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Abstract. The intelligent transportation system (ITS) along with vehicular com-
munications are making our daily life safer and easier e.g., saving time, traffic con-
trol, safe driving, etc. Many transmission mode selection and resource allocation
schemes are mitigating to full the quality of service requirements with minimum
latency and negligible interference. For message transmission to far away vehicles
realistic cellular link and mode selection is a bottleneck, however, for nearby de-
vices, the safety critical information needs V2V links. Reinforcement learning (RL)
and Deep learning (DL) have reshaped vehicular communication in a new model
where vehicles act like human beings and take their decisions autonomously with-
out human intervention. In our work, we investigate Vehicle-to-vehicle (V2V) and
Vehicle-to-infrastructure where each link takes a decision to find the optimal sub-
band and power level. We investigated the case where each V2V link connected
with Vehicle-to-Infrastructure (V2I) satisfying stringent latency constraints while
minimizing interference. We exploit RL with DL to develop highly intelligent per-
formance where agents effectively learn to select mode and share spectrum with
V2V and V2I.
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1. Introduction

Next-generation road vehicles are termed connected and automated vehicles (CAVs) due
to their integrated IoT, sensors, and wireless communication technologies [1,2]. The sud-
den rise of smart driving perceptions has paid much attention to vehicular communica-
tion. The vehicular communication performance has improved due to its large-scale in-
formation sharing with other nearby vehicles and roadside communication units. There
have been massive research endeavors by academia and the research industry to support
various communication types, including multiple antenna communication [3,4], wireless
sensor network [5], vehicle-to-vehicle (V2V), Vehicle-to-infrastructure (V2I), Vehicle-
to-Network (V2N), and vehicle-to-pedestrian (V2P). The prior communication aspects
between the vehicle and to rest of the communicating nodes are collectively known as
Vehicle-to-Everything (V2X) communication. Consequently, V2X led to improvements
in traffic efficiency, safety, time-saving, and the effective organization of modern trans-
portation. The V2X communication supports infotainment, smart parking, lane chang-
ing, road crossing, speed limitation, and no parking, etc [6]. The challenge of communi-
cating with the base station (BS) and other devices has gained sufficient research interest.



M. Jamal et al. / Self-Adapted Resource Allocation in V2X Communication 105

Both the organizations, the institute of electrical and electronics engineers (IEEE) and
the third generation partnership project (3GPP) support device-to-device communication
based on dedicated short-range communication and cellular network [7].

In V2X, two modes V2I and V2V are of high significance to instantaneously deliver
critical information such as location, cooperative awareness messages, road conditions,
etc . [8]. The abrupt rise in mobile technology raised the demand for a high data-rate
cellular network to sustain video streaming, infotainment, and real-time V2X communi-
cation infrastructure [9]. In the critical scenario, a real-time communication link should
be capable to transmit a data packet of 1200 bytes with the least latency of 5 ms, and
with 100% reliability, [10].

Recently, with the development in computing technology and the introduction of
new machine learning algorithms e.g. reinforcement learning [11], neural network [12]
the goal of Artificial Intelligence (AI) has become a step closer. Al has important appli-
cation in diverse fields including:healthcare [13,14,15], home medication [16], dynamic
treatment regimes [17,18], UAVs, 5G and autonomous control [19] risk management
[20,21], touristic planning [22] and communication [23].

Deep reinforcement learning (DRL) [24], is being investigated as a potential remedy
for the slow convergence rate and suboptimal performance of established RL techniques
when dealing with problems having a large state or action space. Deep reinforcement
learning (DRL) is an advanced approach to combining deep learning with RL. RL is
a subset of machine learning focused on directing policy. It supports decision-making
by determining the incentives and policies utilized in decision-making to acquire the
desired result. In addition, each agent in RL chooses the optimal action based on the
learned policy [25]. By employing Deep Neural Networks (DNNs), DRL accelerates
the learning procedure and enhances performance exceeding standard RL algorithms.
Moreover, DRL effectively tackles complex network problems [26] and enables agents
to select optimal strategies with little or no information interaction. As a result, DRL
optimizes communication overhead and delay while improving reliability [24].

