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Abstract. Chronic heart failure (CHF) is a complex clinical syndrome characterised 

by the inability of the heart to provide sufficient perfusion to meet the body's 

metabolic demands. It occurs primarily in the elderly and currently affects 64.3 
million people worldwide. Heart failure is associated with significant morbidity and 

mortality as well as with prohibitive utilization of healthcare resources. Novel 

technologies that would improve patient management and reduce the burden of HF 
on healthcare resources are thus urgently needed. We assessed the performance of 

machine learning algorithms for predicting decompensation in CHF using heart 

sound data obtained by two different setups. The most accurate model was a decision 
tree classifier that achieved accuracy, precision, recall, F1 score, and area and the 

receiver operating curve of 0.896, 0.797, 0.812, 0.801, and 0.898, respectively. We 

also identified the most relevant predictor features extracted from different 
frequency bands of the recordings. Our analysis suggests that the low-frequency 

abnormal heart sounds do not play a critical role in detecting decompensation 

episodes in CHF patient cohort. 

Keywords. Chronic heart failure, cardiac decompensation, heart sounds, machine 

learning 

1. Introduction 

Heart failure is a complex clinical syndrome characterised by the inability of the 

heart to provide sufficient perfusion to meet the metabolic demands of the body. While 

the acute heart failure occurs very suddenly and requires immediate medical intervention, 

chronic heart failure (CHF) refers to a long-term condition that is characterized by the 

alternating episodes of stable condition and heart failure worsening. The societal burden 

of heart failure is massive as approximately 64.3 million people worldwide are currently 

living with CHF. Moreover, in developed countries, the prevalence of heart failure could 

be as high as 4.2% in the general population and about 11.8% in people aged 65 years 

and above. Heart failure is associated with significant morbidity and mortality (50% 5-

year survival) as well as with prohibitive utilization of healthcare resources [1]. In the 

developed systems the cost of treating this condition is reaching up to 2% of total health 
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care expenditures. Although the incidence of CHF is stable, the prevalence is increasing 

due to the ageing of the population and improvements in treatment strategies of acute 

cardiac conditions (such as myocardial infarction2). This will likely lead to a further 

significant increase the burden of CHF in the coming decade [2] [3]. 

There are numerous risk indicators for heart failure, some of the best-known being 

obesity, alcohol abuse, and smoking. In addition, some cardiovascular diseases (CVDs), 

e.g. hypertension3 or myocardial infarction, are known precursors of heart failure. Early 

detection of heart failure symptoms and assessment of CHF severity play a crucial role 

in CHF management and in slowing the progression of the disease, thereby improving 

the patient survival and quality of life as well as reducing medical costs [4]. The most 

successful and promising methods for early detection of heart failure today come from 

the field of computer science [5]. Our long-term research goal is early detection of CHF 

and early detection of CHF worsening. In the latter, timely and personalized treatment 

interventions can reverse the progression of CHF worsening episode and can thus prevent 

the need for unplanned outpatient or emergency room visits or even hospital admission. 

The first automated detections of CHF and other CDVs were mainly performed 

using data from electrocardiogram (ECG) [6] [7], photoplethysmogram, heart rate 

variability data, and clinical data such as weight, pulse rate, age, systolic blood pressure, 

respiratory rate [5]. In recent years, there has been an influx of publicly available datasets 

of heart sound recordings, the most comprehensive being the PhysioNet (2016) dataset 

[8] [9]. As a result, more and more automated methods are being developed for heart 

sound analysis and thus CVD detection from heart sounds [8] [10] [11]. In our previous 

works [12][13][14], we have obtained good results in discriminating healthy and CHF 

patients. In this work, we improve on previous work by distinguishing between 

decompensated and recompensated CHF stages. We use data from additional CHF 

patients. In addition, we asses the importance of predictor features. 

