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Abstract. LoORaWAN is a widely used solution in today’s Internet of Things (IoT)
applications to connect remote sensor nodes to the Internet. At the same time,
microcontroller-based sensor nodes with increased processing capacities are in-
creasingly becoming smart nodes applied for performing machine learning tasks.
We argue that LoRaWAN has important connectivity limitations to truly unleash
the potential of these smart tiny nodes. We position to apply LoRa mesh networks
as a communication substrate to enable novel networking capacities for the new
scenario of distributed smart IoT nodes.
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1. Introduction

Machine learning (ML) applications are nowadays run on ever smaller computing de-
vices. Microcontroller boards with integrated sensors do the signal processing and per-
form the machine learning tasks directly on the device [1]. This tendency is enabled
by the increased microcontroller computing capacities and the growing availability of
frameworks for developers that facilitate the machine learning pipeline from model def-
inition to deployment [2].

There are many sectors in which ML has become part of 10T applications. For pre-
cision agriculture, the survey in [3] reviews a large number of applications fields where
ML has been used, such as soil prediction, pest detection and produce analysis. Classifi-
cation tasks through computer vision, for instance, to determine the status of crops, have
become established means to automatize decisions in agriculture production processes
based on machine learning information [4]. Related fields such as biodiversity analysis
with IoT devices have also applied ML solutions [5]. An issue is, however, at what layer
of the application stack the decisions are taken, and as such, where the ML is performed,
whether at the cloud, at the edge, or at the tiny [oT nodes.
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LoRa is widely used to transmit data from remote IoT nodes over gateways to
Internet-hosted applications [6]. A LoRa link between two nodes can cover several kilo-
meters of distance, which enables a geographical spread of a sensor node deployment in
IoT applications. LoRa is meant for low data rate communication and in many countries,
its duty cycle is limited to 1%. A LoRa packet can have a size of up to 256B. Therefore,
LoRa is often used for applications with remote nodes which only from time to time send
small amounts of sensor data. A feature of LoRa compared to other Low Power Wide
Area Network (LPWAN) technologies is that operating a LoRa network does not require
a license, thus it can be deployed without any liaison with a network operator.

The LoRaWAN architecture [7] is a popular solution to materialize LoRa-based IoT
applicationd. The architecture defines a star topology among the IoT devices such that a
sensor node connects over a single hop with a gateway. The gateway has Internet con-
nectivity and forwards the data received through the LoRa packets to higher layers in the
cloud, where the data is processed and the decisions are taken.

The LoRaWAN architecture does not directly interconnect the sensor end nodes
between themselves since the logical connection of each end node is with the gateway.
This impedes in LoRaWAN the scenario of sensor nodes communicating with each other.
With regards to communication link usage, in LoRaWAN the connection and bandwidth
capacity between a sensor node and the gateway is not symmetric. The uplink is often the
only one used and for transmitting sensor data to the gateway. While there is a downlink
as well, it is not often part of the application. There is also the fact that after sending an
uplink message an end node only listens at specific time slots to any downlink message
from the gateway. This limits the possibility to push messages at arbitrary times from the
higher layers to the sensor node.

Since IoT nodes are transforming from being mere sensor data providers into smart
nodes with decision capacity, we position that an enriched networking capacity beyond
LoRaWAN materialized by LoRa mesh networks is needed to enable and exploit this
potential.

2. Opportunities of LoRa mesh networks for the IoT
2.1. Applications

Compared to the large number of IoT applications using LoRaWAN, the portfolio of
applications using LoRa mesh networks is still very small.

An application case from the maker community is Meshtastic?. This application is
operated only within a LoRa mesh network without Internet connectivity. The scenario is
remote areas that have no cellular network coverage. A user connects through Bluetooth
from her smartphone to a portable LoRa equipped IoT node. Among all users, a mobile
LoRa mesh network is formed. The Meshtastic application allows users to send small
text messages to each other over the LoRa network.

Another work that proposed LoRa for building an interconnected communication
substrate is LoRaX [8]. The LoRaX system aims to extend the Internet to underserved
regions through devices with LoRa connectivity. The Internet access is achieved through
the low data rate LoRa network.

’https://meshtastic.org
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In [9] a messaging system was implemented in which clients connect to LoRa nodes
for reaching other participants either within the LoRa network or, through hubs, on the
Internet. The authors suggest the applicability of the used architecture also for other
application cases.

The above summarized applications illustrate how LoRa mesh networks are used
for applications today. While these are examples of applications that involve humans,
the LoRa mesh networking capacity does not exclude being used by applications that
involve Machine to Machine (M2M) communication. Indeed, for diverse machine learn-
ing applications of the precision agriculture domain [3] that use trained models at the
nodes, the LoRa mesh networking capacity could open an opportunity to build locally
interconnected decision making systems that are autonomous from cloud-based services.

Training a machine learning model on-device, i.e. on the microcontroller board is an
option to make smart adaptive IoT nodes [10]. A model can be trained on such a node
in an isolated fashion with its local dataset, therefore without requiring any network in-
terface, or, if a network interface exists, in collaboration with other nodes, applying a
distributed learning approach such as federated learning [11]. In federated learning, the
machine learning models are trained locally at each node, but periodically exchanged
among the nodes, typically by sending them to a centralized aggregator, where the indi-
vidual models are merged into a new global model. There have been some works which
applied federated learning to the IoT, where the challenges include the communication
cost of federated learning and the heterogeneity both in IoT devices and training data
[12].

