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Abstract. Memory bandwidth plays an essential role in high performance
computing. Its impact on system performance is evident when run-
ning applications with a low arithmetic intensity. Therefore, high band-
width memory is on the agenda of many vendors. However, depend-
ing on the memory architecture, other optimizations are required to ex-
ploit the performance gain from high bandwidth memory technology. In
this paper, we present our optimizations for the Maximum Likelihood
Expectation-Maximization (MLEM) algorithm, a method for positron
emission tomography (PET) image reconstruction, with a sparse matrix-
vector (SpMV) kernel. The results show significant improvement in per-
formance when executing the code on an Intel Xeon Phi processor with
MCDRAM when compared to multi-channel DRAM. We further iden-
tify that the latency of the MCDRAM becomes a new limiting factor,
requiring further optimization. Ultimately, after implementing cache-
blocking optimization, we achieved a total memory bandwidth of up to
180 GB/s for the SpMV operation.
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1. Introduction

The Intel Xeon Phi product family, based on the Intel Many-Integrated-Core
(MIC) architecture, targets high-performance computing (HPC) applications [26].
Especially the Knights Landing (KNL) microarchitecture provides a large number
of cores, achieving a high aggregated performance and a high performance per
watt ratio [5]. The package also includes 3D-stacked DRAM, which provides a
high memory bandwidth. The KNL may be a discontinued product, but the design
of both utilizing many-core architecture and high bandwidth memory remains
important for modern HPC systems. Other notable products featuring a high
bandwidth memory architecture include both NVIDIA and AMD’s graphics cards.

Positron Emission Tomography (PET) is a medical imaging modality with
clinical value for the detection, staging, and monitoring of many diseases. It is
a functional imaging technique, as it allows the observation of metabolic pro-
cesses. A radioactive tracer is injected into the patient or subject. The tracer
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undergoes beta decay, emitting positrons, which annihilated with electrons, cre-
ating two 511 keV gamma photons traveling in opposite directions. The scanner
consists of a ring of detectors, with scintillator crystals and photodiodes. When
two detectors each record a photon within a certain time window, an annihila-
tion event is assumed somewhere along the line connecting the detectors, called
the Line of Response (LOR). In reality, we have a Tube of Response (TOR), as
two detectors can detect events not only from a line but from a larger, roughly
polyhedral portion of the three-dimensional space inside the scanner tube, called
Field of View (FOV). The number of detected events influences the quality of
the measurement, while the covered area of the field of view by LORs affects the
achievable resolution. The resolution is usually better at the center than at the
edges of the field of view. For image reconstruction, the field of view is divided
into a three-dimensional grid, where each grid cell is called a voxel.

In this paper we use the small animal PET scanner MADPET-II as an ex-
ample (see Figure 1 (left)). The scanner has a unique design consisting of two
concentric rings of detectors, which increases sensitivity while preserving spatial
resolution [15]. To obtain an image from the scanner, the detector output – called
list-mode sinogram – needs to be reconstructed using a system matrix.

There is a number of image reconstruction algorithms used in medical
imaging. The algorithms used in our MADPET-II is Maximum Likelihood
Expectation-Maximization (MLEM) [24]. A detailed mathematical description of
the physical processes involved in tomography systems, such as the attenuation
and scattering of photons in the body, is presented by Vazquaz et al. [29].

The main contributions of this paper are:

• We present an optimized MLEM implementation for modern many-core
systems.

• We show the impact of increased memory bandwidth on Sparse Matrix-
Vector (SpMV) operation performance in MLEM by benchmarking our
implementation on an Intel Xeon Phi (KNL) based system.

• We identify the role of latency and propose future optimization recommen-
dations for MLEM and SpMV codes in general.

2. Intel Xeon Phi Knight’s Landing

Applications can be classified by the limitation on their performance into three
categories, namely compute bound, (memory) latency bound, and (memory)
bandwidth bound. To improve the performance of a compute bound application,
the utilization of more cores is sufficient. To improve the performance of a memory
(bandwidth) bound applications, two memory technologies with a higher mem-
ory bandwidth are developed: the High Bandwidth Memory(HBM) and the Hy-
brid Memory Cube(HMC). Both of the technologies are based on 3D-stacking of
the classic DRAM dies. These memory modules are physically installed onto the
processor package. However, stacking of the DRAM chips requires a significantly
higher amount of wiring and controlling logic, which results in a higher latency of
the memory. On the Intel Xeon Phi processor with Knight’s Landing (KNL) ar-
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Figure 1. (Left): Illustration of the small animal PET scanner [14]. (Right): Diagram demon-
strating an overview of the KNL Architecture.

chitecture, an HMC-based high bandwidth memory called Multi-Channel DRAM
(MCDRAM) is embedded in the processor. Finally, to improve the performance
of memory (latency) bound application, advanced optimization techniques such
as cache-blocking and prefetching can be used.