Reported algorithms for heart sound classification include artificial neural networks 

(NN), statistical models, and classical ML models [15]. There is only a selection of work 

in the literature that specifically addresses CHF. In the work by Gjoreski et al. [12], a 

stack of different classical ML classifiers was used to distinguish between heart failure 

and normal sounds. In the improved study, Gjoreski et al. [14] used a decision tree 

classifier (DT) to distinguish between decompensated and recompensated CHF stages, 

using only the first part of our current dataset. In the work of Gao et al. [16], the authors 

compared the gated recurrent unit, long short-term memory, fully convolutional NN, and 

support-vector machine (SVM) models to distinguish between the normal heart and two 

subtypes of CHF. In the work of Liu et al. [17], a NN and SVM were compared in 

classifying normal and a subtype of heart failure. Zheng et al. [18] compared the SVM, 

NN, and a statistical hidden Markov model in classifying normal and CHF sounds.  

In this paper, we focus on detection of decompensation in CHF from heart sound 

recordings using machine learning (ML) models. We use data collected from the 

University Medical Centre Ljubljana consisting of recordings of the decompensated CHF 

phase, a state in which the patient requires medical attention, and the recompensated 

CHF phase, in which the patient is well and is discharged from the hospital, usually 

recorded 2-5 days after decompensation. In addition, we explore the most important heart 

sound features (extracted using a well-established feature extraction tool) for predicting 

decompensation in CHF and investigate which is the least number of predictive features 
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for a reasonably accurate prediction. By dividing the recordings into different frequency 

bands, we also estimate which of the abnormal sounds are (not) important for detecting 

decompensation of CHF. 

2. Dataset 

The dataset was collected in two parts. The first part was obtained with a 3MTM 

Littmann Electronic Stethoscope Model 3200 digital stethoscope and consists of 

recordings up to 30 seconds in length, while the second part was obtained with the Eko 

DUO ECG + Digital Stethoscope and consists of recordings 15 seconds in length. Both 

devices record at a sampling rate of 4 kHz and use built-in filters to reduce ambient noise. 

Table 1. Overview of the CHF sound recordings used in this study 

 #Subjects #Decompensated 
recordings 

#Recompensated 
recordings 

Combined duration 

1st part  21 21 21 21min 
2nd part 11 12 11 5min 45s 

Total 32 33 32 26min 45s 

The study was approved in advance by the medical ethics committee. We recorded 

32 patients in both the decompensated and the recompensated phase. The average age of 

the patients was 51.3 ± 13.3 years. We collected 65 recordings with a total time of 26 

minutes and 45 seconds. A detailed description of the dataset can be found in Table 1. 

3. Methodology 

The outcome of interest for the development and evaluation of the ML models was a 

binary variable indicating whether the patient's heart sound recording represented a 

decompensated or recompensated state. The main steps of the pipeline consist of: 

filtering the recordings, segmentation, feature extraction, aggregation, and selection and 

evaluation of the models. The scheme of the pipeline is shown in the Figure 1. 

3.1. Filtering 

In an abnormal heart sound, the main sounds, S1 and S2 caused by the closing and 

opening of the heart valves are accompanied by abnormal sounds such as S3, S4, gallop, 

murmurs, opening snaps, rubs and clicks caused by abnormalities of the heart. Detection 

of these abnormal sounds is crucial in identifying cardiac abnormalities from heart sound 

recordings [19], [20].  Heart sounds and their frequency ranges are listed in Table 2.  

Table 2. Frequency ranges of heart sounds [21] 

Heart sound Frequency range 
S1 10-200 Hz 

S2 20-250 Hz 

S3 25-70 Hz 
S4 15-70 Hz 

Gallop 15-50 Hz 

Murmurs Up to 600 Hz 
Opening snaps 100-800 Hz 

Rubs 100-800 Hz 

Clicks 100-800 Hz 
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Although cardiovascular sounds appear in the frequency range up to 800 Hz, the 

most dominant frequencies are in the lower half of this range, from 20 to 400 Hz [21]. In 

our case, the spectral roll-off frequencies (the frequencies below which 95% of the total 

spectral energy lies) are 70 Hz and 190 Hz for the 1st and the 2nd part of the dataset, 

respectively. To isolate different groups of heart sounds, we divided each recording into 

nonoverlapping regions, each with its own frequency band. We tried from 3 to 9 regions, 

and the regions did not necessarily have to be the same size. The final regions were 25-

