinating and orchestrating a
set of heterogeneous resources to complete the manufacturing process, implementing the
planned actions as well as respecting the time constraints are all hard tasks. The involved
entities are: the raw material warehouse; the finished product warehouse; the AGV trans-
port system; the picking logistic operators; processing nodes A and B. When a produc-
tion order is released from the production plan, processing node A has to perform the
requested tasks. To do so, it has to check whether the needed raw material is present in
the workstation, whether the workstation is equipped with the relevant tools to complete
the task, whether the tools and machines are in a healthy state. Let us assume that the
material is not present: to retrieve it, the AGV and the human logistic picker have to be
involved. Therefore, the node has to choose the best AGV to ask for retrieving the base
modules, and the best operator for retrieving components. In parallel, a task to an opera-
tor is scheduled, to perform the machine setup as required by the order planning. While
the setup is in process, the AGV and the operator move to the raw material warehouse
asking the warehouse entity to release the requested material. Therefore, the warehouse
releases the material in the correct quantities and then the AGV and the operator come
back to the node to feed it as requested. Then, the manufacturing tasks start.

Generally, buffers for raw materials and finished goods are not infinite, so the logistic
requests will be rolling, being released when a buffer is getting empty with a lead time
equal or close to consumption time of raw material. In the same way, the output buffer has
to be emptied when the batch is full, in order to accommodate a new empty batch ready to
accept other processed products without stopping the process. Hence, the logistic service
has to be called again in a rolling fashion to move the finished product of node A (that is,
the base module raw materials for node B) from the output buffer, and, ideally, directly
to node B, that has to be almost ready with all the preparatory tasks previously described.
In the middle of all those processes, reaction to unexpected situations is a key factor
for maintaining the flow of processing material tight with minimum wastes. Eventually,
node B should be able to coordinate again effectively with the logistic services in order
to free its output buffers before a block occurs, letting the logistics move the finished
material to the finished product warehouse.

The described vision is very ambitious and simply describes the need (and poten-
tial) of self-organising individual and collecting system empowered by causality models
in industrial environments. Expecting to hardwire all the possibilities in a reliable and
effective codebase is a very hard task even with only the involvement of a few resources,
as depicted. As the number of resources grows, the complexity of the system and the
number of possible unexpected situations will inevitably grow as well.

4. Related Works

The idea of self- or autonomous development, at both the individual and collective level,
has been widely investigated in areas such as cognitive psychology, neuroscience, philos-
ophy, and ethics [5]. We hereby focus on the computational perspective, reporting related
works that can contribute to unfold the mechanisms involved in the self-development
vision and to eventually realise it.

The area of reinforcement learning shares with our vision the objective of self-
training machines to act to achieve a specific goal, given a specific context. The best in
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class approach is deep Q-Learning [13], which, however, does not aim at building a sys-
tem with a causal sense of agency and an interpretable world model. Approaches based
on intrinsic rewards [14], instead, more closely exploit the idea of exploring the world to
develop a sense of agency. In fact, intrinsic rewards are developed by the agent itself to
satisfy its curiosity (i.e., when it discovers how to achieve specific tasks) [15]. However,
causality is typically still out of the picture in most researches.

Curriculum-based approaches to machine learning go somewhat in the direction of
gradually developing the capability to act in complex scenarios [16]. In the same vein,
recent approaches based on the theory of affordances [17] propose to have agents grad-
ually learn the effects of their actions. With this approach, they eventually develop an
explicit sense of agency, i.e., a model of how their actions affect the environment that is
interpretable under causal lenses.

The issue of understanding and leveraging causality is increasingly recognized as
a key challenge for AI [18]. In particular, Judea Pearl [9] has proposed the idea of a
“causal hierarchy” (also named “ladder of causation”) to define different levels of causal-
ity recognition and exploitation by an intelligent agent. Such ladder corresponds to some
of the phases of the self-development loop we defined: the first one is mostly involved in
the perception phase, whereas the second one is associated to the development of a sense
of agency and to recognition of self and non-self. The final layer clearly enables goal-
oriented behavior, strategic thinking, and collective coordination. Bayesian and causal
networks are among the models that are most widely exploited in order to build in-
terpretable models of the world. A recent contribution is the application of curriculum
learning to the problem of learning the structure of Bayesian networks [19]. On a pure
sub-symbolic level, on the other hand, another recent work proposes to learn causal mod-
els in an online setting [20], with the aim to find (and strengthen) causal links between
variables.

Recently, autocurricula-based approaches have produced stunning results in mul-
tiagent environments, both cooperative and competitive, like in the hide-and-seek sce-
nario [21]). However, providing agents with an explicit modeling (possibly in causal
terms) of others’ behavior and overall societal behavior, may be necessary [8]. Also, au-
tocurricula approaches do not currently account for the possibility of explicitly interact-
ing (e.g., through speech acts) with other agents, which may be indeed fundamental to
improve collective learning.

5. Discussion and Open Challenges

The general vision of self-development is still far to be reality. Several ideas in the areas
of unsupervised and self-learning, causality, multi-agent systems, are already showing
its potential feasibility and applicability, at least in specific application areas. However,
many open challenges are still to be faced:

• Although our general vision ideally assumes that all the knowledge is self-
acquired by a system, real-world system may require least some innate knowledge
about the world. We think that the identification of the most proper and effective
trade-off between innate and acquired knowledge will be a key challenge.
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• Can we control the evolution of behaviours during the self-development process?
We argue that an explicit meta-level modelling causality underlying system evo-
lution will be necessary to support such a controlled evolution.

• The more technologies based on self-development will pervade our everyday en-
vironments, the more humans will have to continuously interact with them. This
interaction will raise technical issues (will we have “handles” to control or block
such systems?) and ethical problems (will we be rather “handled” by these systems
and subjected to their decisions?).
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