The rest of the article is organized as follows. Section II describes the most recent
related works in a more abstract manner. Section III explains System Model and Prob-
lem Formulation. Section IV presents Deep Reinforcement Learning for Mode Selec-
tion and Resource Allocation. Section V talks about results and analysis, and Section VI
concludes the paper.

2. Related Works

Research on D2D communication has been a fascinating area of study for the past many
years. There are two modes for resource allocation, dedicated and shared resource allo-
cation pool for cellular V2X communication [27]. In [28] based on deep reinforcement
learning a decentralized mechanism of resource allocation has been proposed for cellular
V2X communication. The sum capacity of V2I users has been maximized while guaran-
teeing V2V latency and reliability requirements. Based on deep reinforcement learning
a novel mechanism for resource allocation has been proposed for V2V communication
with small transmission overhead [29].

Traditional resource allocation mechanism for cellular-connected vehicular devices are
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inapplicable due to fast channel variation and therefore requires full channel state infor-
mation (CSI) rather than instantaneous. In [30] power allocation design and spectrum
sharing have been investigated taking into account the required QOS of vehicular com-
munication. To maximize system capacity and energy efficiency and minimize signal
overhead for cellular V2X communication a DRL-based resource allocation mechanism
has been adopted [31]. In [32] efficiency of the overall system, and throughput has been
maximized in the V2X communication system by focusing on optimal transmit power
allocation adopting a supervised learning technique for the deep neural network (DNN).
Vehicle-to-Vehicle (V2) and vehicle-to-infrastructure (V2I) links shared resources have
been investigated in the dynamic vehicular environments with effective and timely re-
source allocation policy [33].

With the increasing number of Internet of Things (IoT) devices, latency has always been
a major constraint. In [34] this issue has been investigated through non-orthogonal mul-
tiple access (NOMA) considering user scheduling and power allocation for all users.

3. Technical Background

This section presents a brief introduction to RL. Machine learning has wide applications
in image process, voice recognition, text analysis, object detection, etc.

As a branch of machine learning reinforcement learning focuses on independent
decision-making and optimizing action policy by frequent interaction with the environ-
ment [35]. RL can be modeled as a Markov decision process to get an optimal policy for
taking an action after observing an environment.

RL can be divided into two types based on transition probability and immediate reward,
model-free and model-based learning, model-free algorithms like Q-learning are used
in the stochastic environment when probability and reward functions are unknown. The
optimal policy is updated using Q-table but when state space is too long then fewer Q
values are updated after a long time and maximum iterations result in latency.

The structure of reinforcement learning is shown in Fig.1,
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Figure 1. Deep RL for V2X Communication.

4. System Model and Problem Formulation

In our model vehicular communication consists of two types of vehicular user equipment
(VUE). 4" ={1,2,...,.N'} cellular user pair (CUP) and .# = {1,2,...,M} vehicular user pair
(VUP). CUP is demanding realistic Vehicle-to-infrastructure (V2I) links via the cellular
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network for communication with a base station (BS) to share safety critical messages,
road conditions, location, etc. As shown in Fig.2.

Base Station

Figure 2. An illustrative structure of V2X Communication

The spectrum is orthogonally allocated to CUP. VUP needs Vehicle-to-vehicle
(V2V) links to share cooperative awareness messages (CAM) for traffic and safety man-
agement with the other VUP consists of one transmitter and one receiver. To improve
spectrum utilization efficiency and to reduce interference at the base station the orthogo-
nally allocated to CUP up-link spectrum can be reused by VUP.

The interference to the CUP consists of two parts: the background noise and the VUP
sharing the same resource block. The SINR for the inth CUP will be
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Where P¢ and P!, indicate transmit power of CUP n'" and VUP m' , 62 is the
noise power, A, is the power gain of the channel corresponding to the n' CUP, g, is
the interference power gain of the m™* VUP, T'm[n) 18 the indicator function for spectrum

allocation with r,,,,) = 1 if the m'" VUP reuses the spectrum of n'" CUP and Fmfn] =0,
otherwise. Hence the achievable data rate of n'* CUP with bandwidth W can be written
as

RS =W.logy(1+ %) )

Similarly, each VUP can switch their selected mode whether to communicate with
other VUP directly or with CUP indirect communication through BS. The communica-
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tion mode selection of VUP can be shown as s, = 1 if VUP selects the CUP mode, oth-
erwise selects V2V (Vehicle-to-Vehicle) mode.

