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Abstract. Code generation specified by a DSL is a popular method to manage
maintenance effort and introduce an abstraction layer for higher reusability. In the
case of Galerkin methods, the Unified Form Language is a DSL for the weak for-
mulation of a differential equation. In this paper, we present the framework-specific
code generation for DUNE and ExaStencils from a problem formulated in the UFL.
Moreover, we present optimization strategies, which are applied during the gener-
ation process.
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1. Introduction

The Finite Element Method (FEM) is widely used for the numerical solution of partial
differential equations. Variants like the discontinuous Galerkin (dG) method have drawn
much attention within the last two decades. Applications range from hyperbolic problems
like shallow water or Maxwell’s equations to non-linear degenerated parabolic problems
like multi-phase flow in porous media.

To solve these equations, the discretized problems at hand are usually manually ex-
pressed in a programming language. This usually involves using some FEM library or
framework. Instead of this tedious work, the mathematical problem can be expressed at
a higher level, and the code which obtains the numerical solution is generated. The code
generation allows for a more flexible interface while remaining the performance com-
pared to the manually written code. To define a given mathematical problem, we use the
Unified Form Language (UFL) [1]. UFL is a domain-specific language (DSL) designed
for specifying finite element discretizations in variational form and was initiated by the
FEniCS Project [2].

We aim at providing code transformation components to support UFL in two differ-
ent frameworks, DUNE and ExaStencils. DUNE [3,4] is a flexible framework for Multi-
Physics- and Multi-Domain-Simulations, and the first option we consider as a backend
for our code generation pipeline. ExaStencils [5] is a whole-program code generation
framework working on block-structured grids that we use as a second backend for the
generation of a dG-kernel. In this case, only certain types of elements, grids, and dG
discretizations are supported.
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In this paper, we introduce the targeted frameworks, explain the details of the gen-
eration pipeline, and compare the two approaches of generating dG-kernels in terms of
flexibility and possible optimizations. To showcase the flexibility of our code generation,
we consider a simple model problem, the linear transport equation. Within a single code
transformation tool, we can handle transformations for different mesh types, two dif-
ferent frameworks, and mesh specific mathematical optimizations. The aim of our code
generator is the generation of back end optimized target code, based on a simple problem
description in UFL.

1.1. Related Work

UFL is used by both FEniCS [2] and Firedrake [6] frameworks for decleration of FEM
of variational form. Recently the Firedrake project made efforts to incorporate loopy’s
intermediate representation (IR) into their generation framework [7]. The authors use
loopy’s IR to vectorize computations across multiple elements with promising perfor-
mance results. The dune-pdelab specific code generation of our toolchain with a fo-
cus on optimizing dG kernels was first described in [8]. For the ExaStencils framework,
a similar approach for quadrature-free shallow water equations was presented in [9].

2. Targeted Frameworks

Our code generation approach targets two different simulation frameworks, DUNE and
ExaStencils. Although both aim to provide easy-to-use frameworks for solving partial
differential equations (PDEs), the taken approaches differ significantly. DUNE can run
its kernels on any mesh, whereas the specific nature of ExaStencils is limited only to
regular and cartesian grids. To highlight these different needs and requirements for the
code generator, we briefly describe these two frameworks.

2.1. DUNE

DUNE [3,4,10] is a C++ simulation framework for solving PDEs. DUNE relies heav-
ily on generic programming. This allows the compiler to remove most interface-related
runtime overhead. Instead of a monolithic codebase, DUNE is composed of several core
modules, with a clear separation of concerns.

The dune-common module supplies basic dense linear algebra, MPI com-
munications, a build system infrastructure and further basic functionality. dune-
localfunctions supplies a wide range of finite element basis functions, e.g. (dis-
continuous) Lagrange functions, Raviart-Thomas basis functions or orthonormal basis
functions. Reference element implementations for different geometries and quadrature
rules defined on those elements are provided by dune-geometry and dune-istl
offers iterative solvers and preconditioners for sparse matrices with blocking.