80 Hz, 80-200 Hz, and 200-400 Hz, as they gave the most accurate predictions when 

tested separately. We performed the filtering using a bandpass Butterworth filter 

developed in Matlab R2021a [22]. Using the frequency range of 25 to 400 Hz and 

dividing the recordings into different frequency bands has already proven beneficial in 

other works when detecting cardiac abnormalities based on sounds [23] [24]. 

 

Figure 1. Scheme of the methodology pipeline. 
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3.2. Segmentation 

The purpose of segmentation is to divide each recording into cardiac cycles and allow 

subsequent feature extraction to extract the features of the possible abnormal sounds [25]. 

We segmented each of the filtered recordings using a sliding window technique with a 

window length of 2s and 50% overlap. Thus, we obtain segments that span at least one 

cardiac cycle. 

3.3. Feature Extraction and Selection 

The goal of signal feature extraction is to find a small set of features that represent the 

entire signal, with the idea that the features are then used to train the classification model. 

Training the classification model is much more accurate and efficient when done using 

extracted features rather than the raw signal itself. For feature extraction, we used the 

openSMILE tool [26], which extracts numerical features from an audio signal. The tool 

extracts 1582 features from a variety of feature groups such as waveform (zero-crossing, 

extremes), signal energy, loudness, fast Fourier transform spectrum, cepstrum, Mel/Bark 

spectrum, semitone spectrum, cepstral, pitch. 

We extracted the features from each of the filtered recordings and each of the 

segments. The features of the segments of the same filtered recording were then 

combined using the mean. Because we created 3 filtered recordings with different 

frequency bands for each raw recording, we thus obtained 6×1582 numerical features for 

each of the 65 raw recordings in our database. The features were normalized patient-wise 

and, because the features were of different magnitudes, the were also scaled to the range 

(0, 1). The scaling of the features is important because the features with a higher range 

of values usually dominate, as most ML algorithms use the distance between data points 

in their calculations.  

To avoid overfitting and to keep the models as transparent and explainable as 

possible, we performed feature selection, keeping only a small subset of the features used 

for training. Features were selected by calculating the mutual information between each 

feature and the outcome variable. The mutual information score between two variables 

is zero if the two variables are independent, and higher values mean higher dependency. 

The features with the highest dependencies on the outcome variable were then selected 

as predictors for the classification models. 

 

3.4. Evaluation of the Models  

The goal of classification is to feed the selected features into a ML classifier that learns 

the differences between the outcome variables. In our case, we distinguished between 

the stage of decompensated and recompensated CHF.  

Since our dataset is relatively small and NNs tend to overfit smaller datasets, we 

focused on some classical ML algorithms. We implemented: logistic regression (LR), 

decision tree classifier (DT), random forest classifier (RF), Gaussian naive Bayes (GNB), 

C-support vector classifier (SVC), stochastic gradient descent classifier (SGD), gradient 

boosting classifier (GB), light gradient boosting machine classifier (LGBM), and 

extreme gradient boost (XGB) classifier. We implemented the models and evaluation 

methods using the Python scikit version 0.24.2 [27] and lightgbm version 3.3.1 [28] 

libraries.  
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4. Results 

The models were evaluated in a leave-one-subject-out (LOSO) approach, a type of k-

fold cross-validation, where k corresponds to the number of patients in the dataset and 

each test set consists of the records of a single patient. We compared the models based 

on accuracy, precision, recall, and area under the receiver operating characteristic curve 

(ROC AUC). We chose accuracy as the main metric of performance evaluation. 

4.1. Model Performance 

We evaluated the models using 15 selected predictor features. The performance measures 

of the models are given in Table 3. The results were averaged across 32 LOSO folds. 

