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Abstract. Thermal comfort is a state of mind in which one is satisfied with the
thermal environment that is crucial to human well-being, safety, and productivity
in everyday life. Indoor environmental thermal comfort levels usually change due
to performing different activities in different situations. Computer systems that can
understand these comfort indicators can help to support and increase human well-
being. This paper considers a simple wristwatch-like device equipped with vari-
ous sensors to collect autonomic nervous system activity data. This study offers a
preliminary assessment of a physiologically regulated thermal comfort provision
based on Pulse Rate Variability (PRV) to see if we could predict the comfort of a hot
environment (risk of heatstroke, higher dissatisfaction/more difficult to cope than
cold). Therefore, we focus on collecting data in varying temperatures and humid-
ity levels for different work conditions i.e., reading, typewriting, and gymnastics
focusing on hot thermal conditions to predict human-environmental thermal com-
fort using multiple machine learning models. Our results show an average accuracy
above 95% with five different machine learning models.

Keywords. Thermal Comfort, Intelligent environment, Wearables, Heart Rate
Variability, Machine learning

1. Introduction

In general, comfort is a significantly important concept in daily life that has a directly
or indirectly links to individuals’ pain, relaxation, anxiety, self-confidence, and sadness
as a whole. Thus, thermal comfort is also linked to one’s health [1, 2], productivity [3],
learning ability [4], and overall well-being [5]. Thermal comfort is an essential factor
to consider while designing, operating, and commissioning commercial and residential
buildings because thermal comfort is a key factor in creating a comfortable indoor en-
vironment. Furthermore, indoor temperature discomfort has an impact on human health
and can be especially dangerous in the case of vulnerable patients [6, 7]. Personal vari-
ables (age, health state, etc.), duration of exposure [8] and adaptation capability deter-
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mine individuals’ vulnerability to exposure to low or high temperatures. People are vul-
nerable to various adaptation processes depending on their age: for example, a too hot or
too warm living environment might jeopardize older people’s health.

Therefore, with the advancement of technology, indoor temperature regulators (e.g.,
air conditioners, electric heaters, etc.) have become indispensable household appliances,
allowing for year-round temperature adjustments within a comfortable range. Today, the
construction of most buildings and system components follows standards that specify the
range of thermal environmental conditions acceptable to most users. However, because
of changes in environmental conditions or activities performed in the indoor space, the
thermal sensation and comfort of the human body frequently change dramatically. Recent
research shows that thermal comfort criteria such as ASHRAE 55 (American Society of
Heating Refrigerating and Air-conditioning Engineers) [9] and ISO 7730 [10] understate
the number of unsatisfied users in indoor environments [11].

It is also known that the comfortable temperature varies from person to person.
However, most thermal comfort delivery technologies (e.g., air conditioning units) pro-
vide a neutral thermal condition for all residents of the building. These thermal comfort-
providing methods are energy-intensive [12], and they largely fail to cool or heat the
regions of the body that have the most significant impact on a person’s thermal com-
fort satisfaction (e.g., the wrist, the feet, and the head). Moreover, it may be feasible
to significantly reduce the necessary thermal comfort providing energy by allowing the
indoor temperature to wander away from thermal neutrality and adjusting it only when
individuals become thermally uncomfortable. In this regard, it is essential to assess ther-
mal comfort mechanisms to produce a comfortable and healthy interior atmosphere in
buildings.

In this context, we can present an energy-efficient thermal comfort providing ap-
proach using heart rate variability (HRV). As thermal comfort is a subjective psycho-
logical sense, providing thermal comfort based on changes in a person’s physiological
signals would be more effective. Recent studies show that HRV assesses the autonomic
nervous system’s balance and capability, and a change in the temperature caused measur-
able changes in people’s HRV [13]. Therefore, this research focus on predicting environ-
mental thermal comfort sensation from the pulse rate variability (PRV) data from photo-
plethysmography (PPG) sensors incorporated in a smartwatch. PRV is significantly as-
sociated with HRV and can be used as a substitute for it [14]. During the experiment, we
have collected 33 participants’ data in various work conditions: i.e., reading, typewriting,
and gymnastics, focusing on hot thermal conditions in accordance with the ASHRAE
scale: normal, slightly warm, warm, and hot. Mechanically controlled indoor environ-
ments use the Predicted Mean Vote (PMV) index to evaluate thermal comfort conditions.
The PMV model incorporates human-related factors, namely user clothing insulation,
metabolic rate, and environmental values such as temperature, air velocity, mean radi-
ant temperature, and relative humidity. Several HRV features were used as input to Ma-
chine Learning (ML) classification algorithms to anticipate users’ environmental thermal
sensation, providing an average accuracy of 95.17%.