The Xeon Phi Knights Landing (KNL) is part of the Xeon Phi family of
processors, which is based on the Intel MIC architecture. The MIC architecture
integrates many x86 processor cores with vectorization support to deliver massive
parallelism. It is designed for high-performance computing applications [7].

In general, the KNL chip consists of tiles, MCDRAM, DRAM, and I/O, as
shown in Figure 1. Each tile consists of two simple out-of-order cores that are
derived from Intel Atom cores (based on the Silvermont microarchitecture). Each
core supports up to 4 (hyper-)threads per core - running at 1.3 to 1.5 GHz. They
are equipped with a 32KB L1 data cache and a 32KB L1 instruction cache. A
1MB L2 cache is shared among a single tile. The MCDRAM consists of 8x2GB
blocks connected to different memory controllers located on different regions of
the processor. The two DDR memory controllers support six channels with a
bandwidth of up to 90 GB per second. The MCDRAM on KNL processors can
be used in three different modes, namely Cache, Flat, and Hybrid. An overview
is given below. In this paper, we used the flat mode to control MCDRAM usage.

• Cache: MCDRAM can be used as the Last Level Cache (LLC).
• Flat: The entire MCDRAM memory is added to the address space extend-
ing the space of the existing DDR4 Memory. In this mode, it is possible to
allocate memory in the MCDRAM explicitly.

• Hybrid: It allows the MCDRAM to be partitioned into a part-cache and
part-flat configuration by specifying a ratio between the two, either 75% -
25%, 50% - 50%, or 25% - 75%.

In addition to the MCDRAM configuration, there are several ways to con-
figure the memory subsystem: All-to-all (A2A), Quadrant (quad), Hemisphere
(HEMI), Sub-NUMA Clustering 4 (SNC4) and Sub-NUMA Clustering 2 (SNC2).
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Detailed descriptions of these cluster modes are given by Jeffers et al. [9] and
Sodani et al. [26]. A short overview of the differences between the cluster modes
used in this paper is presented through the following scenario:

• All-to-All (A2A): In this cluster mode, memory addresses are uniformly
distributed across all Tile Directories (TDs) plus the memory (MCDRAM
and DDR) is set to UMA.

• Sub-NUMA Clustering 4 (SNC4): The memory subsystem divides the tiles
into 4 clusters resulting in separate cache-coherent clusters.

3. The Maximum Likelihood Expectation-Maximization (MLEM) Algorithm

One widely used iterative reconstruction method for emission tomography is the
Maximum Likelihood (ML) reconstruction using the Expectation-Maximization
(EM) algorithm, which was proposed by Shepp et al. [24] in 1982. The algorithm
uses the iteration scheme given in (1), where N is the number of voxels; M is the
number of detector pairs; f is the 3D image that is reconstructed; A is the system
matrix of size M ×N , which describes the geometrical and physical properties of
the scanner; g is the measured list-mode sinogram of size M and q is the iteration
number. The algorithm is based on the probability matrix A = aij , where each
element represents the probability of a gamma photon discharge from a voxel j
being recorded by a given pair of detectors i.

f
(q+1)
j =

fq
j

∑N
l=1 alj

N∑

i=1

(
aij

( gi
∑M

k=1 aikf
q
k

)
(1)

The algorithm starts with an initial estimate, a grey image. Then, in each
iteration, it executes the following steps:

• Forward projection: h = Af . Project the current approximation of the
image into the detector space.

• Correlation: ci =
gi
hi

. Correlate the projection to the actual measurement.

• Backward projection: u = AT c. Project the correlation factor back into
image space by multiplying with the transposed matrix.

• Update image: fq+1
j =

fq
j

nj
uj . Update the image with the back-projected

correlation factor and apply a normalization n.

The runtime of the algorithm is dominated by the two sparse matrix-vector
operations, forward and backward projection. Note that we do not need to create
and store the transposed matrix AT , as the backward projection can be computed
as uT = cTA.
The system matrix describes the geometrical and physical properties of the scan-
ner. For MADPET-II, the field of view is divided into a grid of 140 × 140 × 40
voxel in x-, y- and z-dimension, respectively. The 1152 detectors result in 664,128
unique detector pairs or lines of response. The matrix was generated by the Detec-
tor Response Function (DRF) model [10,27]. The matrix is stored in Compressed
Sparse Row (CSR) format using single-precision floating-point numbers. (For a
list of commonly used formats see Barrett et al. [1]).

