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Abstract. Various parallel computer benchmarking projects have been around 

since early 1990s but the adopted so far approaches for performance analysis 
require a significant revision in view of the recent developments of both the 

relevant application domains and the underlying computer technologies. This 

paper presents a novel performance evaluation methodology based on assessing 
the processing rate of two orthogonal use cases — dense and sparse physical 

systems — as well as the energy efficiency for both. Evaluation results with two 

popular codes — HPL and HPCG — validate our approach and demonstrate its 
use for analysis and interpretation in order to identify and confirm current 

technological challenges as well as to track and roadmap the future application 

performance of physical system simulations. 
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1. Introduction 

Computer simulation of physical real-world phenomena emerged with the invention of 

electronic digital computing and has been increasingly adopted as one of the most 

successful modern methods for scientific discovery. Arguably, the main reasons for this 

success has been the rapid development of novel computer technologies that has led to 

the creation of powerful supercomputers, large distributed systems, high-performance 

computing frameworks with access to huge data sets, and high throughput 

communications. In addition, unique and sophisticated scientific instruments and 

facilities, such as giant electronic microscopes, nuclear physics accelerators, or 

sophisticated equipment for medical imaging are becoming integral parts of those 

complex computing infrastructures. Subsequently, the term ‘e-science’ was quickly 

embraced by the professional community to capture these new revolutionary methods 

for scientific discovery via computer simulations of physical systems [1].  

Focusing on the application domain for physical system simulations, this paper 

explains in detail our performance evaluation methodology with the most-recent results, 

analysis and interpretation based on the relevant technical report [2] produced by the 

Applications Benchmarking (AB) International Focus Team (IFT) as part of the IEEE 
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International Roadmap for Devices and Systems (IRDS) initiative2. Since 2015, IRDS 

is the successor of the International Technology Roadmap for Semiconductors (ITRS), 

which used to be provided by the Semiconductor Industry Association [3]. The mission 

of AB IFT is to identify key application areas, and to track and roadmap the 

performance of these applications for the next 15 years. Given a list of market drivers 

from the Systems and Architectures IFT, the AB IFT investigates and applies long-term 

analysis to identify the important or critical application areas for different user 

communities. Table 1 summarizes the ones that are under consideration at present. 

Table 1. Application areas. 

Application area Description 
Big data analytics Data mining to identify nodes in a large graph that satisfy a given feature or

features. 
Feature recognition Graphical dynamic moving image (movie) recognition of a class of targets (e.g. 

face, car). This can include neuromorphic / deep learning approaches such as

deep neural networks. 
Discrete event simulation Large discrete event simulation of a discretized-time system. (e.g., large

computer system simulation) Generally used to model engineered systems. 

Computation is integer-based. 
Physical system simulation Simulation of physical real-world phenomena. Typically, finite-element based.

Examples include fluid flow, weather prediction, thermo-evolution.

Computation is floating-point-based. 
Optimization Integer NP-hard optimization problems, often solved with near-optimal

approximation techniques. 

Graphics, augmented 
reality, virtual reality. 

Large scale, real-time photorealistic rendering driven by physical world models. 
Examples include interactive gaming, augmented reality, virtual reality. 

 

In order to track these areas, the AB IFT relies upon existing standard benchmarks 

where available. These benchmarks should fulfil two criteria: 

� Benchmark Code Availability: There are several sets of benchmark codes 

available that cover each application area. However, many of these 

benchmarks either cover only a portion of an application area or cover more 

than one application area.  

� Benchmark Results Availability: In order for benchmarks to be useful for 

projecting a trend in performance vs. time, there must be a sufficiently long 

history of benchmark scores. At a minimum, AB IFT believes that at least 4 

years prior to the current day of results should be available.  

The most important application codes for physical system simulations are typically 

based on finite-element algorithms — such as boundary element method, N-body 

problem, fast multipole method, hierarchical matrices, iterative stencil computations — 

while the computations constitute heavy workloads that conventionally are dominated 

by floating-point arithmetic. Example applications include areas such as climate 

modelling, plasma physics (fusion), medical imaging, fluid flow, and thermo-evolution. 

In addition, physical system simulation is critical to product design in the automobile 

and aerospace industries as well as for obtaining more accurate climate modelling and 

prediction. Our results confirm that: 

� The area of physical system simulations requires innovative computer 

architectures because the data locality we have been expecting from our 
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applications for three decades is disappearing. Novel solutions that can help 

addressing the “3rd Locality Wall” challenge [4] are urgently needed.  

� Since the application area of physical system simulations is based 

predominantly on floating-point arithmetic, novel architecture proposals that 

address floating-point processing challenges are also expected to have 

substantial impact, particularly for dense system computations. 

� Energy efficiency indicators need urgent improvements by at least an order of 

magnitude. This is equally valid for both homogeneous and heterogeneous 

architectures including accelerators and FPGAs.  