The remaining part of the paper proceeds as follows. First, section 2, begins by re-
viewing the related literature on estimating thermal sensation, comfort, and preference.
Section 3 explains the collected data overview having data collection procedures. Sec-
tion 4 describes the methodology of data prepossessing, feature extraction, model build-
ing machine learning algorithms and evaluation metrics. Section 5 presents the results
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of prediction different thermal sensations and classification methods with discussions.
Conclusions drawn are presented with some future work points in Section 6.

2. Background: Thermal sensation, comfort and preference

The indoor environment is commonly regarded to be a health-related concern in terms
of healthy human life [15, 16]. Temperature change is a type of environmental stressor
linked to health directly. In this regard, human thermal comfort has been investigated
in terms of environmental conditions for decades [17]. However, the thermal sense and
comfort of the human body frequently change as a result of changes in ambient circum-
stances or different activities in the indoor [18]. Previous research has shown that some
other factors (e.g., prior thermal history, physiological and psychological processes) have
a significant impact on people’s thermal comfort [19]. Researchers discovered that phys-
iological reactions of people to skin temperature, heart rate, and heart rate variability are
sensitive to temperature step changes in the indoor environment [20].

Several recent research works have used machine learning techniques to construct
individualized thermal comfort models [21]. The three primary variables for machine
learning models are environmental information, occupant behavior, and physiological
signals. Following that field research, other works used physiological testing to deter-
mine how different temperature stages affect the human body [22]. For this objective,
physiological measures such as rectal temperature, skin temperature [23], sweat rate, and
heart rate variability [24] were assessed to measure human thermal comfort. These phys-
iological signals have a significant association with human thermal experience and com-
fort, in addition to behavior-tracking. The categorization of occupants’ personal thermal
comfort in terms of temperature and humidity also used a data-driven strategy [25] in
conjunction with the interior environment.

As a previous study, Nkurikiyeyezu et al. [13], utilized heart rate variability to pre-
dict thermal comfort in three stages: cold, normal, and hot and obtained accuracy of up to
93%. This research implies that changes in temperature and humidity impact heart rate
variability, but estimating thermal comfort with a smaller particle size is required to fore-
cast the danger of heatstroke at the appropriate time. 93Although most of the research
claimed improved prediction accuracy over traditional PMV and adaptive models, they
didn’t consider different activity states in indoor environments which is also a vital cause
for worsening the health conditions. Therefore, it is necessary to investigate not only the
effect of the thermal environment on biological information but also the effect of the
mental burden caused by work or the physical burden caused by exercise to prevent the
risk of heatstroke. In this research, we verified a model that can estimate the environmen-
tal thermal comfort using the PMV model with high accuracy considering various work
conditions focusing on hot thermal conditions in accordance with the ASHRAE scale:
normal, slightly warm, warm, and hot to predict human thermal comfort in a variety of
activities and environments.
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3. Data Collection

This section describes the data collection protocol, data collection procedure, and tools
used to collect our dataset. The data were obtained with the permission of the local ethics
committee, and each participant gave their informed consent to the data being processed.

3.1. Data Collection Protocol

Each participant went through 8 conditions during a single data collection session. The
experiment conditions are based on various work conditions: i.e. reading, typewrit-
ing, and gymnastics focusing on hot conditions with settings in accordance with the
ASHRAE scale: normal, slightly warm, warm, and hot. We set these activities in rela-
tion with real-life situations. For example, elderly reading/watching TV at home activity
will be aligned with reading activities, office work classroom study will be aligned with
reading and typewriting activities, and factory/outdoor work that requires a little more
effort will be aligned with heavy work activity radio gymnastics.

For a single session, there were a total of eight experiments. We organized each ex-
periment session with different temperature and humidity conditions for a particular ac-
tivity. For example, gymnastics activities were recorded in temperature hot (temperature
32◦C / humidity 80%) and warm state (temperature was 25◦C / humidity 60%). Table 1,
presents each experiment condition elaborately.