The dune-grid module defines a hierarchical grid interface, which is imple-
mented by multiple grid managers. The interface is general enough to support grids with
a wide range of features, e.g., structured and unstructured grids, conforming and non-
conforming refinement, or support for multiple element types. This means that switch-
ing from one grid implementation to another usually only requires changing the type of
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the grid, and further adjustment of user code is not necessary. Additionally, the interface
supports parallelization using MPI.

Discretizations modules, such as dune-fem [11] or dune-pdelab [12], provide
abstractions for finite volume or finite element methods. As an example, dune-pdelab
introduces C++ classes equivalent to the mathematical notion of grid function spaces or
grid operators, which apply element local kernels to every element in the specified grid.
Using dune-pdelab, the finite volume or finite element assembly is automated to the
point where users merely need to supply the element-local kernels and select the right
solution scheme. Of course, users are still free to extend functionality by providing their
implementations of the defined interfaces.

2.2. ExaStencils

ExaStencils is a whole-program generator [5,13], which provides a multi-layered domain
specific language. Its primary focus lies on the generation of highly efficient geomet-
ric multigrid solvers for partial differential equations. ExaStencils itself is implemented
in Scala. Scala, among other things, provides a powerful pattern matching mechanism,
which makes the implementation of the compiler and generator software simpler in terms
of development time and maintenance efforts.

The DSL, called ExaSlang [14] offers four different abstraction levels. The contin-
uous specification of the whole simulated problem, i.e., equations, unknowns, bound-
ary conditions, and the computational domain, is described in the first layer. The sec-
ond layer states the discretized version of the problem, whereas the third layer describes
a suitable solver. The combination of the second and third layers results in a complete
program specification. Transitioning between these layers themselves is done in a semi-
automatic manner under users’ guidance. Users decide which layer is most suited for
the description of the application. ExaStencils supports the transformation of ExaSlang
into C++ and CUDA code, thus targeting different platforms. During this transformation,
ExaStencils performs several optimization strategies, e.g., address precalculation, loop
transformations including loop blocking, reordering and condition elimination, explicit
vectorization, and loop carried common subexpression elimination.

In the case of C++ and a CPU target, ExaStencils can parallelize the generated code.
Depending on the settings, it generates code with OpenMP, MPI, or both. For the MPI
case, necessary ghost-layers or overlapping of fields can be automatically introduced as
well. Given the required parallelization and the patches of fields, i.e., the splitting of
the domain onto processes, ExaStencils provides the communication routines between
the patches. Although ExaStencils was designed primarily for multigrid methods, it is
perfectly capable of handling stencil-only applications as well.

3. Code Generation

Our code generation is based on the domain-specific language UFL [1,15]. Developed
by the FEniCS [2] project, UFL describes the weak formulation of a PDE in Python. It is,
therefore, best suited for finite element methods. Describing a PDE with UFL is closely
related to the theoretical formulation of the PDE.

In the following example, we demonstrate the usage of UFL. Consider the Poisson
Equation (1) with its weak formulation: Find u ∈ H1

0 such that u solves Equation (2).
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−Δu = f in Ω,

u = 0 on ∂Ω.
(1)

a(u,v) = F(v) ∀v ∈ H1
0 , where

a(u,v) =
∫

Ω
∇u ·∇v dx

F(v) =
∫

Ω
f v dx

(2)

A discretization of this problem can be constructed by choosing a triangulation for
Ω and approximating H1

0 by a space consisting of globally continuous and piecewise
linear functions and the corresponding UFL formulation, without boundary treatment,
now reads:

mesh = # triangulation of Omega
V = FunctionSpace(mesh, "CG", 1)
u = TrialFunction(V)
v = TestFunction(V)
f = # analytic definition of f
a = inner(grad(u), grad(v)) * dx
F = f * v * dx

Listing 1: Example UFL File

As can be seen in Listing 1, operator overloading and supplying appropriate named
functions and constants allows for a straight forward translation of the weak formulation
into UFL. UFL’s representation is an abstract syntax tree (AST) of high-level mathemat-
ical objects as well as necessary linear algebra objects. However, representation on this
level is insufficient for most optimizations or transformations towards high-performance
computing. Therefore, the UFL-AST is transformed into an IR, which is suitable for the
optimizations needed in the backend.