D. Yang et al. / Exploring High Bandwidth Memory for PET Image Reconstruction222



For parallelization, the matrix is partitioned into blocks of rows with approx-
imately the same number of non-zero elements per block. This results in good,
albeit not perfect load balancing. A more fine-grained approach, which cuts ele-
ments within one row, is possible, but would result in additional management or
copying overhead.

4. First Optimization for KNL Architecture and MCDRAM

Our existing MLEM code uses both OpenMP and MPI. In order to achieve the
best performance for KNL, we have optimized our MLEM implementation with
the following steps:

• We make all memory allocations on the MCDRAM by using the memkind

library.
• We rewrite the matrix loading part to support the special memory allo-
cation in the MCDRAM. In particular, a set of OpenMP threads are cre-
ated prior to memory allocation, and the matrix is directly copied into the
corresponding memory by each thread during initialization. This ensures
memory first touch for all threads. We further enforce thread reuse and
thread pinning during kernel execution.

• We add #pragma unroll and #pragma ivdep into the kernel to assist auto-
vectorization for SIMD execution using the AVX512 units of the processor.

To summarize, we improved the data loading process to support high band-
width memory and ensure locality. In addition, we enabled and assisted the auto-
vectorization to improve instruction-level data parallelization.

5. Evaluation

To show the influence of MCDRAM on the execution time of MLEM, we compile
and run our code on CoolMUC-III, which is built of 148 compute nodes. Each node
consists of one Intel Xeon Phi 7210F (Knight’s Landing, KNL) processor with
64 cores, 256 threads, 96 GB of main memory and 16 GB of on-chip MCDRAM.
The memory subsystem is configured for Sub-NUMA clustering (SNC4 ) mode
and all-to-all (A2A) modes. The MCDRAM is configured to be flat addressable.
According to Intel, maximum bandwidth of 490GB/s for the MCDRAM and
90GB/s for the DDR RAM can be achieved on this processor [19].

To investigate the effect of high bandwidth memory, we have run our MLEM
code with three different memory configurations: A2A, DDR-A2A, and SNC4,
where DDR-A2A represents the result of the native execution on the DDR4 main
memory. The MCDRAM itself is also set to flat mode. As mentioned in Section 4,
we use the memkind library and its hbw alloc to explicitly allocate memory
on the MCDRAM. For experiments on the DDR-4 memory, a standard malloc

is used. We run setup runs ten times. During each run, the algorithm records
the iteration time for the forward projections and backward projections, as well
as the total iteration time. The first iteration is disregarded as we consider it
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Figure 2. Runtime Comparison of MLEM on CoolMUC-III. The bars (from left to right in each
cluster) represent A2A, DDR-A2A, and SNC4.

as warm-up time. The total kernel runtime per iteration, its speedup, and the
memory bandwidth for the forward projection are assessed. In this paper, we
analyze the forward projection for evaluation because the backward projection
requires random access into memory space, which is significantly slower than
streaming as required by the forward projection. The results of our experiments
are summarized in Figure 2 and 3.

Figure 2 shows the comparison of runtime per iteration in seconds on
CoolMUC-III using different memory configurations/modes. Best performance is
achieved using the A2A setting on the MCDRAM. The SNC4 setup follows with
a slightly higher runtime. The fastest runtime with 64 threads on A2A mode is
around 0.24s per iteration. We achieve a maximum speedup of about 50x, showing
almost perfect scaling behavior. The runtime of the DDR-A2A version is signifi-
cantly higher when using 32 or 64 OMP threads. In addition, the speedup curve
indicates a typical saturating line that shows reducing speedup with increasing
numbers of threads, indicating that the memory bandwidth limit is hit.

However, our speedup curve indicates a near linear increase of speedup in
relation to the number of threads for executions on the MCDRAM. This shows
that the code is capable of exploiting the higher memory bandwidth.

Figure 3 shows the corresponding bandwidth achieved for the forward pro-
jection, which contributes up to ˜50% to the runtime per iteration. The best
memory bandwidth is achieved using the A2A mode on MCDRAM, which re-
flects the result from Figure 2. The slightly higher bandwidth on A2A mode over
SNC4 mode is also found in other research, such as stated by Ramos et al. [20].
However, the difference between A2A and SNC4 is not significant. The maximum
bandwidth at 76GB/s on the DDR-4 memory is close to the maximum of 90GB/s
with stream benchmark. The bandwidth observed on the MCDRAM is double as
high as on the DDR-4, with a maximum of appox. 150GB/s. Although we are
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Figure 3. Memory Bandwidth Utilization Comparison of MLEM on CoolMUC-III. The bars
(from left to right in each cluster) represent A2A, DDR-A2A, and SNC4.

able to exploit the higher bandwidth of the MCDRAM, we are not able to utilize
the full memory bandwidth limit of 490GB/s on MCDRAM. We assume that the
cause of this huge gap is the small L2 cache size, which makes it impossible to
store the entire working vector within the cache, requiring more frequent load-
/store operations. Combined with a high latency introduced by the MCDRAM,
the kernels suffer from the frequent load/store operations. Similar results can also
be found in related research by Saule et al. [23]. Anecdotal evidence collected by
enforcing software prefetching by using -qopt-prefetch shows slightly increased
performance, which reflects the memory latency boundary.