Table 1. Data Collection States

Experiment Task Temperature Humidity Duration
order (min)

1 Radio Gymnastics 32◦C 80% 10
2 Radio Gymnastics 25◦C 60% 10
3 Reading 25◦C 60% 15
4 Reading 32◦C 80% 15
5 Reading 27◦C 60% 15
6 Reading 32◦C 80% 15
7 Typewriting 32◦C 80% 15
8 Typewriting 27◦C 60% 15

3.2. Wearable sensors

We asked participants to wear Empatica E4 wristbands; The E4 wristband2 resembles
a watch and has many sensors, including an Electrodermal activity (EDA) sensor (mea-
sures the continually changing changes in specific electrical characteristics of the skin),
a photoplethysmography (PPG) sensor (measures the Blood Volume Pulse (BVP) which
is a metric that may be used to determine heart rate variability to assess sympathetic ner-
vous system activity and heart rate at the same time), a three-axis accelerometer (ACC),
and an optical thermometer. At a frequency of 4Hz, EDA illustrates continually chang-

2https://www.empatica.com/research/e4/
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Figure 1. Data set size for each thermal Sensation
Figure 2. Number of people participating in each
day’s experiment.

ing changes in skin electrical characteristics. When the level of sweat increases, the con-
ductivity of the skin increases. The inter-beat interval (IBI) and HRV may be calculated
using the PPG sensor, which monitors the BVP at 64 Hz. Recent research shows that the
Empatica E4 wrist band [26] records HRV accurately under seated rest, paced breathing,
and recovery situations. Thus, the E4 is outfitted with sensors that are designed to collect
high-quality data. Data were immediately transferred to the E4 connect cloud platform
after each experiment session.

3.3. Participants and Procedure

We collected data from 33 participants, ranging from 22 to 50 years old (10 women, 23
men). The participants were instructed to do a specified task in an indoor temperature-
controlled environment. Data were gathered for a total of 10 days. For each activity data
collection time, we adjusted the temperature and humidity. For 33 adult men and women,
continuous pulse intervals were measured in four temperature and humidity environ-
ments of normal, slightly warm, warm, and hot, and in three work situations of reading,
typewriting, and radio gymnastics. Figure 1 depicts the four thermal states in the dataset,
with warm conditions having a disproportionately high number of records compared to
other thermal states.

We didn’t fix the number of participants in each day’s experiment during the data
collection period. The number of participants was higher on day six when seven people
showed up for the trial. Figure 2 shows the overall number of days in the experiment
as well as the number of participants on each day (one day we conducted in total eight
experiments in the order stated in Table 1). The first two experiments were radio gym-
nastics performed in hot and warm temperatures. The HRV standard deviation for these
two experiments was higher (because of the high level of activity) than for the other
experiments, reading and typing (figure 3 and figure 4).
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Figure 3. Experiment basis HRV Standard deviation Figure 4. Activity basis HRV Standard deviation

Figure 5. Thermal sensation scale of ASHRAE Standard 55

4. Methodology

The PMV thermal comfort model is based on large-scale laboratory testing on people
conducted over a lengthy period of time in various temperature states [27]. To anticipate
the mean thermal experience of a large group of individuals, it considers the ambient air
temperature, the mean radiant temperature, the air speed, the relative humidity, people’s
metabolic rate, and their garment insulation level [27]. The PMV model has been used
to forecast the mean thermal perception of building occupants since its conception. It
has been adopted into worldwide thermal comfort standards for its fair performance [28]
(e.g., ISO 7730, ASHRAE 55).

A person’s thermal feeling may change depending on the temperature of the air.
Here, the subjects’ thermal sensations were evaluated using the ASHRAE 7-point scale
(Fig. 5). The ASHARE scale is based on how warm or cool the person feels in a certain
indoor environment. The predicted PMV is divided into seven stages: cold, cool, little
cool, normal, slightly warm, warm and hot. In this study, we set up an experimental
environment for the four stages of normal and hot conditions, because we aim to predict
the comfort of a hot environment.

4.1. Experimental protocol

Considering that environment temperature influences human thermal sense and com-
fort [27], the PPG signal was collected using an Empatica E4 wristband at various tem-
peratures and activity levels during the experiments. We synchronized data from the E4
to the smartphone using a mobile app (E4 RealTime) that sent data from the E4 to the
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smartphone through Bluetooth signals. The button on the E4 allowed us to upload the
collected data to (E4 connect) a secure cloud platform after each session ends. We evalu-
ated subjects’ IBI (inter-beat interval, is the time interval between individual beats of the
heart) signal was extracted via a PPG signal recorded using an Empatica E4 wristband.
Using a sliding window technique, we estimated heart rate, inter beat intervals in mil-
liseconds, and heart rate variability from physiological data gathered such as blood vol-
ume pulse. The extracted IBI signal is used to forecast the user’s thermal comfort using
several machine learning models.