Our choice for this IR is loopy [16] together with pymbolic [17]. Pymbolic is a
library for precise manipulation of symbolic expressions and is a perfect fit for repre-
senting expressions inside a code generation framework. We have chosen pymbolic over
other computer algebra systems like sympy [18] because it does not change expressions
implicitly and is easily extensible. Loopy’s computational kernels are described by loop
domains and instructions, and thus loopy is capable of handling statements, their depen-
dencies, loops, and control flow. Additionally, loopy comes with a range of transforma-
tions based on the polyhedral model, e.g., loop tiling or loop fusion, which was shown
using in a finite element method context [19]. Choosing loopy was evident since it fits
perfectly as the IR.

Our code generator realizes the transformation from an UFL-AST into the IR by a
tree traversal approach. As can be seen in Figure 1, this approach is used by both frame-
works. The generation of the IR, which is post-processed by one of the backends after-
ward, also depends on the selection of the targeted framework. Thus the output expressed
by the IR differs for both backends.

The traversal is realized by a visitor object with type-based function dispatch. We
separate the UFL-AST node types into four different categories, geometry evaluations,
basis evaluations, quadrature evaluation, and backend agnostic, which are mostly linear
algebra nodes. For the node types in the first three categories, the transformation into the
IR is backend-specific, for nodes from the last categories, it does not depend on the back
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Figure 1. UFL Generation Pipeline

end. For each category, UFL-AST visitor classes are defined, which only handle the node
types according to its category. The full visitor type is constructed using mixins with one
class from each category. There is one additional back end specific mixin, keeping track
of which equation in a system of PDEs is currently handled.

Together with the UFL file, the generation needs additional information, which is
contained in the INI file. It may contain information about the selection of optimizations,
spatial and temporal discretization, element type, and other settings.

3.1. DUNE Specific Generation

The dune-pdelab framework provides many components needed for finite element
assembly, as mentioned in Section 2.1. Since these components have been thoroughly
tested and used, even in high-performance settings, we rely on these parts and do not
generate code replacing them. Instead, we generate local kernels, which compute element
local or face local integrals. The local kernels are the most expensive part of the assembly
process, except for trivial integrals. Thus, we expect the most performance gain from
focusing on generating optimized code for these local kernels.

The dune-pdelab code generation is divided into three possible paths. The de-
fault path implements the generic dune-pdelab implementation of the tree visitor.
The other two paths implement back end specific optimizations for high order dG or for
low order continuous Galerkin (cG) discretizations. Each implementation has its opti-
mizations for different grid types. We currently distinguish between equidistant, axis-
parallel, multilinear, or generic grids. Currently, the optimizing paths of the generation
require quadrilateral or hexahedral meshes, whereas the generic path also works with
simplices.

In the case of tensor product finite element basis functions and reference elements,
sum factorizing reduces the complexity of the local assembly process. This is especially
rewarding for higher-order dG discretizations. The article [8] describes several vector-
ization strategies for sum-factorized kernels realized in our code generator, e.g., batch-
ing several sum-factorized sub kernels. The selection of the vectorization strategy can be
defined manually or decided automatically either by a cost model or by auto-tuning.

Low order cG discretizations do not profit from sum factorization as much as dG
discretizations. In these cases, locally structured meshes are a better approach. Using this
optimization, a notable performance gain is achieved by operating on multiple elements
in one local kernel. Additionally, this allows for cross element vectorization, which oth-
erwise would be cumbersome to realize in dune-pdelab. Users have to request this
optimization explicitly since using locally structured meshes increases the number of
degrees of freedom similarly to uniform refinement. This needs to be addressed when
creating a coarse grid.

