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Abstract. In this work, we combine several previous efforts to simulate a large-
scale soot particle agglomeration with a dynamic, multi-scale turbulent background
flow field. We build upon previous simulations which include 3.2 million parti-
cles and implement load-balancing into the used simulation software as well as
tests of the load-balancing mechanisms on this scenario. We increase the simu-
lation to 109.85 million particles, superpose a dynamically changing multi-scale
background flow field and use our software enhancements to the molecular dynam-
ics software ESPResSo to simulate this on a Cray XC40 supercomputer. To verify
that our setup reproduces essential physics we scale the influence of the flow field
down to make the scenario mostly homogeneous on the subdomain scale. Finally,
we show that even on the homogeneous version of this soot particle agglomeration
simulation, load-balancing still pays off.

Keywords. molecular dynamics, short-range, dynamic load-balancing, soot-
particle agglomeration, domain decomposition

1. Introduction

Short-range molecular dynamics (MD) [1] is an important field in Computational Sci-
ences. One particular example of a real-world application is the simulation of soot par-
ticle agglomeration, which, for example, is relevant for the efficiency of industrial pro-
cesses. In these processes, particles collide and link irreversibly. Of particular interest is
the morphology of the resulting agglomerates. Because results of a computer simulation
allows the examination of morphology of agglomerates over time, computer simulation
plays an important role in this area.

The approach we use has been described in [2,3]: Agglomeration processes are sim-
ulated in a precomputed, turbulent flow field. Clustering of particles is driven by Brown-
ian motion as well as the background flow, which gets more important as the particle den-
sity decreases. The influence of a turbulent background flow field is of particular interest
in particle agglomeration simulations. While small turbulence scales can be resolved in
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small simulations, the question remains if large, multi-scale turbulence flows critically
influence the results.

In order to get to more realistic agglomeration simulations we use a larger and
dynamically changing flow field that covers more scales of turbulence as well as a
larger setup including the number of particles. Starting from the largest simulation in [3]
(“Case 6”), we increase the domain size by a factor of 3.25. This allows us to cover more
realistic scales of turbulence. We keep the original particle loading. Hence, we increase
the number of primary particles from 3.2 million in [3] by a factor of 3.253 ≈ 34.33 to
109.85 million.

This scenario is very large considering the elaborate physical bonding model used.
In fact, to the best of our knowledge it is the largest simulation with ESPResSo so far.
And, because we simulate an agglomeration process, the simulation naturally gets more
and more heterogeneous over time. Simulations of these sizes and types pose two major
challenges: (1) We need large-scale parallelism to cope with a simulation of this size,
and (2) we must dynamically adapt the domain decomposition to the changing particle
distribution in order to cope with load-imbalances arising from heterogeneity.

These challenges require us to combine this large-scale real world scenario with
our previous efforts to bring dynamic load-balancing to the MD software ESPResSo. In
particular, we need to make use of dynamic load-balancing at runtime, the newly created,
non-regularly partitioned grids and their associated asynchronous communication [4,5]
as well as other contributions to the MD software at hand, like parallel input and output
using MPI-IO.

In order to validate the physical correctness of the scenario and assess the applicabil-
ity of our load-balancing methods, we use a rather homogeneous version of the scenario.
A more homogeneous scenario allows us to first focus on physical correctness of the
setup while not crucially depending on the best possible load-balancing. Following the
simulation, we can test the applicability of our load-balancing methods for this scenario.

The remainder of this work is structured as follows: In Section 2 we report on related
research. In Section 3 we elaborate on the numerical simulation models as well as the
used code and our load-balancing methodology. We describe our simulation setup in
Section 4. Subsequently, in Section 5 we show the physical results and our assessment of
load-balancing for this setup. Finally, in Section 6 we summarize our work and conclude
with a note on further topics to investigate.

2. Related Work

At the core of our modeling are Langevin-based agglomeration processes. These have,
e.g., been studied in [6]. We are, however, interested in agglomeration processes that
are subject to a turbulent background flow field and that links particles irreversibly. This
linking process should completely prohibit rotation and sliding of the particles. To this
end, the Langevin-based model has been augmented in [2,3] to include a coupling to a
static flow field as well as dynamic bonding to link particles irreversibly at runtime. In [2]
several bonding models that effectively prohibit sliding are proposed and evaluated. We
use the so-called “AB” (all-bonds) model from this work, which has the advantage, that
it does not require the addition of virtual particles.

