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Abstract. In recent years, the importance of artificial intelligence (AlI) and rein-
forcement learning (RL) has exponentially increased in healthcare and learning Dy-
namic Treatment Regimes (DTR). These techniques are used to learn and recover
the best of the doctor’s treatment policies. However, methods based on existing
RL approaches are encountered with some limitations e.g. behavior cloning (BC)
methods suffer from compounding errors and reinforcement learning (RL) tech-
niques use self-defined reward functions that are either too sparse or need clinical
guidance. To tackle the limitations that are associated with RL model, a new tech-
nique named Inverse reinforcement learning (IRL) was introduced. In IRL reward
function is learned through expert demonstrations. In this paper, we are proposing
an IRL approach for finding the true reward function for expert demonstrations.
Result shows that with rewards through proposed technique provide fast learning
capability to existing RL model as compared to self-defined rewards.

Keywords. Reinforcement learning (RL), Inverse Reinforcement Learning (IRL),
Dynamic Treatment Regime (DTR).

Introduction

Statistical research in the field of healthcare are mostly concerns about the comparison of
pre-determined treatment Regimes and the estimation of the optimal treatment. The in-
formation that is used in comparing or constructing Dynamic Treatment Regime (DTR)
are usually from sequentially randomized studies, longitudinal observational studies or
from dynamical system models. Data from sequentially randomized studies are used
more extensively because of the large number of randomized clinical tests. Adaptive
treatment strategy is a set of guidelines for picking up an effective treatment for indi-
vidual patients [1]. Treatment choices by following a dynamic regime are dependent on
individual’s history and characteristics, with the goal of optimizing his/her long-term
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clinical outcome [2]. We have considered Sequential Multiple Assignment Randomized
Trial (SMART) [3,4] based on the addiction management [5] for our experiment. A hy-
pothetical based design is shown in the figure-1. There are two initial possible treatments
i.e. medicine(MED) and psychology (PSY) that are randomly assigned in each trail. Af-
ter initial treatment participants are divided into two categories responders (Res) or non-
responder (NR) that depends on whether they do or do not experience more than two
heavy-drinking days during a specific period of time. A non-responder to MED is either
switch to one of the two subsequent treatment options i.e. PSY or an augmentation (PSY
+ MED). In same way non-responder to PSY is randomized into either MED or an aug-
mentation of PSY with MED (MED + PSY). On the other hand responders (Res) to the
initial treatment are observed through telephone monitoring (TM) for an additional time
period.

On the other hand, Reinforcement Learning (RL) algorithm is a decision making frame-
work that specify a high-level objective function and learn a policy that satisfies these
objectives [6]. A policy in RL is similar to this treatment regime [7]. Most of the time
researchers have supposed to specify reward function manually to infer optimal DTR
[8,9]. However, the reward function chosen in such a way are extremely scattered which
create the problems in recognition of the optimal actions [10]. Clinically guided reward
functions may overcome this issue but problem with this technique is that it needs the
information of an expert and can not be used into different domains [11].

Inverse Reinforcement Learning (IRL) technique [12] can mitigate this problem and
avoid a manual specification of the reward function. True reward function is necessary
for the reproduction of the expert’s demonstrations [13]. In IRL the reward function is
derived from the demonstration of the expert’s behavior [14] as represented in section 3.
Rest of the paper is organised as follows: Related work in emerging and existing fields
are deliberated in section-1. Section-2 comprise a quick review of background and prob-
lem formulation, where basics about the Markov decision process (MDP) is discussed.
Proposed approach and system model is detailed in section-3. This section describes the
problem of learning the reward function not explicitly but through observing an expert
demonstration. Discussion about experiment model, data description and result are stated
in section-4. We summarize the paper in Section-5 by giving a conclusion followed by
the future directions.
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Figure 1. Hypothetical sequential multiple assignment randomized trial (SMART) design schematic for Al-
cohol addiction management (an R within a circle denotes randomization at a critical decision point)
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1. Related Work

Recently, the development in computing technology and the introduction of new machine
learning algorithms e.g. reinforcement learning [15], neural network [16] the goal of Ar-
tificial Intelligence (AI) has become a step closer. Al has important application in diverse
fields including:healthcare [17,18], robotics and autonomous control, vision enhancing
method for low vision impairments [19], risk management [20,21], communication [22],
and Social humanoid robot [23].