Hardware-based optimizations, e.g., vectorization, loop tiling, or loop fusion, are
possible in both optimized code generation paths. These kinds of optimizations are real-
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ized as transformations of the loopy IR after the UFL form is transformed into the IR. In
contrast, optimizations relying on the grid type or basis function type are handled dur-
ing the transformation from UFL into the loopy IR, since these may induce algorithmic
changes. Because of C’s lack of standardized vectorization, loopy does not generate vec-
torized C code by default. We added a custom back end, which uses the wrappers defined
in the vector class library [20] for generating vectorized instructions.

It is possible to generate local kernels for both matrix-based and matrix-free com-
putations. Matrix-based computations can rely on a wide range of preconditioners for
accelerating the solution of a linear system, but they gain only limited performance from
recent hardware developments like vectorization. Matrix free computations, on the other
hand, are FLOP bound and thus gain significant performance increases from vectoriza-
tion, but the access to robust preconditioner is limited. Therefore, our optimizations are
most effective for matrix-free computations.

3.2. ExaStencils Specific Generation

In contrast to DUNE, ExaStencils does not provide any components regarding the finite
element method. The only data structure it provides is a Field. Because of this limitation,
and because ExaStencils is a multigrid and stencil generation tool, we focus only on the
particular case of a regular grid. More precisely, the focus lies on a cartesian grid, which
has two triangles per square. With this limitation, the ExaStencils generation uses back
end specific optimizations.

The generation itself consists of three steps. At first, the given UFL is preprocessed
and traversed with an ExaStencils specific visitor, which translates the UFL description
into an intermediate representation consisting of Loopy and Pymbolic expressions. Dur-
ing this step, we evaluate quadrature points, weights, basis functions, and the derivatives
of basis functions. The evaluation is possible because of the limitations of the mesh and
is the essential optimization step.

Secondly, the IR is expressed as ExaStencils code. This includes unrolling of loops,
gathering additional information for the ExaStencils generator, and translate the IR as
ExaStencils function. For the translation of the loopy IR, we introduced a new back-
end for the ExaSlang language. Additional information given to the generation process
contains the domain and array size, parallelization strategy.

The generation from the UFL formulation does not create any initialization of fields,
visualization, time-stepping loop, nor a main-function. In those cases, we use the infor-
mation from the INI file and use Jinja [21] templates for a flexible implementation of
said accompanying program components.

In the last step of the whole generation process, the generated files are translated
into C++ with ExaStencils. During this step, ExaStencils performs the optimization and
parallelization, as described in the previous section.

The cartesian grid is visualized in Figure 2. Each cell has one lower and one upper
triangle. The coefficients of the triangles are stored in two separate arrays and utilize
the regularity of the grid, to create stencil kernels. The generated code consists of three
kernels. One handles the integration of the volume of the triangle. The second one han-
dles the integration on the faces and accesses its neighbors in a stencil pattern. The third
kernel takes care of the boundaries, and triangles directly adjacent to boundaries.
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Figure 2. ExaStencil Grids

4. Numerical Evaluation

In this section, we verify our toolchain in terms of correctness and scaling using the
linear transport equation,

∂tu+β ·∇u = 0 in Ω× (0,T )

u = 0 on ΓD

u(·,0) = u0 in Ω

This equation can be used to model the transport of a concentration through a domain.
We choose a discontinuous Galerkin approach with upwinding for the discretization of
the problem, leading to the following UFL description in Listing 2.

def upwinding_flux(normal, inside, outside):
return (conditional(inner(beta, normal) > 0, inside, outside) *

inner(beta, normal))
# definition of test and trial functions u and v, beta and initial value
n = FacetNormal(cell)(’+’)
# mass operator for temporal discretization
mass = u * v * dx
# residual operator r(u,v) = a(u,v) - F(v) for spatial discretization
r = (-1. * u * inner(beta, grad(v)) * dx +

upwinding_flux(n, u(’+’), u(’-’)) * jump(v) * dS)

Listing 2: Linear Transport

In terms of expressiveness, we can compare the lines of code (LOC) of the UFL
and INI specification, and the generated code. The specification consists of 76 LOC. The
code generation produces 339 LOC for DUNE and 1203 LOC for ExaStencils. In the
following, we verify the correctness of our code generator by examining the convergence
for a simple configuration. Additionally, we investigate the weak scaling of our generated
code.

