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Abstract. The interdisciplinary field of neuroscience has made significant
progress in recent decades, providing the scientific community in gen-
eral with a new level of understanding on how the brain works beyond
the store-and-fire model found in traditional neural networks. Mean-
while, Machine Learning (ML) based on established models has seen
a surge of interest in the High Performance Computing (HPC) com-
munity, especially through the use of high-end accelerators, such as
Graphical Processing Units(GPUs), including HPC clusters of same.
In our work, we are motivated to exploit these high-performance com-
puting developments and understand the scaling challenges for new—
biologically inspired—learning models on leadership-class HPC resources.
These emerging models feature sparse and random connectivity pro-
files that map to more loosely-coupled parallel architectures with a
large number of CPU cores per node. Contrasted with traditional ML
codes, these methods exploit loosely-coupled sparse data structures as
opposed to tightly-coupled dense matrix computations, which benefit
from SIMD-style parallelism found on GPUs. In this paper we introduce
a hybrid Message Passing Interface (MPI) and Open Multi-Processing
(OpenMP) parallelization scheme to accelerate and scale our computa-
tional model based on the dynamics of cortical tissue. We ran compu-
tational tests on a leadership class visualization and analysis cluster at
Argonne National Laboratory. We include a study of strong and weak
scaling, where we obtained parallel efficiency measures with a minimum
above 87% and a maximum above 97% for simulations of our biologically
inspired neural network on up to 64 computing nodes running 8 threads
each. This study shows promise of the MPI4+OpenMP hybrid approach
to support flexible and biologically-inspired computational experimen-
tal scenarios. In addition, we present the viability in the application of
these strategies in high-end leadership computers in the future.
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Introduction

Neuroscience has undoubtedly provided a more in-depth understanding of brain
organization in the last decades. Nevertheless, mainstream Artificial Intelligence
(AI) research is yet to incorporate these advancements in their models. This fact
could be attributed—at least in part—to the success accomplished by some Al
approaches—such as Deep Convolutional Neural Networks—which have achieved
classification accuracy levels without precedent in the last years. Despite this,
some researchers from the Al community recognize that in order to overcome
current Al limitations and to create intelligent machines it will be necessary to
understand and mimic the brain [1,2]. In such sense, to better understand and
explore more deeply how the brain may process information it is essential to use
more complex and biophysically accurate neuron and network models than the
ones that are prevalent today.

The model of Hodgkin-Huxley (HH) [3]-for example—simulates synaptic re-
ceptors and ion channels explicitly. Nevertheless, the more interesting the bio-
logical mechanisms, the more limited they are by the size and complexity of the
networks. There are some alternative models such as spiking model [4] and the
integrate-and-fire model [5] which have been proposed as a simplification of the
HH model. Such models demand less computational power, but are not able to
directly simulate the biological dynamics present in ion channels. On the other
side, we find deep learning (DL) applications [6] that are partially inspired by
the biology of the visual ventral pathway, which have dramatically improved the
state-of-the-art in many Al domains while ignoring—at the same time—important
biological facts and giving priority to computational efficiency and classification
accuracy.

Finding the appropriate level of detail in modeling the brain seems to be the
holy grail to disentangle the mysteries of animal behavior. In [7] we introduced
a biologically inspired and fully unsupervised neurocomputational approach fol-
lowing sequence learning mechanisms applied in [1], and gathering what are—
under our point of view—only relevant neuro-anatomical and neuro-physiological
facts in order to process information in cortical tissue. In such work we sim-
ulated columnar organization, spontaneous micro-columnar formation, adapta-
tion to contextual activations and Sparse Distributed Representations(SDRs) pro-
duced by means of partial N-Methyl-D-aspartic acid (NMDA) depolarization.
Our pyramidal neuron model dissociated proximal from distal dendritic branches.
Proximal dendrites acted as a homogeneous set receiving only afferent informa-
tion. Information in proximal dendrites determined a bunch of neural units in a
Cortical Column (CC) which could be activated depending on the previous acti-
vations in the same as well as in neighboring CCs. Distal dendrites—on the other
hand-received only lateral and apical information acting as independent detec-
tors. Distal dendritic information pre-activated neural units putting them in a