A different approach to tackle the upscaling of agglomeration simulation is coarse-
graining, i.e. aggregating whole clusters into one “super particle” (during the simulation)
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and, thus, reducing the total computational burden. This is still a field of active research,
as the involved modeling is complex. For example, coarse grained particle need to accu-
rately resolve the collision probabilities of the underlying “real” cluster. Algorithmically,
this kind of dynamic coarse graining leads to larger cell sizes and, thus, likely to less par-
allelism and more load-imbalances. Studies and first results for this approach are, e.g.,
presented in [7]. However, the technique described there is not ready yet for large-scale
simulations such as ours.

For load-balancing several heuristics are used in existing MD (and other) software.
We have discussed details on the most commonly used ones in [8] and have imple-
mented some of them in the MD software ESPResSo in [4,9,5]. In this work, we focus on
the partitioner based on Space-filling curves (SFC) leveraging the well-known and scal-
able library p4est [10,11], which in turn uses the Z-curve [12]. The actual partitioning
for SFC-based algorithms is performed using so-called chain-on-chain partitioning [13].
Several studies find graph partitioning performs best because of its superior model while
SFC-based partitioning is fast and consumes less memory [14,15]. A more theoretical
review of several partitioning algorithms can be found in [16] listing important proper-
ties like speed, memory usage, etc. Eibl and Rüde [17] inspect different partitioners for
the discrete element method and find that there is a trade-off between scalability and
quality of partitioning and recommend an SFC-based strategy for small and mid-sized
scenarios. Particularly for MD, several methods are implemented in the simulation soft-
ware “ls1 mardyn” and compared in [18,19,20]. These studies also present cost heuris-
tics to estimate the load of individual subdomains. They give us enough reason to focus
on SFC-based partitioning first for our current work.

3. Methodology

Our main methodological approach is two-part. First, we explain what numerical models
we use to simulate a soot particle agglomeration process within the molecular dynamics
framework. Second, we explain what parallelization and load-balancing approaches we
use for the implementation of the numerical models. Additionally, we briefly introduce
the relevant quantities for analyzing the shape of agglomerates.

3.1. Numerical Models

We model intermolecular interactions with the well-known Lennard-Jones-12-6 potential
which consists of an attractive and a repulsive part,

ULJ(r) = 4ε
((σ

r

)12
−
(σ

r

)6
)
,

where σ and ε are properties of the modeled primary particles. Particles can be bound
together with distance-based and angular harmonic bonds. Their associated potentials
are given as

Udistance(r) =
1
2

kh (r− r0)
2 , and Uangular(φ) =

1
2

ka (φ −φ0)
2,
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Figure 1. Visualization of bonding at runtime. Left: If two particles are closer than the collision distance, the
algorithm aims to finds a third particle within the collision distance to establish a triangular bonding struc-
ture. Right: The bonding structure consists of three angular bonds (indicated as θ1,θ2,θ3) as well as three
distance-based bonds (indicated as l1, l2, l3) between the particle pairs. If no third particle could be found, only
the distance bond l1 is created.

where r0 and φ0 are the equilibrium distance and angle, respectively, and kh and ka spring
constants. These bonds are established in groups at runtime for each triple of particles
that collides. This so-called “AB” model is adapted from [2] and depicted in Figure 1.
Note, that the equilibrium angle φ0 is not constant across bonds but rather different for
each one. It is chosen as the angle between the particles at collision time.

In order to model frictional influence from a fluid and Brownian motion, we use
Langevin Dynamics. A study of purely Langevin-driven agglomeration processes with-
out turbulent background flow can be found in [6]. The equation of motion is given as:

m�̈x = �f − γ
(
�̇x−�uflow(t,�x)

)
+�R(t), (1)

where �f are the forces given by the intermolecular potentials described above. Addition-
ally, �R(t) is a random noise, which, together with the frictional term γ (�̇x−�uflow(t,�x))
models Brownian motion and the temperature, as well as the frictional influence of the
fluid. The velocities �uflow(t,�x) stem from the fluid (external flow field) at time t and po-
sition �x. Analogously to [3] we model the friction between the fluid and the particles
by Stokes’ law, so γ = 3πμσ/Cc where μ is the viscosity of the fluid, σ the particle
diameter and Cc being the Cunningham correction factor. In ESPResSo, Langevin Dy-
namics is implemented with a Velocity Verlet integrator, see e.g. [21], combined with a
so-called Langevin thermostat [22] that applies the frictional and random forces given
the temperature and γ .