Learning from Demonstrations or Imitation learning [24] may usually be divided into
three types: IRL,Adversarial Imitation Learning (AIL) and Behavior Cloning (BC). BC
[25] is the technique of learning the policy by direct mapping of states to the actions.
It can avoid interaction with the environment. However, it introduces the compounding
error along the trajectory length when there is a lack of improvement during training[26].
On the other hand, IRL [27] learns the reward function based on the expert demonstra-
tions that models the preference and intention of the demonstrator.

Preference of the Imitation Learning (IL) [28] is to minimize the Jensen-Shannon diver-
gence between expert policy and learned policy. Different techniques has been adopted
for this purpose i.e. Gaussian Process (GP) [29] is utilized in a continuous state space to
recover both uncertainty and rewards information. Deep GP model [30] has the capabil-
ity of learning complicated reward structures With limited number of expert demonstra-
tions.

Application of Machine Learning (ML) techniques in healthcare and biomedical [31]
[32] field have increased exponentially in recent years. Alternatively, DTRs are known
as treatment policies [33] or adaptive treatment strategies [3,34]. DTR [9,35] oversim-
plified medicine to time-varying treatment in which treatment is tailored to a patient’s
dynamic-state. Researchers have successfully applied Deep Learning (DL) techniques to
Prognostics and Health Management (PHM) system [36]. RL [37,38] and BC are the two
techniques which can be preferred to learn DTRs. BC can efficiently recover the expert
(doctor’s) policies when the Electronic Health Record (EHR) is sufficient and optimal.
RL methods, on the other side, directly learns a policy that are based on maximizing the
long-term reward of patients [37,10] . However, pre-defined reward function plays an
impotent role in learning the optimal policy.

2. Theoretical background
2.1. Markov Decision Process

A Markov Decision Process (Markov Decision Process (MDP)) can be represented as
a complex decision making process that satisfies Markov property. It means that the
current decision in MDP is based on the current state or action and not on previous ones.
An MDP may be adopted to describe the dynamic of an uncertain environment while an
Agent interacts with it by performing actions. A MDP is a form of tuple (S,A,T,R,7)
[39]. Essential elements for a MDP are as under:

-S = 51,582,583, .....5, 1S the set states for the given environment. State transitions depend
on the chosen action and the probability transition function.

-A =ay,as,as,.....a, represents the set of all actions that the agent can take in a state at
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Table 1. Features of (SMART) design schematic for DTR

Pre-treatment Features First Step

Location, Gender, Cultural Level PSY , MED

First Response Features Second Step
Participant’s Binary Response, TM, MED, PSY,
Side Effects, and Adherence MED+PSY

every time step.

-T(st,ar, st + 1)) is a transition function. It states the probability of getting into state
st + 1) by taking action a in state s in time step 7.

-y € [0,1] : is a discount factor. It takes the value in between zero and one. A value close
to one gives more weight to long term rewards and a value of zero gives more weight to
immediate rewards.
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Figure 2. A Markov Decision Process mapping the DTR.

3. Inverse Reinforcement Learning

Let consider an MDP without reward (MDP/R) in this context we have same component

as regular MDP except for the reward model. Given some expert’s trajectories 77 as
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Table 2. Rewards collected at each state against demonstrations

Pre-treatment Reward Function

Features S0 S 52 53 S4 S5 S6
M-O-L -0.07608  0.02531 -0.01483  0.02352  0.02860 0.02662  -0.01314
M-O-M -0.01065 0.04971  -0.00019 0.03434  -0.06962  0.01591 -0.01949
M-O-H 0.00094 0.01239  -0.04246  -0.01280 0.07577  0.01017  -0.04401
M-D-L 0.00627 0.05076  -0.05029 0.04778 -0.0464  0.00158  -0.00969
M-D-M 0.02857 0.01935  -0.07938 0.02066  -0.00079  0.02684  -0.01525
M-D-H 0.02801 0.05016  -0.01598 -0.06860  -0.00954  0.02766  -0.01169
F-O-L -0.04651  -0.01826 0.07030 0.00517 0.00423  0.02440 -0.03933
F-O-M -0.01335  -0.05419 0.03662 0.06278  -0.02876  0.00148  -0.00457
F-O-H -0.01656  -0.00396 0.07294  -0.04237  -0.00378 0.0242  -0.03047
F-D-L -0.05002  -0.00568  -0.04073 0.06213 0.04086  0.00047  -0.00703
F-D-M -0.00041 0.03286  -0.07824 0.01592 0.03171  0.01384  -0.01565
F-D-H -0.03154  -0.00355 -0.00352  -0.04633 0.06648  0.04019 -0.02174