The rest of this paper is organized as follows. Section 2 provides a review of 

previous work in the area. Section 3 introduces our novel approach and methodology 

while Section 4 presents experimental results with corresponding discussions. Section 5 

outlines some of the important technological challenges. Finally, Section 6 concludes 

the paper. 

2. Background 

Taking the viewpoint of application programmers and end-users, this section outlines 

the major benchmarking efforts that have been part of the developments in this field 

over the years. 

2.1. NAS Parallel Benchmarks 

The NAS Parallel Benchmarks (NPB) include the descriptions of several (initially 

eight) “pencil and paper” algorithms [5]. Realistically, all of them are computational 

kernels although the authors claim that the suite includes three "simulated applications" 

but this claim is from the early 90s and it does not sound convincingly today. The NPB 

benchmarking methodology does not involve any hierarchy and each of the kernels is 

to be used individually for performance measurements. The codes cover only the 

Computational Fluid Dynamics (CFD) application domain which is of primary interest 

for NASA. 

2.2. GENESIS Distributed-Memory Benchmarks 

The GENESIS codes [6] were developed in a 3-layer hierarchy — low-level micro-

benchmarks, kernels, and compact applications. This was intended to express the 

performance of higher-level codes via a composition of performance results produced 

by the kernels in the layer below. However, this proved to be a difficult task, 

particularly when including sufficiently broad set of computational science codes in the 

compact applications layer. 

2.3. PARKBENCH Committee 

The PARKBENCH Public International Benchmarks for Parallel Computers [7]. This 

was an ambitious international effort to glue together the most popular parallel 

benchmarks at that time — NPB, GENESIS, and several kernels including LINPACK 
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[8]. The PARKBENCH suite adopted the hierarchical approach from GENESIS, thus 

inheriting the same difficulties described above. 

2.4. SPEC 

All major machine vendors have participated in the development of SPEC HPG (High 

Performance Group), since achieving portability across all involved platforms has been 

an important concern in the development process [9]. The goal was to achieve both 

functional and performance portability. Functional portability ensured that the 

makefiles and run tools worked properly on all systems, and that the benchmarks ran 

and validated consistently. To achieve performance portability, SPEC accommodated 

several requests by individual participants to add small code modifications that took 

advantage of key features of their machines. There are many SPEC HPG benchmarking 

results available, but their main role is to confirm that new hardware products and 

platforms have been validated by the vendors. 

2.5. Dwarfs — Computational Patterns 

Another more recent “pencil and paper” parallel benchmark suite is the Dwarfs Mine 

based on the initial “Seven Dwarfs” proposal (2004) by Phillip Colella. The Dwarfs 

(computational patterns) are described as well-defined targets from algorithmic, 

software, and architecture standpoints. The number of Dwarfs (which are really kernels 

with some of them mapped to NPB) was then extended to 13 in the “View from 

Berkeley” Technical Report [10]. The report confirms “presence” of the 13 Dwarfs in 6 

broad application domains — embedded computing, general-purpose computing, 

machine learning, graphics/games, databases and RMS (recognition/mining/synthesis) 

codes. Some recent studies suggest that more Dwarfs should be added for other 

application domains, while it is also not clear if the existing ones are sufficient for the 

domains described in the “View from Berkeley” Technical Report. The Dwarfs Mine 

description adopts a bottom-up hierarchical approach like GENESIS and then 

PARKBENCH. Although more systematic, it suffers from the same benchmarking 

hierarchy difficulties. Furthermore, the availability of benchmarking codes and results 

is very limited but even more importantly, the application domains are different from 

the ones selected by the AB IFT in the IEEE IRDS initiative.  

3. Methodology 

Over the years, the relevant benchmarking projects described in Section 2 above, have 

covered predominantly dense physical system simulations, in which high 

computational intensity carries over when parallel implementations are built to solve 

bigger problems faster. As long as emphasis was on dense problems, this approach 

resulted in systems with increasing computational performance and was the 

presumption behind the selection of the LINPACK benchmark [8] for the very popular 

semi-annual TOP500 rankings of supercomputers [11].  

Many new applications with very high economic potential — such as big data 

analytics, machine learning, real-time feature recognition, recommendation systems, 

and even physical simulations - have been emerging in the last 10-15 years. However, 
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these codes typically feature irregular or dynamic solution grids and spend much more 

of their computation in non-floating-point operations such as address computations and 

comparisons, with addresses that are no longer regular or cache-friendly. The 

computational intensity of such programs is far less than for dense kernels, and the 

result is that for many real codes today, even those in traditional scientific cases, the 

efficiency of the floating-point units that have become the focal point of modern core 

architectures has dropped from the >90% to <5%. This emergence of applications with 

data-intensive characteristics — e.g. with execution times dominated by data access 

and data movement — has been recognized recently as the “3rd Locality Wall” for 

advances in computer architecture [4]. 