4.2. Feature Extraction and Data Prepossessing for Thermal Comfort Prediction

In this study, we selected time-domain and frequency domain analysis of HRV indices.
HRV Indices in the time domain are straightforward to calculate and understand. The
beat-to-beat variability is described by time domain HRV features. Statistical approaches
can be used to characterize beat-to-beat variability for this group. Among various time-
domain features, the RMSSD (root mean square of successive differences between nor-
mal heartbeats) and pNNx indices (the proportion of absolute deviations between suc-
cessive normal sinus intervals that exceed a certain threshold value. The most commonly
used threshold is 50 msec, and the statistic obtained is termed pNN50) are considered as
important features to the HRV research community [29]. The square root of the mean of
the sum of differences of successive R-R intervals (beat to beat intervals) is represented
by the RMSSD. The proportion of R-R consecutive pairings that vary by x milliseconds
is denoted by the pNNx. A 2-min epoch is also required for the percentage of adjacent
NN intervals that deviate by more than 50 ms (pNN50).

For frequency-domain feature analysis, spectral HRV analysis methods break pulse
variability into its underlying frequency components, allowing for a better understand-
ing of heartbeat variation. There are a variety of methods for calculating HRV spectrum
components. The Fast Fourier Transform (FFT) and autoregressive (AR) modeling ap-
proaches, in particular, are widely employed [30]. We can divide HRV into its compo-
nent ULF, VLF, LF, and HF rhythms that function at distinct frequency ranges using FFT
or AR modeling [21, 30].

All HRV indices were calculated on a window segment using a window size of 300
samples (something close to 3 minutes and with a step size of 30 seconds). The features
are computed using the flirt library [31]. Table 2, describes the selected HRV indices
used in this study.

4.3. Machine learning algorithms

To predict thermal comfort, we conducted experiments on 33 participants doing light
work (metabolic rate 1.1) and heavy work (metabolic rate 3.0) in four thermal chambers
whose settings conform to those of a normal, slightly warm, warm, and hot thermal sen-
sation on a PMV index scale (Table 3). Each experiment was roughly 15 minutes long ex-
cept radio gymnastics which was 10 minutes long. After extracted HRV indices, the HRV
indices of all participants in all temperature settings were combined after they were re-
trieved. The model was evaluated by 10-fold cross-validation. The dataset was randomly
divided into 10 parts, nine of which were used as training data and one as validation data.
We repeated the process ten times and evaluated the average of the ten times. We used five
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Table 2. Description of the selected HRV indices

HRV index Short description

NUM IBIS Number of NNI intervals
HRV MEAN NNI Mean of all NNI intervals
HRV MEDIAN NNI Meadian of all NNI intervals
SDSD Standard deviation of all interval

of differences between adjacent RR intervals
RMSSD Square root of the mean of the sum of the

squares of the difference between adjacent RR intervals
HRV NNI 50 Percentage of adjacent NN intervals differing by more than 50 ms
HRV NNI 20 Percentage of adjacent NN intervals differing by more than 20 ms
HRV pNNI 50 Percentage of R-R consecutive pairs that differ by 50 milliseconds
SDNN Standard deviation of all NN intervals
HRV VLF Spectral power in very low range frequencies (0.0000.04 Hz)
HRV LF Spectral power in low range frequencies (0.040.15 Hz)
HRV HF Spectral power in high range frequencies (0.15 Hz)
HRV LF HF RATIO Ratio between LF and HF band powers
TP Total spectral power (00.4 Hz)
HRV SD1 SD1 measures Short-term heart rate variability in ms
HRV SD2 SD2 measures Long-term heart rate variability in ms
HR MEAN Mean of Heart Rate measured by the number of heart beats per minute
HR MIN Lowest Heart Rate measured by the number of heart beats per minute
HR MAX Maximum Heart Rate measured by the number of heart beats per minute
HR STD Standard deviation of Heart Rate
HRV MEAN Mean of Heart rate variability
HRV STD Standard deviation of Heart rate variability
HRV MIN Lowest of Heart rate variability
HRV MAX Maximum value of Heart rate variability
HRV SKEWNESS Skewness of all Heart rate variability
HRV KURTOSIS Kurtosis of all Heart rate variability
HRV PEAKS Peak value of Heart rate variability
HRV RMS Square root of the mean of the sum of the

squares of differences between adjacent NN intervals

machine learning [32] classifiers to assess prediction performance: K-Neighbors Clas-
sifier(KNN), Decision Tree Classifier(DT), Random Forest Classifier(RF), Extra Trees
Classifier(ET), and LGBM Classifier(LightGBM).