below:

tf = [(s{,a%,sbaé,..,s}i,a}i), (s%,a%,s%,a%,..,sé,aé), o]

=[, 7%, 7]

ey

An episode 7' of expert trajectory represents the expert action a at state s for length of d
states. Where s € [so, 51, $2, 3, $4, S5, S¢] and a € [MED, PSY, PSY + MED)] as stated
in figure-2. It is a three stage decision model. Set of all actions that an agent can take are
givenas A = [MED'/ PSY'/TM'/ PSY + MED'] and the set of states to which an agent
can moves in by taking a specific action are S = [’ s6, 1, 82, 83, 54, S5, S¢] - Expert trajecto-

Algorithm 1 Proposed algorithm for the reward estimation

1: Given: Demonstrations " generated by behavior policies 7%, discount factor 7,
termination criteria &€,
Initialize: Feature matrix ¢, number of iteration n = oo,
Randomly pick a policy 7?0
set: w' = g — 1% and (0 = pf
Calculate the feature expectation of demonstration pg = E[Y.;>; V' ¢ (s;) | 7]
for (i=1;i < No.of iteration; i*") do
Calculate R = (w(i))Tq)(i)
Apply RL to find policy #’ by using reward R.
9: Compute feature expectation: & = E[Y;> | ¥ o (s,)|#];
10.  Compute fi’~! through Equation-8.
e Setw! = pgp — A0V = e — 40D
12 ift < ¢ethen

0)

13: Break for
14: end if
15: end for

16: Return: R(s,a) = Y {w:@i(s,a)}
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ries that represents expert action at each state are dependent on the information of some
pre-treatment parameters as listed in table-1. It includes the information about gender
{Male(M),Female(F)}, location {downtown(d),hill — station(o)} and Cultural-Level
{high(h),medium(m),low(l)}. Actions that are taken at the second stage and also de-
pendent on participant’s binary response, adherence and side effects of the policy carried
out at 1st step. Expert trajectories can be represented as 7% = {[/R') MED'/ Res','TM'],
[R'/MED'/NR'/ PSY + MED'], |.......]}. IRL algorithm is proposed to estimate the true
underlying reward function for these expert trajectories.

Value of a policy V is the sum of all the discounted rewards by following that policy.
Expectation of the expert value function VZ(s) is defined as:

EIVE(s)] = E[Y. 'R(s,) 7] @

t=1

=E[ilfw.¢<st>|n5] 3

gk

—w.E[Y "9 (s,)|me] @

t=1

=w. g &)

Where ¢ represents k fixed, known and bounded basis or feature function ¢ : S —
[0,1]% and weights w; € R.
On the other hand, some policies are generated randomly {#!,...., #d } and by mixing
them according to mixer weight A; we can generate a new policy whose feature expecta-
tions U is convex combination of these policies.

pw=Y 2u® 4,>0Y %=1 (6)

Where 4, is the probability of picking #’. One policy (atleast) among randomly generated
policies has the performance are as good as expert policy has. It can be found by solving
the min ||ug — i[>

Solution is acceptable if ||tg — pt||» < €. It means that, at that point, expert expectation
Ug separated a margin of at most € from (. We can reach to that solution after exploring
s, .....u" random feature expectation. In large state space it becomes computation-
ally complex.