D. Dematties et al. / Towards High-End Scalability on Biologically-Inspired Computational Models 499

predictive state in order to receive future afferent information. Some important
remarks in reference to the neurocomputational approach are: (i) proximal affer-
ent dendrites do not determine a neuron to fire, instead, they bias its probability
of doing so, (ii) distal dendritic branches are independent computing elements
that contribute to somatic firing by means of dendritic spikes, and (iii) predic-
tion failures in the network produce a phenomenon called Massive Firing Event
(MFE) which manifests with the activation of many neurons in a CC impairing
SDRs formation. The model’s feature abstraction capabilities showed promising
phonetic invariance and generalization attributes, improving the performance of a
Support Vector Machine (SVM) classifier for monosyllabic, disyllabic and trisyl-
labic word classification tasks in the presence of environmental disturbances such
as white noise, reverberation, and pitch and voice variations. The work aimed
to gather only biologically relevant aspects avoiding loading simulations with ex-
cessive computational burden and-at the same time—capturing the essence of the
information processing properties of the cortex.

With these points in mind, certain aspects were taken into account in or-
der to pursue the implementation of our computational model. Firstly, the bi-
ological plausibility of our model freed us from the need to compute gradients.
Even though there are important works supporting the idea that credit assigna-
ment—the ultimate goal of backpropagation—could be a phenomenon happening
in cortical tissue [8], we pondered that it is unknown whether teaching signals
exist in the brain. Furthermore, there is not enough evidence to include a too
complex mechanism in our model yet. Instead, we decided to be conservative in
this respect. Secondly, prevalent DL frameworks are mainly biased towards GPU
parallelization on CUDA cores. Albeit those frameworks have been extremely
optimized to take the maximum advantage especially from NVIDIA cards, too
many conditions have to be satisfied in order to obtain the best performance.
Moreover, there exists an acute specialization of such technologies towards the
precise development of certain DL frameworks with little room for innovative
and specifically biologically plausible implementations. In that sense, one of the
biggest problems in such approaches arises when trying to implement neural pop-
ulations with sparse or random connectivity structures. Those implementations—
strongly demanded in biologically plausible modelling—compromise coalescence in
GPU cards and seriously impair performance [9].

Following this line, we implemented our model in C+14 using Object-oriented
programing (OOP) paradigm and parallelized it by means of a hybrid strategy
using MPI and OpenMP (Fig. 1). The OOP paradigm gave us a powerful tool to
compose modular structures allowing the management of complex computational
graphs. MPI enabled our model to run on distributed memory systems in a co-
herent and stable way. Finally, OpenMP provided a fine grained distribution of
workload inside each computing node with the option to schedule the OpenMP
threads dynamically. This allowed to manage different options of thread affinity
and to vary the number of threads in each computing node, among other options.

The measurements of scaling efficiency returned by our tests allow us to
claim that this parallelization strategy is a promising procedure to approach new
computational implementations, with more biological plausibility and with more
irregular and unstructured data-sets in high-end leadership computer resources.
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Figure 1. Encoder Layer (EL) MPI+OpenMP parallelization.

Related Work

The computational effort demanded by the brain’s specifications force us to con-
sider only those physiological and anatomical features which are key for infor-
mation processing avoiding loading computational simulations with unnecessary
biological detail. In the same direction, parallelization strategies have to be as
highly qualified as to face the challenges presented by the implementation of
new-biologically accurate—computational approaches on HPC resources.

Brain-Inspired Artificial Neural Network (ANN) Computational Approaches

The development of ANNSs is classified in three generations regarding their com-
putational units [10,11]. In 1943, the first generation of ANNs came from Mc-
Culloch and Pitts [12]. The authors introduced neurons as computational units
which received binary inputs through associated weights and produced threshold
dependent binary outputs. Important derivations from such ANNs are multilayer
perceptrons, Hopfield nets and Boltzman Machines.