 

Table 3. Performance measure for prediction of decompensation in CHF. 

Model Accuracy Precision Recall F1 ROC AUC 
DT 0.896 0.797 0.812 0.802 0.898 
GB 0.880 0.812 0.844 0.823 0.953 
RF 0.833 0.766 0.781 0.771 0.859 

XGB 0.818 0.797 0.812 0.802 0.844 
GNB 0.755 0.734 0.750 0.740 0.734 

LR 0.740 0.703 0.719 0.708 0.766 

LGBM 0.740 0.672 0.719 0.688 0.750 
SGD 0.714 0.625 0.750 0.667 0.703 

SVC 0.708 0.672 0.688 0.667 0.672 

 

The most accurate model is DT, which misclassified a total of 7 out of 65 recordings and 

achieved an accuracy of 0.896. For each patient (fold), DT misclassified no more than 1 

recording. On the other hand, the GB model achieved the highest values for other metrics 

studied. Specifically, GB achieved a recall of 0.844, an F1 of 0.844, and a ROC AUC of 

0.953. It is important to note here that the models perform well even though the 

recordings were obtained with two different recording devices with slightly different 

characteristics. 

4.2. Feature Importance 

To understand which features are most important for the classification, we calculated the 

mutual information score of each feature with the outcome variable and sorted the 

features by score. The list of the 15 most important features can be found in Table 4, 

along with their mutual information score, whether the feature is from the unsegmented 

filtered recording or from the segments, and the identifier indicating to which of the 3 

selected frequency bands of the recording the feature belongs.  

The first part of the feature name corresponds to low level descriptor (LLD), while 

the last part corresponds to the functional type. In our case, the relevant LLDs are mfcc, 
which corresponds to Mel-frequency cepstrum coefficients (0-14), lspFreq which 

corresponds to 8 linear spectral pair frequencies computed from 8 linear prediction filter 

coefficients, and logMelFreqBand, which means the logpower of 8 Mel-frequency bands 

(0-7) distributed between 0 and 8 kHz. The suffix _sma appended to the names of the 

LLDs indicates that they have been smoothed by a moving average filter, while the suffix 

_de indicates that the current feature is a 1st order delta coefficient of the smoothed LLD. 

For the functional types, quartile1 and quartile2 correspond to the 1st and the 2nd quartiles, 
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respectively, pctlrange0-1 corresponds to the outlier robust signal range “max-min” 

represented by the range of the 1% and the 99% percentile, linregc2 corresponds to the 

offset of a linear approximation of the contour, upleveltime75 corresponds to the 

percentage of time the signal is above (0.75×range + min), linregerrQ and linregerrA are 

the quadratic and linear error computed as the difference between the linear 

approximation and the actual contour, and iqrl1-3 corresponds to the interquartile range: 

quartile3-quartile1. 

Table 4. Selected predictor features. 

Name (openSMILE label) Score Seg./unseg. Frequency band 
pcm_fftMag_mfcc_sma[14]_quartile2 0.423 Seg. 80-200 Hz 

pcm_fftMag_mfcc_sma[13]_linregc2 0.405 Seg. 200-400 Hz 

pcm_fftMag_mfcc_sma[8]_upleveltime75 0.395 Seg. 80-200 Hz 
pcm_fftMag_mfcc_sma[10]_kurtosis 0.377 Unseg. 200-400 Hz 

pcm_fftMag_mfcc_sma[5]_linregerrQ 0.376 Seg. 25-80 Hz 

lspFreq_sma[2]_iqr1-2 0.365 Unseg. 200-400 Hz 
logMelFreqBand_sma[0]_pctlrange0-1 0.364 Unseg. 80-200 Hz 

pcm_fftMag_mfcc_sma[14]_quartile1 0.358 Seg. 80-200 Hz 

pcm_fftMag_mfcc_sma[14]_quartile1 0.352 Unseg. 80-200 Hz 
logMelFreqBand_sma_de[4]_pctlrange0-1 0.342 Seg. 25-80 Hz 

pcm_fftMag_mfcc_sma[9]_linregerrA 0.334 Unseg. 200-400 Hz 

lspFreq_sma_de[1]_upleveltime75 0.334 Unseg. 80-200 Hz 
pcm_fftMag_mfcc_sma[9]_iqr1-3 0.329 Seg. 200-400 Hz 

pcm_fftMag_mfcc_sma[7]_quartile2 0.327 Unseg. 200-400 Hz 

pcm_fftMag_mfcc_sma[9]_linregerrQ 0.323 Unseg. 200-400 Hz 

 