As VUP can communicate directly with VUP and can also with CUP indirectly so the in-
terference comes from CUP and VUP sharing the same resource block (RB). The SINR
of the m;h VUP can be expresses as

P'h
Y m'tm
— _ 3
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Where h,, is the power gain of the channel corresponding to m'” VUP, g, is the
interference power gain of n'* CUP, where 1j is for the VUP sharing the same resource
block.Hence the achievable data rate of the m” VUP can be written as

Ry, = W.loga(1+1,) (6)

Where an agent observes the environment, everything outside of a selected vehicular

user pair and cellular user pair is considered part of the environment and their action such
as spectrum selection and mode selection are part of environmental noise. At each time
t VUE pair observes the environment as a state s;, from state space, ., and takes action
a;, from action space, 7, corresponds to how to select mode, resources, and power level
for transmission following the policy 7. When an agent takes an action the environment
changes to a new state, 5,41, and based on that action each agent receives reward r; de-
termine by the channel data rate of CUE and VUE.
The state observable to each agent consists of several state parts: the instantaneous chan-
nel information of the corresponding V2V links, G;, channel gain from VUP transmitter
to its corresponding VUP receiver and BS, Hy,Hy,, received interference power on
BS at previous sub-frame, I,_; = ([,_1[1],...,;—1[K]), number of selected neighbors on
eachRB, O;_1 = (0;_1[1],...,0;_1[K]), current load and remaining time to meet latency
threshold, L;, ;. Thus the state space can be expressed as

8t = {GhHN,f;HM,taIt—h0t—17LtaT}}-

At each time the agent observes the state s, from the state space . following the policy
7, takes an action g, from the action space .« which consist of selecting a sub-channel,
mode selection and power level for transmission. An agent can select the mode for trans-
mission with a frequency band and power level that has small interference to all V2I and
V2V links without violating latency constraints.
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5. Results

In this section, the performance of the proposed method for cellular communications is
evaluated through simulations. For the simulation, we consider a system with a carrier
frequency of 2 GHz, where vehicles are dropped randomly according to the spatial Pois-
son process where each vehicle as an agent is able to communicate with three nearby
vehicles. Our deep Q-network is fully connected and constructed by an input layer, a
hidden layer, and an output layer containing 500, 250, 120 neurons in the three hidden
layers. The learning rate at the beginning is 0.01 and decreases exponentially.
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Figure 3. Sum Rate of V2I vs Number of Vehicles.
5.1. V2I Capacity

Fig. 3 shows the sum rate of V2I vs the number of vehicles. From the figure, we can infer
that, with the increase in the number of vehicles, the number of V2V links increases as a
result, the interference with the V2I link grows, and therefore the V2I capacity will drop.

5.2. V2V Latency

Fig.4 shows the probability that the V2V links satisfy the latency constraint versus the
number of vehicles. From the figure, we can infer that, with the increase in the number
of vehicles, the V2V links increase, as a result, it is more difficult to ensure every vehicle
satisfies the latency constraint.
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Figure 4. Probability of Satisfied V2V links vs the number of vehicles.
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Figure 5. The Probability of power level selection with the remaining time for transmission.
5.3. Power Level selection

Fig.5 shows the probability for the agent to choose power levels with different time left
for transmission when Double-Deep Q-Learning is used. The probability for the agent to
choose the maximum power is decreased compared to the figure-3 when there is abundant
time for transmission. Also, the probability of selecting maximum power to ensure the
V2V latency constraint when a small amount of time left is increased. Apart from this,
when the agent has abundant time for transmission it will select low-power transmission
to reduce resource usage.

6. Conclusion

In this paper, a deep reinforcement learning-based decentralized mechanism has been
proposed for vehicular communications. From the simulation results, it can be observed
that each agent can intelligently learn how to satisfy V2V constraints in terms of latency,
power, and transmission overhead while minimizing interference to V2I links.
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