In the second generation, neural units are computational elements whose out-
puts represent a continuous set of possible values obtained by means of activation
functions applied to the weighted sum of the inputs. Common activation functions
are sigmoid, polynomial or exponential functions. Examples of these networks are
feedforward and recurrent sigmoidal neural nets. An extremely important fea-
ture of these networks is that they support learning algorithms based on gradient
descend—such as the popular backpropagation. Finally, the real-valued outputs of
networks of this generation are interpreted as firing rates in real neurons.
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Important behavioral and physiological evidence though made firing rate in-
terpretation questionable, and gave rise to the third generation of ANNs which em-
ploy spiking neurons—or integrate and fire neurons—as computational units [3,4,5].
These models—unlike the second generation models—use timing of single action
potential-or spikes—to encode information. Including the concept of time in their
processing model, Spiking Neural Networks(SNNs) could capture neural behavior
more accurately than traditional neural networks. Unlike traditional ANNs, the
main idea is that neurons in a SNN do not fire at each cycle, and rather they fire
only if a membrane potential reaches its threshold.

In spite of such compelling modeling approach, threshold circuits like the ones
introduced by the first generation could be seen as abstract models for digital
computation on networks of spiking neurons. In such sense, one bit in active state
could be interpreted as a neuron firing within certain short time window and
the same bit in inactive state could be interpreted as the same neuron non-firing
within such time window [13]. This coding strategy provides a good model for a
network of spiking neurons as long as firing times among pre and postsynaptic
neurons are synchronized within a few msec time window. There is evidence sup-
porting the fact that this strongly synchronized activity does really occur within
the nervous system [14,15].

In such sense, there are new algorithmic developments [1,7] which instead of
modeling precise timing activations, prioritize the different roles of proximal and
distal dendritic configurations incorporating important physiological and anatom-
ical phenomena, such as the consideration of dendritic branches as active process-
ing elements, the microcolumnar organization in cortical tissue and the sparse
patterns of activation in the neocortex—among others. Almost all ANNs, such as
those used in deep learning [6] and spiking neural networks [10], use artificial
neurons without considering active dendrites and with an unrealistic low num-
ber of synapses. These facts suggest that these ANNs are missing fundamental
functional properties present in the brain.

CPUs and GPUs for ANN Large Simulations

In the realm of biologically plausible computational models the CPU/GPU di-
chotomy is not clearly defined. In [9] for example, the authors analyzed the ad-
vantages and drawbacks of the CPU and GPU parallelization in different shared
memory parallel paradigms, such as OpenMP, Compute Unified Device Archi-
tecture (CUDA) and Open Computing Language (OpenCL) of mean-firing rate
neurons. The authors inspected different speed limiters such as floating point
precision, thread configuration, data organization and connectivity structure of
the networks. Parallel CPU implementations greatly benefited smaller networks,
mostly because of cache effects. Large networks—on the other hand—benefited from
the GPU only if they demanded memory beyond the available on CPU caches,
otherwise an OpenMP implementation was highly preferred. The authors com-
pared several structure representations on the different parallel frameworks show-
ing that on CPUs, these representations reached almost the same computation
time. On GPUs instead, the performance was significantly affected by violations
of coalescence induced by heterogeneous data structures. Finally, the most serious
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problem appeared when the network had a sparse or random connectivity struc-
ture, i.e. neurons received connections randomly from other neurons, and not in
an organized or ascending order. As the authors pointed out, this totally broke
down the performance of GPU implementations, while CPUs were only slightly
affected. This was perhaps the strongest argument against GPU implementations
of mean-firing rate neural networks, since this sparse connectivity is a repeated
pattern in biological networks as well as it is in the computational model presented
in this paper.

Materials and Methods

In this paper we introduce a parallelization strategy with great independence on
data coalescence and show how it scales efficiently on distributed memory systems
while running our biologically-inspired computational model which simulates cor-
tical dynamics with highly sparse and random connectivity profiles [7].

Our group pursued the implementation of a completely unsupervised and
biologically inspired computational model-the Encoder Layer (EL) in [7]-which
incorporated key properties from the mammalian cortex and returned phonetic
features that improved the classification accuracy levels of the SVM algorithm in
word classification tasks. This happened in the presence of noise, reverberation
and pitch and voice variations not present during training [7]. In this paper we
introduce the parallelization strategy applied to the Encoder Layer (EL) code
which is approached by means of a hybrid MPI and OpenMP paradigm and
through the use of MPI I/O parallel file system with Checkpoint and Restart
capacity in the training stage where there is total flexibility in terms of the number
of ranks with which the execution is restarted (Fig. 1).