3.2. Parallelization and Load-Balancing

We use the simulation software ESPResSo2 [23,22], which covers all the relevant physics
involved. Relevant parts of the dynamic bonding mechanisms have been implemented in
the course of [2,3] and are also described in [23]. ESPResSo uses the Linked-Cell algo-
rithm [24] in combination with Verlet lists to calculate forces stemming from short-range
potentials, like the Lennard-Jones potential, in linear time. Based on the Linked-Cell
discretization, ESPResSo defines a uniform spatial domain decomposition to allow for
MPI-based parallelization [22]. While the simulation core of ESPResSo is implemented
in C++, it exposes a Python-based front-end for setting up the scenario and controlling
the simulation [25].

2Extensible Simulation Package for Research on Soft Matter, http://www.espressomd.org
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Figure 2. Left: A sketch of a segment of an MD simulation. The gray arrows depict regular time steps. From
time to time the domain decomposition has to be adapted to the underlying scenario (indicated by the “re-
balancing” boxes). We outline our implementation on the right: The user calls a function “repart” from their
script. The linked cell grid (“cell system”) internally asks the grid to repartition itself and then sets up the
established partitioning in the core of the simulation software. Afterwards, cell payload (particles) is migrated
transparently for the user.

Our adaptions keep the MPI-only parallelization and its 1:1 mapping of subdomains
to processes. In [4] we devised a general scheme to change this fixed decomposition,
allowing for arbitrary ones. Based on this work, we have implemented different decom-
positions. We make the load-balancing mechanism available to the user, so they can con-
veniently implement strategies for partitioning scenarios in the simulation scripts them-
selves. Note that this load-balancing mechanism is not constrained to the application pre-
sented in this work. It can be employed to any heterogeneous simulation in ESPResSo.
We depict this ability to do dynamic repartitioning and sketch the underlying implemen-
tation in Figure 2.

Given a function m that defines a suitable load metric or measurement of ex-
ecution time for every process p ∈ {1, . . . ,P}, we partition based on the imbalance
I (m). The imbalance is defined as the maximum over average load measurement:
I (m) = P max{m(p)}

∑p m(p) . In the current setup, we use I (m)> 1.1 as criterion with the load
metric m(p) as the number of particles of process p and partition at most every 1000
time steps. In [4] we have shown for a smaller agglomeration scenario that choosing the
number of particles as metric m(p) performs best among a range of different choices.

3.3. Analysis

An important characterization of particle clusters is their fractal dimension Df [26]. It is
the power law relationship of the number of particles to their radius, see e.g. [27], and
calculated as

N =
( rg

d

)D f
,

with N the number of particles in the cluster, d = σ
2 and rg the radius of gyration, which

is the standard deviation of the particle positions�ri in a cluster:
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n̂ T σ l0

6.25 ·10−3 600 K 20 nm 2600 σ
Table 1. Basic MD simulation parameters.

σ ε∗ t∗

20 nm 1.25 ·10−20 J 14 ns
Table 2. Reference values used for nondimensional-
ization of physical quantities in the MD simulation.

rg =

√
1
N

N

∑
i=1

||�r−�ri||2 , with r =
1
N

N

∑
i=1

�ri.

4. Simulation Setup

The basic simulation parameters, which will be explained in the following, can be found
in Table 1. The reference length, energy and time used for nondimensionalization of the
MD simulation can be found in Table 2. The simulation comprises 109.85 ·106 particles,
the largest simulation with ESPResSo so far. Each of these primary particles has a diam-
eter of σ = 20nm. Initially, they are placed in a simulation box of size l0 = 2600σ , uni-
formly randomly distributed. We employ periodic boundary conditions in all dimensions.
The particle loading is n̂ = 6.25 ·10−3. The temperature of the solvent is T = 600K.