5. Results and Discussion

To evaluate the prediction performance among different models, we used accuracy as
evaluation metric. The accuracy of the models in Fig. 6 is obtained using Equation 1,

Accuracy =
T P+T N

T P+FP+FN +T N
(1)
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Table 3. Thermal Environment Settings

Hot Warm Slightly Warm Neutral

Activity Level 3.0 1.1 1.0 1.0
clothing level 1 1 1 1

Air Temperature 32.0 32.0 27 25
Humidity 80 80 60 60

PMV 2.85 1.87 0.66 0.06

In the equation, the meanings of T P,T N,FP and FN are stated as: T P = True Pos-
itive, T N = True Negative, FP = False Positive, and FN = False Negative. During dif-
ferent models’ performance evaluation time, KNN outperforms the other five classifiers
in predicting environmental thermal sensation having a prediction accuracy of 96.41%.
All others models’ prediction accuracy are also above 90% and the average prediction
accuracy is 95.17% (Fig. 6). The confusion matrix (Fig. 7) reveals that the majority of
misclassifications occur between the warm and neutral states. We calculated the preci-
sion, recall, and F1-score of the model, as well as the support for each class, to assess
its performance for the best model. The recall represents the proportion of samples that
were misclassified as true, i.e. that are false negative (FN) in the dataset (Equation 3),
whereas the precision expresses the proportion of classified true positives (TP) vs false
negatives (FP) in the entire dataset ((Equation 2). The F1 score is a harmonic mean of the
precision and the recall metrics (Equation 4). From the best model classification report in
table 4, it states that the lowest precision score is 90.0% for neutral state and the highest
F1-score are for hot and slightly warm states.

Precision =
T P

T P+FP
(2)

Recall =
T P

T P+FN
(3)

F1 =
2∗Precision∗Recall
Precision+Recall

=
2∗T P

2∗T P+FP+FN
(4)

Thermal comfort is a subjective concept that is influenced by a variety of factors, in-
cluding a person’s psychometrics and biological composition. In this preliminary study,
we explore to predict a person’s environmental thermal comfort in accordance with
ASHRAE scale from the newly collected dataset. The trained classifier has a very high
classification accuracy and only a few misclassifications (figure 7). Warm and neutral
states are the most commonly misclassified. The data are a bit biased towards the ”warm”
label, which counts as much as many elements as the other 3 labels combined. The over-
sampling/undersampling methods are not implemented here to present the actual situ-
ation considering a realistic data collection scenario where data imbalance is obvious.
Our results show that a small portion of a person’s IBI signal can be used to estimate
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Figure 6. Accuracy comparison for different models Figure 7. Confusion Matrix (KNeighborsClassifier)

the thermal comfort of the environment. The scope of this research is limited to pulse
fluctuation data from where we extracted heart rate variability.

Furthermore, because thermal comfort is a personal experience, in our study, we also
collected individuals’ thermal assessment report through one mobile application. In the
future, we will focus on the individual level and examine the model that can estimate
subjective thermal comfort collected during the experiment, and also examine the effect
of biological signals other than pulse fluctuation. This experiment, on the other hand,
is not limited in scope (33 users and four thermal comfort environmental settings) and
conducted in a variety of work environments aligning with natural different work states in
home and outdoor. Based on this early evaluation, we will further investigate this dataset
in the future in order to forecast subjective thermal comfort and sensation in a variety
of work environments which can be applied to the prediction of the risk of individual
heatstroke because of variations in the thermal comfort felt by individuals.

Table 4. Best Model’s Classification Report

Precision Recall F1-score Support

Hot 1.00 1.00 1.00 9944

Warm 0.97 0.97 0.97 35748

Slightly warm 1.00 1.00 1.00 18368

Neutral 0.90 0.89 0.90 11054

6. Conclusions and Future Works

To predict human thermal comfort it is necessary to know the environmental thermal
sensation. In this research, we widely collected 33 participants data in a variety of work
environments in various work conditions i.e., reading, typewriting, and gymnastics fo-
cus on hot conditions with settings in accordance with ASHRAE scale normal, slightly
warm, warm, and hot. We set these activities in relation with real-life situations and fo-
cus on hot thermal conditions (risk of heatstroke, higher dissatisfaction/more difficult
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to cope than cold). In order to estimate four different environmental thermal sensations,
various heart rate variability features are calculated and used to develop a machine learn-
ing model. We compared five machine learning models’ performance to predict environ-
mental thermal sensation. Our preliminary results show that K-Neighbors Classifier out-
performs the other five classifiers in predicting environmental thermal sensation having
prediction accuracy of 96.41%. The average accuracy for other models are 95.17%. In
future, we will focus on the individual level and examine the model that can estimate
subjective thermal comfort collected during the experiment that can be applied to the
prediction of the risk of individual heatstroke under various work conditions. In the fu-
ture, we want to incorporate a variety of age groups, with an emphasis on the elderly, as
well as gender balance.
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