We performed all computational experiments on Cooley [16], a visualization
and analysis cluster at Argonne National Laboratory in which we executed scaling
tests on the EL-the central algorithm in our model-using up to 64 nodes (one
MPT rank per node) and up to 8 OpenMP threads per node/rank. We performed
strong and weak scaling tests and measured scaling efficiency.

We parallelized the Encoder Layer (EL) in a way that each MPI rank ends up
with one or more CCs and the CCs in each rank are distributed among different
OpenMP threads. Fig. 1 shows a hypothetical distribution of CCs in an EL with
3 by 8 (24) CCs among three MPI ranks with three OpenMP threads per rank.
Certain ranks could take care of a different number of CCs depending on the
number of MPI ranks as well as the number of CCs in the EL. Each MPI rank
distributes its CCs among different threads in the same fashion.

Information among MPI ranks must be transferred in each time step. We
gather all the information corresponding to the CCs in each rank and then use
MPI Bcast function to transmit such information using a special communication
protocol by means of which we specify the boundaries in the information corre-
sponding to each CC. By means of this strategy, each MPI rank has to call MPI
Bcast just once in order to transmit its data.

The EL uses MPI I/O parallel file system to save its status. Each MPI rank
gathers all the data corresponding to its CCs in the EL and puts such data in a



D. Dematties et al. / Towards High-End Scalability on Biologically-Inspired Computational Models 503

std: :stringstream class. Then such MPI rank communicates the part of the file
it will use to the other MPI ranks in order to store the data without interfering
with the other ranks in the MPI environment. Finally, each MPI rank saves all its
data with a unique call to MPI Write using the complete std: :stringstream.
An EL with a different number of ranks can load the same file without affecting
the final results.

In this work, each MPI rank runs in a different node and keeps all the data
that corresponds to the EL object. Although this general EL data is replicated in
each MPI rank, this is not significant compared to the data corresponding to the
CC objects. Each MPI rank keeps only the data for those CCs which are under
its charge.

Results

In this paper we tested the scaling efficiency of the parallelization strategies used
in the EL by means of strong and weak scaling tests (Fig. 2). We conducted our
tests on Cooley, a cluster to analyze and visualize data produced on high-end
supercomputers at Argonne National Laboratory. Cooley has 126 compute nodes;
each node has 12 CPU cores. The entire system has a total of 47 terabytes of
system RAM. The Cooley node configuration has an Intel Haswell architecture
with two 2.4 GHz Intel Haswell E5-2620 v3 processors (6 cores per CPU, 12 cores
total), 384GB RAM, FDR Infiniband interconnect and 345GB local scratch space.

Figs. 2a and 2b show the strong scaling capacity of our code in terms of
number of processing elements used for the task. In these tests we constrained the
code to run one MPI rank per node. Each MPI rank spreads a specific number
of threads through the different CPUs in its corresponding node as shown in
Fig. 1. The problem size stayed fixed and the number of processing elements was
increased. Straight lines in Fig. 2a show—at first—-a good scaling capacity. Such
fact is confirmed by Fig. 2b which shows the strong scaling efficiency .

In order to avoid scaling efficiency degradation, the EL has to keep certain
number of CCs per OpenMP thread. We tested the scaling running on up to
64 nodes with 8 OpenMP threads each, since the more nodes you incorporate,
the more Inter-Process Communication (IPC) load you have. In order to keep
a considerable number of CCs per OpenMP thread, we generated an EL with
16384 CCs. In the worst scenario there were 64 computing nodes with 8 OpenMP
threads each (512 threads), the model ended up distributing 32 CCs per OpenMP
thread. Each CC in this model had 225 neural units to reach a total of 3686400
neural units and 1706803200 synapses in the EL.

As can be seen in Fig. 2b, the larger amount of computing nodes (MPI ranks)
with the consequent growth of MPI IPC load did not affect the strong scaling
efficiency of the model which was above 87% when running 8 threads per node,
but was above 97% when running two threads per node for 64 nodes.

1Let t1 be the amount of time to complete a work unit with 1 processing element, and ¢
the amount of time to complete the same unit of work with N processing elements, the Strong
Scaling Efficiency is: t1 /(N * tx) * 100
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Figure 2. Strong and Weak scaling tests of the EL algorithm on Cooley nodes. Each MPI rank
runs in a different node with 1, 2, 4 and 8 OpenMP threads running in each rank.