The flow field is primarily characterized by its kinematic viscosity ν and its dissipa-
tion rate ε . Based on these, we can derive the characteristic time scales, namely Brow-
nian diffusion time tBM and the Kolmogorov time scale tk. These allow us to define the
nondimensional Péclet number Pe = tBM

tk
that describes the relative importance of turbu-

lence over Brownian motion. The second nondimensional quantity that is used in [3] to
describe a scenario is the Knudsen number Kn =

lmfp
σ/2 , where lmfp is the mean free path

length of the flow.
Our goal is to reproduce a larger version with more turbulent flow scales of “Case 6”

from [3]. This setup uses Kn = 11 and Pe = 1. To achieve that, we generate the ex-
ternal background flow field in a separate pre-processing step using a Direct Numeri-
cal Simulation (DNS) of homogeneous, isotropic forced turbulence in a box of length
L= 2π l0 ≈ 326.7μm. It solves the incompressible Navier-Stokes equations with periodic
boundary conditions, discretized on a 64× 64× 64 mesh. This mesh is unrelated to the
linked cell grid and only defines the resolution of the flow field in the later MD simula-
tion. The viscosity is ν = 5.13 ·10−5 m/s2 and the dissipation rate ε = 1.25 ·1010 m2/s3,
which equals the desired values of Kn and Pe. These, however, lead to very heteroge-
neous particle distributions as we have shown in [4,5] on basis of “Case 6” from [3].
For first experiments at scale, we keep the particle distribution mostly homogeneous on
the subdomain scale by reducing the influence of the flow field in the transport equation.
Therefore, we scale down �uflow(t,�xi) in Equation 1 by about 1/3. This rescales the gra-
dients of the velocity by an equal factor, and, thus, also the dissipation rate. So in our
current simulation the Péclet number is roughly a third of the intended target value.

We compute 6 ·107 iterations, each having a length of dt = 10−4 t∗ = 1.4fs. Thus, the
end of the simulation is at tend = 8.4 μs. The bonding constants k̃a and k̃h are estimated
according to [3] to k̃a = k̃h = 1000ε∗. As collision distance, we use rcol = σ .

As mentioned above, we have extended and use the simulation software ESPResSo
as it implements all relevant numerical models, especially dynamic bonding at runtime.
We perform the scenario setup as follows: (1) Setup random particles with zero veloci-
ties, (2) initialize all required potentials, (3) equilibrate the system using steepest descend
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Figure 3. Histogram of the number of agglomerates
per size. Size is in number of particles per agglomer-
ate. The location of the maximum indicates that the
agglomeration process has left its initial state where
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Figure 4. Average fractal dimension D f of agglom-
erates of all agglomerates of a certain radius of gy-
ration at different time steps. While t = 100 t∗ is still
early in the simulation, the average D f does not vary
much in later time steps.

integration [25], (4) reset velocities and forces to zero, (5) setup the thermostat as well
as collision detection and dynamic bonding, and (6) start the simulation.

5. Results

One indicator of how much the agglomeration process has progressed in time, is the
number of agglomerates of a certain size. We present a histogram of the sizes of the
agglomeration for tend = 600 t∗ in Figure 3. We clearly see that the most prevalent clus-
ter size is about one order of magnitude higher than the smallest possible (2 primary
particles). This means that the simulation has left the initial state where the growth of
agglomerates is mainly driven by primary particle collisions. At tend process is primarily
driven by cluster-cluster collisions for significant growth of the agglomerates.