We see that the selected top features are distributed approximately equally between 

the unsegmented and segmented recordings. On the other hand, only 2 (13%) of the 

selected features belong to the 25-80 Hz frequency band, which suggest that the low-

frequency abnormal sounds (S3, S4, and gallop) most likely do not play a major role in 

discriminating between the decompensated and recompensated stages of CHF. 

 

Figure 2. Accuracy as a function of the number of predictor features. 
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4.3. Investigating the Number of Features 

We examined the performance of the models with different numbers of predictor 

features. This is relevant as a small number of features makes the models more robust, 

as well as more appropriate to integrate on the hardware level. For this experiment, we 

iteratively added features, starting with the most important, and estimated performance 

using LOSO. To prevent overfitting, we chose the maximum possible value of the 

features to be 65, as this is the number of recordings in our dataset. The results are shown 

in Figure 2. We see that increasing the number of features to over 15 does not improve 

the performance of the best models, GB, DT, RF, and XGB. Also, we see that the models 

are able to achieve accuracy of 0.880 and 0.771 with 10 and 5 features, respectively. 

5. Discussion and Conclusion 

In this study, we used 9 ML models to discriminate between decompensated and 

recompensated stages of CHF based on heart sounds, as a step in the long-term project 

to detect worsening of the condition using telemedicine. We used data collected from the 

University Medical Centre Ljubljana. The data contain 33 recordings of decompensated 

and 32 recordings of recompensated stages of CHF obtained from 32 patients and 

correspond to a total duration of 26min and 45 seconds. A simple classical machine 

learning algorithm, the decision tree classifier, proved to be the best method in terms of 

accuracy. We found that the least number of predictor features to achieve maximal 

performance was 15. Equally important, we demonstrated that using only 10 and 5 of the 

most important features based on mutual information with the outcome variable, the 

models achieved an accuracy of 0.880 and 0.771, respectively. It is important to note that 

the models performed well, although our dataset is somewhat heterogeneous because the 

two recording devices use slightly different built-in filters to remove ambient noise, 

resulting in different spectral roll-off points for the two parts of the dataset. 

We divided each recording into three frequency regions, 25-80 Hz, 80-200 Hz, and 

200-400 Hz, and extracted the features from each of three frequency bands. Examination 

of the feature importance showed that the most important features were mainly from the 

two upper frequency bands, whereas only 2 of the 15 selected most important features 

were from the 25-80 Hz frequency band. This indicates that the low-frequency abnormal 

sounds, S3, S4, and gallop, are most likely not of critical importance in distinguishing 

between decompensated and recompensated state in CHF. 

This study has some limitations. Due to the nature of data collection in a clinical 

setting, the dataset contains only recordings of 32 patients, which prevents us from 

developing more sophisticated predictive models. A small dataset could also be the 

reason that the best performing model was a decision tree, which is extremely simple and 

tends not to overfit on smaller datasets, unlike more complex models (such as NNs) that 

can easily overfit if the dataset is too small. 

In future, we plan to expand our dataset to include recordings from additional 

patients and also to use electrocardiogram data recorded simultaneously with the audio. 

The use of electrocardiogram data could also help us detect the main heart sounds and 

thus assist in segmenting the recordings into separate cycles rather than sliding windows. 

Detecting the locations of the main sounds is important because their removal will help 

feature extraction to extract only the features of the abnormal sounds, which is what we 

are interested in. 
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