To highlight the inefficiencies described above, and to identify architectures which 

may be more efficient, a new evaluation code was introduced in 2014 called HPCG3 

(High Performance Conjugate Gradient) benchmark [12]. HPCG also solves Ax=b 

problems, but where A is a very sparse matrix — normally, with 27 non-zeros in rows 

that may be millions of elements in width. On current systems, floating point efficiency 

mirrors that seen in full scientific codes. For example, one of the fastest 

supercomputers in the world in terms of dense linear algebra is the Chinese TaihuLight, 

but that same supercomputer can achieve only 0.4% of its peak floating-point 

capability on the sparse HPCG benchmark. Detailed analysis lead to the conclusion that 

HPCG performance in terms of useful floating-point operations is dominated by 

memory bandwidth to the point that the number of cores and their floating-point 

capabilities are irrelevant [13]. There are of course application codes with highly 

irregular and latency-bound memory access that deliver significantly lower 

performance, but they are uncommon. While HPCG does not represent the worst-case 

scenario, it has been widely accepted as a typical performance yardstick for memory-

bound applications. 

Therefore, our selected benchmark codes that cover the “Physical System 

Simulation” application area of interest are the High-Performance LINPACK (HPL) 

and the HPCG. Both are very popular codes with very good regularity of results since 

June 2014. Another very important reason for selecting HPL and HPCG is that they 

represent different types of real-world phenomena — the HPL models dense physical 

systems while the HPCG models sparse physical systems. Therefore, the available 

benchmarking results provide excellent opportunities for comparisons and 

interpretation, as well as lay out a relatively well-balanced overall picture of the whole 

domain for physical system simulation applications. Our approach is to explore a 3-

dimensional space — dense systems performance, sparse systems performance, and 

energy efficiency for both cases. 

4. Performance Results 

With HPL as the representative of dense system performance and HPCG as the 

representative for sparse systems, there are readily available performance and energy 

results published twice per year (June and November) with rankings of up to 500 

systems for those two benchmarks since June 2014.  

 
3 http://www.hpcg-benchmark.org/ 
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Figure 1. Average performance of HPL (dense systems) vs. HPCG (sparse systems). 

 

We have further decided to use the average of the top 10 performance and energy 

results for each of these two benchmarks. This latter choice could be a point for further 

discussion and optimization of the benchmarking approach for this application domain. 

We have selected the 10 best only (rather than a larger number) because of the very 

limited HPCG results in the early years of publicly available HPCG measurements. 

Figure 1 shows a significant performance gap of nearly 2 orders of magnitude 

between HPL and HPCG results in the last several years. The increase of the average 

HPL performance since June 2016 is because of the introduction of the Chinese 

Sunway TaihuLight system. The most recent increase of both HPL and HPCG 

performance is visible since June 2018 after the installation of the Summit 

supercomputer at ORNL. An optimistic expectation here would be to observe that the 

gap keeps closing and then assess the rate of this progress. Unfortunately, we do not 

have any evidence that the observed performance gap is in fact closing to any degree. 

Thus, we can draw the conclusion that one of the main challenges ahead will be to 

significantly increase sparse systems performance with any future computing systems 

designed for this application domain. While it is clear that reaching Eflop/s 

performance with HPL will happen soon, it is equally clear that this achievement will 

leave this significant gap between dense and sparse system performance unchanged. 

Figure 2 complements the above analysis by showing a similar gap of 

approximately 2 orders of magnitude for the fraction of peak performance results 

between HPL and HPCG. This provides clear evidence of something we have known 

for years — our production codes, which usually implement sparse system simulations, 

are unable to deliver more than a few percent of the peak system performance that HPL 

results would seem to promise. The figure shows that this gap has not been reducing, 

and further points out the need to address sparse system performance in the next 

generation of computer architectures designed for this application domain. 
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Figure 2. Fraction of peak performance for HPL (dense systems) vs. HPCG (sparse systems). 

Figure 3. HPL (dense systems) vs. HPCG (sparse systems) vs. the most energy-efficient supercomputers on 

the Green 500 list. 

The energy efficiency dimension of our evaluation is depicted in Figure 3. The 

current supercomputing designs appear to be able to scale up to 200 Pflop/s while 

remaining within the recommended 20 MW system power consumption envelope. An 

optimistic estimate based on this would require five times improvements in energy 

efficiency, and seven times improvements in the HPL performance currently delivered 

by the Summit supercomputer. However, such improvements are not realistic, since the 

best energy efficiency results and rankings are different from the HPL ranking (see 

comments above about the top 10 ranked results). Therefore, a more realistic projection 
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based on the current (end of 2019) Summit results is that one needs ten times energy 

efficiency improvement and ten times higher HPL performance to reach the Eflop/s 

barrier. Unfortunately, this would only fulfil the desired performance and energy 

efficiency for the computation of dense physical systems such as the HPL benchmark.  