In Figure 4 we plot the average D f of all agglomerates with more than 15 particles
at t = 100 t∗, 300 t∗, and 600 t∗ depending on the radius of gyration of the agglomerates.
This relationship enables scientists to understand the agglomeration process and to de-
termine its influence on larger industrial processes and products. Therefore, the criterion
for stopping the simulation in [3] is when the individual lines converge. While the pro-
cess clearly has not converged yet at t = 100 t∗ in Figure 4, the difference in D f for the
same rg between t = 300 t∗ and 600 t∗ gets significantly smaller, indicating a possible
convergence. Since the agglomerates are still rather small (rg ≤ 10), the average fractal
dimension is in the range of 1.9 ≤ D f ≤ 2.2. These D f are a bit higher than the ones
published by [3] using the same ansatz, as well as experimental data obtained from soot
aggregates in (turbulent) flames, see e.g. [28]. However, the smaller the velocities of the
superposed, turbulent background flow field in Equation 1, the higher the influence of
Brownian motion. In this case, [3] also states, that with a higher influence of Brownian
motion, D f approaches 2 for larger agglomerates. Beyond that we can see a trend for
agglomerates with larger rg to have a smaller D f . In conclusion, we can say, that we are
able to reproduce physical results for the simulation of soot particle agglomeration, and
we assume that the mentioned differences stem from the smaller flow field velocities.
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5.1. Load-balancing

Although we enforce a more or less homogeneous particle distribution among the subdo-
mains, we still use load-balancing to counteract smaller heterogeneity that evolves over
time. For unscaled versions of this scenario, good load-balancing is crucial as our studies
on the smaller 3.2 million particle setup [4,5] have shown. Therefore, we also test and
show load-balancing results here. The simulation ran on “Hazel Hen” at the High Per-
formance Computing Center Stuttgart (HLRS). It is a Cray XC40 machine with 2 Intel
Xeon E5-2680v3 (“Haswell” microarchitecture) per node, each of which has 12 cores
(not counting Simultaneous Multi-Threading) and a Cray Aries interconnect.

We use the snapshot at tend = 600 t∗ for our test. We run the test on 300 nodes,
i.e. 7200 processes. The imbalance in the number of particles for a decomposition into
equally sized boxes (MPI Dims create) is about 18.4 %, which is quite homogeneous.
The runtimes for the default parallelization and our load-balanced one can be found
in Figure 5. We plot the relevant runtimes in the following way: Let

f1 = max{tforce(p)}P
p=1,

f2 = max{tforce(p)+ tcomm(p)}P
p=1, and

f3 = max{tforce(p)+ tcomm(p)+ tint(p)+ tsync(p)}P
p=1,

where “force”, “comm”, “int” and “sync” refer to the individual components: force cal-
culation, communication, integration and synchronization. Then, we plot f1, f2 − f1 and
f3 − f2 − f1, i.e. the difference of the individual maxima runtimes of the phases. We can
see, that despite the homogeneous particle distribution, we achieve a runtime reduction
of about 10 %. Additionally, in Figure 6 we can see, that the load-balancing is capable of
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keeping the imbalance at about the desired level of 1.1 during almost the entire 6 million
time steps. The occasional spikes are still being investigated. Given the overall behavior,
however, it is likely, that the spikes stem from runtime noise.

6. Conclusion

We successfully combined several previous works into one large-scale, load-balanced
soot particle agglomeration simulation. We set up the simulation with a complex physical
bonding model, as well as a dynamically changing, multi-scale turbulent background
flow field. We increased the simulation to over 100 million particles, which is over 30
times larger than previous works with ESPResSo and, to the best of our knowledge, the
largest simulation ever with ESPResSo.

In order to assess the physical correctness of the new setup, we kept the simulation
rather homogeneous by rescaling the velocities stemming from the superposed flow field.
This way, we did not have to deal with large heterogeneity, and we were able to reproduce
previous results. We showed that the resulting fractal dimensions of the clusters seem
reasonable and consistent with previous results. Also, we showed, that even though we
keep heterogeneity low, load-balancing is still able to reduce the runtimes by about 10 %
and to consistently keep the imbalance in runtime low throughout the simulation.

6.1. Future Work

There are two paths that we will pursue further. As we have verified that the setup is phys-
ically correct and that load-balancing pays off, the first path is to use a physically correct
flow field with Pe ≈ 1. This will let us study the impact of the multi-scale turbulent and
dynamic background flow field on agglomeration processes at physically relevant scales.

Second, we have implemented different kinds of load-balancing methods in previous
work [4,9,5], some of which might be more suitable for the heterogeneous version of
the simulation. We intend to test different methods as well as different metrics and relate
them to scenario properties in order to gain deeper insight into the problem of balancing
heterogeneous simulations with a low average fractal dimension of the clusters.
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