Alternatively, according to the Caratheodory’s theorem [40]:

p=arg min - ||jug—plf @)
HECO{u (A},

where CO denotes convex hull. By doing so we can obtain a set of k+ 1 policies that are
equally close to the expert feature expectation and can be calculated as:
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i—1 _ ni-1\T i
cicl _ mica (M - (ug— 2
Bo=ar i—1 _ pyi—I\T (yyi=1 _ yi—1 [
(u=t=p=h)" (u=t = p=h) ®)
(u="=p"")]
we set
w'=pp — Y ©)

Reward function might be a linear combination of features ¢. Where it can be cal-
culated by the dot product of feature function ¢ and weight vector w'

R(s,a) =wi¢1(s,a) + wada(s,a)+...... +wi P (s,a)

R(s,a) = } {wii(s,a)} (10)

Value of thresh-hold ¢ defines the termination criteria. Algorithm terminates if its value
gets less then some predefined parameter €.

t=|lug—pi V] <e (11)

In the beginning, we set the value of w! = yz — 4° where u(0) = p(©.

Algorithm-1 represents the proposed technique. We have some set of expert trajecto-
ries that defines the expert policy at each state. We are trying to estimate the underly-
ing reward function for these expert policies. Patient model randomly generates policies
(choose action against each state). Feature expectation for these combinations (trajecto-
ries ) are calculated through the reinforcement learning algorithm. The goal here is to
find a policy whose feature expectation are nearly same as the feature expectation of the
expert. By finding such a policy we can find the reward function for expert policies.

In this section We have proposed an IRL approach that can be utilized by mixing up
estimated policies () corresponding to their mixture weights A;. This new generated
policy achieves performance near to that of the expert’s policies on the unknown reward
function.

4. Experiment

In this section, we have conducted experiments to evaluate the proposed model. Data tra-
jectory are based on observable data set that can be represented as (01,A1,02,A2,03).
Where O is pre-treatment information, O, is intermediate outcomes and O3 represents
the final outcomes information. A1 and A2 are the randomized treatment actions. In an
addiction management study, O1 may include gender of patient, location, addiction sever-
ity and comorbid conditions. O, may include the participant’s binary response status,
side effects and adherence to the initial treatment. Whereas, O3 may be the number of
non-heavy-drinking days for an under-observed period of time.
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Figure 3. RL model (Q-Learning) learns the DTR environment by adopting IRL rewards and random rewards
4.1. Results

We have tested proposed IRL algorithm-1 to recover under-laying reward function for
some generated expert trajectories by setting up a value of 0.7 for discount factor y and
0.1 for threshhold €. Rewards at each state calculated for different combination of pre-
treatment parameters as represented in table-2. These rewards portray the preference of
expert at each state. Another experiment is conducted to see how good these rewards are.
For this purpose we tested RL model with learned rewards (collected through proposed
approach) and random rewards (usually adopted by existing methods). A very famous
RL model ( Q-learning ) is used for this experiment as shown in figure3. The comparison
on both the rewards is presented here. Learning curves show how quickly RL model
learns the DTR environment by adopting each of the rewards. A fast learning curve with
”IRL rewards” can be seen compared with “random rewards”. Almost 431 episodes were
needed to learn the environment With IRL rewards. While, in other case it needed almost
870 episodes.

5. Conclusion

In this paper, we proposed IRL algorithm to learn the rewards and hence optimal policies
for dynamic treatment regimes. It is shown that finding out new policy by mixing up all
the estimated policies corresponding to their mixture weights is a quick and easy way to
reach out to an optimal policy. Results shows that existing RL models learns the environ-
ment more quickly with the rewards obtained through proposed technique as compared
to randomly defined rewards.

It has been seen that IRL methods only consider the positive trajectories (e.g. cured or
survived patients) and learn rewards to recover these trajectories. The information in
the negative trajectories (e.g. deceased patients) has been largely ignored, which could
potentially help the learned policy to avoid repeating mistakes. One can use both pos-
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itive and negative trajectories to deduce the best practices and avoid negative practices
for dynamic treatment regimes. It may provides better dynamic treatment regimes and
improves the likelihood of patient survival with the information from both positive and
negative trajectories.

List of Acronyms

DL Deep Learning

MDP Markov Decision Process

RL Reinforcement Learning

DL Deep Learning

DTR Dynamic Treatment Regime
IRL Inverse Reinforcement Learning
IL Imitation Learning

ML Machine Learning

BC Behavior Cloning

AIL Adversarial Imitation Learning
GP Gaussian Process

SMART Sequential Multiple Assignment Randomized Trial
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