Similar performance versus energy efficiency analysis and projections for sparse 

systems based on the HPCG results look much more pessimistic. Here the two orders 

of magnitude lower performance delivered for sparse systems by the current 

supercomputing architectures strongly impact the energy efficiency. 

5. Technological Challenges 

Following the results and the discussion presented in the previous section, the main 

technological challenges that could help drive the future developments and 

improvements in the field of physical system simulation a summarised briefly below. 

5.1. Reduced Data Movement 

Since the late 1980s, reducing significantly the data movement has been one of the 

most important challenges towards achieving higher computer performance. Achieving 

higher bandwidth and lower latency for accessing and moving data — both locally 

(memory systems) and remotely (interconnection networks) — are key challenges 

towards building supercomputers at Eflop/s level and beyond. Breakthrough 

architecture solutions addressing those challenges could potentially enable up to two 

orders of magnitude higher performance particularly for sparse physical system 

simulations. More specifically, forthcoming designs of High Bandwidth Memory 

(HBM) such as HBM3+ and HBM4 expected to be released between 2022 and 2024, 

are likely to change substantially the application performance landscape for future 

supercomputers. 

5.2. Efficient Floating-Point Arithmetic 

Established in 1985, the IEEE 754 Standard for Floating-Point Arithmetic was renewed 

again in July 2019 [14]. However, the level of interest in this standard has been 

declining following critical comments about various important aspects of IEEE 754 

including wasted cycles, energy inefficiencies, and accuracy. Unfortunately, the path 

forward is unclear at present and may involve keeping this standard as an option at 

least for backward compatibility while developing and implementing novel and more 

efficient solutions. Several efforts to address these problems follow two main 

approaches. 

� Analysis of specific algorithms and re-writing of existing codes in order to 

improve the performance by using lower or mixed floating-point precision 

without compromising accuracy. This approach has been shown to work well 

but only for specific algorithms/codes, and with significant dedicated efforts 

for each case [15]. 

� More radical approaches proposing new solutions have been under 

development including the Posit Arithmetic proposal [16]. This work 
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introduces a new data type — posit — as a replacement for the traditional 

floating-point data type because of its advantages. For example, posits 

guarantee higher accuracy and bitwise identical results across different 

systems which have been recognized as the main weaknesses of the IEEE 754 

Standard. In addition, they enable more economical design with high 

efficiency which lowers the cost and the consumed power while providing 

higher bandwidth and lower latency for memory access. 

5.3. Low Consumed Power 

During the last two decades, further developments of computer architecture and 

microprocessor hardware have been hitting the so-called “Energy Wall” because of 

their excessive demands for more energy. Subsequently, we have been ushering in a 

new era with electric power and temperature as the primary concerns for scalable 

computing. This is a very difficult and complex problem which requires revolutionary 

disruptive methods with a stronger integration among hardware features, system 

software and applications. Equally important are the capabilities for fine-grained spatial 

and temporal instrumentation, measurement and dynamic optimization, in order to 

facilitate energy-efficient computing across all layers of current and future computer 

systems. Moreover, the interplay between power, temperature and performance add 

another layer of complexity to this already difficult group of challenges. 

Existing approaches for energy efficient computing rely heavily on power efficient 

hardware in isolation which is far from acceptable for the emerging challenges. 

Furthermore, hardware techniques, like dynamic voltage and frequency scaling, are 

often limited by their granularity (very coarse power management) or by their scope (a 

very limited system view). More specifically, recent developments of multi-core 

processors recognize energy monitoring and tuning as one of the main challenges 

towards achieving higher performance, given the growing power and temperature 

constraints. To address these challenges, one needs both suitable energy abstraction and 

corresponding instrumentation which are amongst the core topics of ongoing research 

and development work. Another approach is the use of application-specific accelerators 

to improve the application performance, while reducing the total consumed power 

which in turn minimises the overall thermal energy dissipation. 

6. Conclusions 

The application area of physical system simulations urgently needs novel and 

innovative architectures that provide solutions resolving the 3rd Locality Wall 

challenge. This includes both novel memory systems and interconnection networks 

offering much higher bandwidth and lower latency. Energy efficiency indicators also 

need urgent improvements by at least an order of magnitude. This requirement is 

equally valid for both homogeneous and heterogeneous architectures (including 

accelerators and FPGAs) that need further comparisons and analysis. Since the 

application area of physical system simulations is based predominantly on floating-

point arithmetic, novel architecture proposals that address floating-point processing 

challenges can also be expected to have substantial impact, particularly for dense 

system computations. 
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