In reference to Weak Scaling, in order to keep the ratio of CCs per OpenMP
thread constant, we used increasing EL sizes and kept a ratio of 32 CCs per
OpenMP thread. Figs. 2c and 2d show the weak scaling performance of the model.
In this case the problem workload assigned to each processing element stayed
constant and additional elements were used to solve a larger total problem. The
horizontal lines in Fig. 2c show—at first—a good scenario. As can be seen in Fig. 2d,
the scaling efficiency was always above 75% 2. These measures show that the
model parallel execution was not affected by MPI IPC load as the number of
computing nodes increased. This scenario was specially evident for the case of
one OpenMP thread in whose case the worst efficiency was above 95%.

Discussion and Conclusion

In this paper we show how parallelization strategies with great independence on
data coalescence, scale efficiently on distributed memory systems while running

2Let t; be the amount of time to complete a work unit with 1 processing element, and tx
the amount of time to complete N times the same unit of work with N processing elements, the
Weak Scaling Efficiency is: t1/tn * 100
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a biologically inspired computational model with highly sparse and random con-
nectivity profile.

Algorithmic implementations strongly based on Single Instruction, Multiple
Data (SIMD) parallel computing architectures, impose important restrictions on
memory data alignment. OpenMP threads in shared memory systems are instead
highly independent and powerful processing abstractions which can perform com-
plex tasks with eventual vectorization optimizations when possible.

Our findings show that the parallelization strategies used in this work present
good and robust scaling efficiency even in the face of intensive IPC loads. Such
behavior can be kept in a sustained manner. Achieving load balance in dis-
tributed memory systems is extremely expensive, given the amount of IPC over-
load needed. In this manner, we claim that the best way to balance computational
load among computing elements is to try to confine as much computational load as
possible in a shared memory unit without far exceeding the concurrent threading
or hyperthreading capacity and/or cache memory capacity provided by a node.
Once such conditions are satisfied, it is relatively straightforward to spawn a num-
ber of threads in which the work could be distributed. Once in a shared mem-
ory system, OpenMP threads are much lighter than MPI processes, and they do
not need complex communication methods to share data. Furthermore, OpenMP
threads can manage load balancing efficiently and automatically since OpenMP
manages dynamic parallel schedule on its own. This is highly desirable, specially
in a simulation environment in which individual modules—such as CCs in our
cortical model—are not uniformly analogous in terms of size and or connectivity.
In MPI instead, the programmer has to deal with load balancing using intensive
IPC which is highly expensive especially when the communication is carried out
among processes in different nodes. On the other side, OpenMP threads suffer
from false sharing in the CPUs caches, but with a highly flexible parallelization
scheme as the one used in section Materials and Methods, the user can flexibly
vary the parallelization granularity as to achieve the best performance, avoiding
that each thread exceeds the quota of cache memory available in each CPU.

In Fig. 2 the phenomenon of super-linear speedup is present for several cases.
In [17] the authors pointed out that: The superlinear speedup performance in per-
sistent algorithms occurs mainly due to the increased cache resources in the paral-
lel computer architectures, the prefetching of shared variables in shared memory or-
ganization, or better scheduling in heterogeneous environments. The effects of the
shared memory architectures also impact the performance behavior of the granular
and scalable algorithms. We endorse such statement and consider it sustainable as
a general explanation for our case. Nevertheless, we also consider that more in
depth analysis of memory utilization using profiling tools will be needed in the
future.

The scenario in which the computational burden assigned to each shared
memory system is distributed among a set of highly lightweight, flexible and dy-
namic OpenMP threads, is really favorable in a context in which the number of
CPUs sharing memory increases specially in high-end supercomputers. In such
respect and in the face of the good results returned by our experiments, we eval-
uate as viable the implementation of these parallelization strategies in high end
supercomputers in the future.
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We thus claim that this work introduces parallelization strategies whose flexi-
bility and robustness are particularly useful in overly variable and biologically in-
spired computational scientific scenarios whose modelization approaches can vary
dramatically in different biologically accurate implementations strategies in which
there are erratic network structures with highly sparse and random connectivity
profiles.
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