4.1. Convergence Test

For the convergence test, we use Ω = [0,1]2 and T = 0.5 with an constant advection
β = [1 1]T . The inital condition u0(x) has a bell shaped concentration of the form
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Figure 3. Numerical Evaluation

u0(x) = cos(π||x− x0||) for x in a radius of r = 0.15 around x0 = [0.25 0.25]T and oth-
erwise u0 = 0. The exact solution at time t = 0.5 is the same as the initial value, except
that the concentration is centered around x0 = [0.75 0.75]. During this time frame, the
homogenous Dirichlet condition is applicable, since the concentration does not reach the
boundary.

Both backends use explicit time-stepping schemes for the temporal discretization,
with a timestep size small enough to achieve a stable simulation. Currently, ExaStencils
only supports the explicit Euler method, while dune-pdelab also supports higher-
order Runge-Kutta methods, in this case, a third-order strong stability preserving scheme
from [22].

ExaStencils uses a structured simplicial grid, while dune-pdelab uses an unstruc-
tured simplicial grid with the grid implementation from dune-uggrid. The coarse
structured grid consists of 1600 elements, while the unstructured grid has 1700 elements
on the coarsest level. In both cases, the grid is refined up to three times. Figure 3a
shows the the L2 error of the approximate solution at time t = 0.5 for each refinement
level. As expected, a convergence order of 2 can be seen.

4.2. Weak Scaling

Next, we investigate the weak scaling of our generated codes. With weak scaling, we can
show that the generated kernels still work with the respective framework at hand. Since
only element local kernels are generated for the dune-pdelab backend, the following
results are only influenced by the scalability of the used DUNE components. In [23,
24] the scaling capabilities of the dune-istl module are shown and in [25] scaling
results using the dune-pdelab module can be found. In the case of ExaStencils, the
kernels are generated for individual MPI processes, and its performance capabilities were
demonstrated in [26]. The communication itself happens outside of the kernels and is
entirely handled by the ExaStencils framework.

We consider the same test case as above, with 500 timesteps and a grid of the size
100× 100 per core for DUNE and of the size 128× 128 per core for ExaStencils. We
simulate on the SuperMUC-NG system, which is located at Leibnitz Supercomputing
Center (LRZ) in Munich.
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From Figure 3b it can be seen that the dune-pdelab code achives over 90% par-
allel efficiency, which is consistent with earlier findings [23,24]. The generated code for
ExaStencils achieves over 95% parallel efficiency. This demonstrates the proper usage
of our frameworks.

5. Conclusion and Outlook

In this paper, we have shown that we can use one toolchain to generate UFL for different
back ends, namely DUNE and ExaStencils. This approach provides us with a general
and flexible description of a mathematical problem, which can be numerically solved
with code generation to said back ends. In the particular case of the cartesian grid, we
can utilize the excellent speed of ExaStencils, while still having the possibility to rely
on DUNE’s performance for any more general problem. This approach is extensible to
other back ends as well, which is already done for FEniCS and Firedrake frameworks.
However, each framework can still have a different intention, approach, and specific
optimizations. FEniCS’s primary focus is on usability and generality, at which it excels,
while our work is primarily focused on performance. Firedrake is also geared towards
performance, but during their code generations, they use different IRs for algorithmic
and hardware optimizations. For future projects, a detailed comparison with Firedrake
and its pipeline is inevitable.

The simple example of linear transport shows a promising possibility of generating
fast code for a cartesian grid with ExaStencils. In the future, this approach should be
expanded to regular grids together with completing all features of the UFL. This includes
having a solver for systems of linear equations and condition-based fluxes. In future
work, the dune-pdelab specific code generation will explore additional optimizations
possible within the IR. Furthermore, the generation of an optimized preconditioner will
be investigated.
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