In the work of Kopparapu et al. [13] and our work [14], federated learning was
performed among tiny microcontroller-based IoT devices. Both works, however, used
a wired connectivity to exchange the machine learning model and did not explore the
scenario to communicate over low data rate links such as LoRa.

2.2. Technologies to build LoRa mesh networks

There is a certain body of research works in the academic literature on the design and
evaluation of LoRa mesh networks. Most works apply simulations and do not have a
usable prototype that can easily be deployed in real environments.

In a few works, however, prototypes were built and deployed in real nodes, such as
in [15], where the authors present an initial evaluation study of a LoRa mesh network.
In their work, the prototype is based on the RadioHead library. The performance of the
network is evaluated in field experiments with a very small number of nodes.

In the previously mentioned Meshtastic project, the implementation is available in
an open git repository. It is operational and the deployment on real nodes has been shown
for ESP32-based T-Beam boards. Meshtastic forms a LoRa mesh network. The message
dissemination currently is based on flooding>. This solution of flooding avoids complex
network management but can lead at a larger scale to congestion if no additional mea-
sures are taken.

In our own work we have developed the LoRaMesher library to build LoRa mesh
networks [16]. LoRaMesher implements a distance-vector routing protocol for exchang-
ing directed messages among LoRa nodes. For the interaction with the LoRa radio chip,
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LoRaMesher uses RadioLib*. The hardware for which LoRaMEsher currently compiles
are ESP32-based boards, specifically the T-Beam and ESP32LoRa, with SX1276 LoRa
series module. We have started to look at supporting other boards such as the Arduino
Portenta [17]. LoRaMesher leverages FreeRTOS to implement task handlers for the
packet processing and a packet queue to share packets between tasks. The implemen-
tation includes an application-level task for which a demo example is provided, where
increasing values of a counter are sent among the nodes. LoRaMesher nodes are self-
organizing, i.e., once the device is switched on it becomes part of the LoRaMesher net-
work through receiving and exchanging routing tables with the other nodes of the net-
work.

3. Challenges for using LoRa mesh networks

IoT applications with embedded machine learning on remote nodes and LoORaWAN com-
munication have been shown operational nowadays [18]. For classification and predic-
tion tasks, these smart nodes are used in a 24/7 operation, which is different from the
operation mode of traditional sensor nodes. While typical sensor nodes are in sleep mode
most of the time to optimize the energy consumption for the longest duration of the bat-
tery, smart [oT nodes have to be conceived as permanently operated nodes equipped with
batteries that can be recharged, for instance by solar power.

The communication bandwidth of a LoRa link is low. Doing machine learning on the
IoT device allows sending a low payload classification result instead of sending a higher
amount of raw sensor data for classifying elsewhere, which saves bandwidth of the low
capacity LoRa communication link. Given the duty cycle limitations of LoRa, the M2M
communication in a LoRa mesh network will need to consider bandwidth saving designs.
Another issue of LoRa are the lack of packet delivery guarantees. Federated learning, for
instance, will require additional protocols for reliable messaging. Finally, messages in a
LoRa mesh network will be delivered with delays, excluding applications that have strict
real-time requirements. Therefore, distributed intelligence within a LoRa mesh network
may need to identify the tradeoff between using local computation or communication
resources.

There will be a need for a network integration of the LoRa mesh layer with the
Internet in full-stack IoT applications. Figure 1 depicts a LoRa mesh network where
gateways bridge between both networks. A few nodes in the LoRa mesh networks are
illustrated as application nodes, while other nodes can operate as routers only. In the
current LoRaMesher implementation, all nodes in the LoRa mesh network have 2 byte
addresses and are routable. Therefore, gateway nodes, which are at the same time nodes
of LoRaMesher, have a routing table that allows any nodes of the LoRa mesh network to
be reached from the gateway.

The sending of data messages to specific nodes in both networks can lead to an
integration of services and applications that spans over both layers. While in traditional
LoRAWAN:-based applications, the data flow is mostly unidirectional from sensor to
cloud, the gateway in the LoRa mesh network will also enable a bidirectional data flow
and forward messages from nodes on the Internet to specific application nodes in the
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LoRa mesh network. This will require to design of a gateway able to handle the different
capacities of both networks and types of nodes. Novel kinds of distributed applications
will arise for the IoT layer and will require common support services, thus there could
be a need for a middleware that provides such a common set of services.
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Figure 1. LoRa mesh network and Internet integration over gateways.

4. Conclusions

This paper proposed the use of LoRa mesh networks to enable distributed intelligence in
an IoT communication layer. With regards to node-to-node communication, the current
LoRaWAN architecture was analyzed and some limitations for these new requirements
were identified. A few current applications using LoRa mesh networks were described
as well as the technological options to build these networks. With the growing use of
machine learning applications on tiny IoT nodes, we argue that LoRa mesh networks
could become the communication substrate to build distributed intelligence with tiny
edge nodes.
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