Further optimization featuring the implementation of a cache-blocking scheme
for the working vector is implemented to reduce latency impact. This way, we are
able to achieve a bandwidth of approx. 180GB/s on the MCDRAM with the A2A
configuration.

6. Related Work

Speeding up iterative emission tomography image reconstruction, such as MLEM,
has been an important research topic. Improvements have been made on the
algorithmic side [6, 11, 21], as well as on the implementation side [3]. Work has
also been done porting the MLEM algorithm to distributed GPU clusters [3,16].

Lui et al. [12] investigated the performance of sparse matrix-vector multipli-
cation (SpMV) on the Knights Corner (KNC), the predecessor of the Knights
Landing architecture. They are able to reach 90% of the device’s peak memory
bandwidth by using a specialized data structure. Bell and Garland [2] show tech-
niques on how to implement SpMV on GPUs (which typically include high band-
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width memory nowadays), resulting in a good performance in several sparsity
classes.

As KNL offers a number of configuration possibilities, it is especially impor-
tant to review the work done in this field, with respect to cluster modes, memory
modes, and thread affinity.

Rosales et al. [22] investigated the effect of cluster modes on the performance
of HPC applications. The paper uses mini applications (MiniFE [4], MiniMD
[4], and LBS3D [30]) to observe the performance differences in A2A and QUAD
cluster modes running 1 to 256 threads. The results from MiniFE and MiniMD,
using DRAM or MCDRAM, show that A2A mode scales comparable to or better
than the quad mode. On the other hand, the results from LBS3D when using
MCDRAM show varying performance behavior. When using DRAM with A2A
mode, the code performs better or similar to quad mode. Moreover, A2A mode
scales slightly better than QUAD mode when using MCDRAM and significantly
better when using DRAM. Ultimately, the effects of the cluster modes seem to
be dependent on the application.

Smith et al. [25] compared the effect of the MCDRAM memory modes,
flat and cache, on the performance of sparse tensor factorization, using several
datasets. The results reveal that both flat and cache mode perform identically
when the dataset fits into MCDRAM; otherwise flat mode performs better than
cache mode. Peng et al. [18] thoroughly investigated the effects of memory modes
across several applications and benchmarks. The paper shows the performance of
XSBench [28] over a range of problem sizes, Graph500 [17] over a range of graph
sizes, GUPS [13] over a range of table sizes, MiniFE [4] over a range of matrix
sizes, and DGEMM [13] over a range of array sizes in flat and cache modes. The
results of XSBench and DGEMM show similar performance, Graph500 and GPUs
show varying performance, and MiniFE shows flat outperforms the cache mode.

Jabbie et al. [8] observed the performance of the classical elliptic test problem
of the Poisson equation on KNL. The work tests two pinning techniques, scatter
and balanced, over a range of processes and threads using a hybrid approach. The
results show no observable difference in runtime behavior.

7. Conclusion and Future Work

In this paper, we present an implementation of a medical image reconstruc-
tion algorithm, the Maximum Likelihood Expectation-Maximization (MLEM),
for Positron Emission Topography (PET), optimized for Intel’s KNL architec-
ture high memory bandwidth. We investigated the effects of the higher memory
bandwidth on our MLEM and provide optimization considerations for SpMV-like
code.

We show that SpMV kernels are able to exploit the higher memory band-
width. However, the higher memory latency makes it hard to exploit the full
potential of the MCDRAM on KNL. The massive parallelization combined with
high memory bandwidth and latency hiding via cache-blocking provides a signif-
icant speedup of MLEM. Overall we achieve a maximum memory bandwidth of
180GB/s on the KNL processor with MCDRAM, which is a significant improve-
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ment for our MLEM code.

The next steps are to optimize the matrix storage format and apply further la-
tency hiding technologies to further speedup MLEM. We will also evaluate the
efficiency of high bandwidth memory for MLEM on GPU architectures.
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Huang, and Jerome Vienne. A comparative study of application performance and scal-
ability on the Intel Knights Landing processor. In International Conference on High
Performance Computing, pages 307–318. Springer, 2016.
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