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Abstract. Video streaming applications have critical performance requirements for
dealing with fluctuating workloads and providing results in real-time. As a conse-
quence, the majority of these applications demand parallelism for delivering quality
of service to users. Although high-level and structured parallel programming aims
at facilitating parallelism exploitation, there are still several issues to be addressed
for increasing/improving existing parallel programming abstractions. In this paper,
we aim at employing self-adaptivity for stream processing in order to seamlessly
manage the application parallelism configurations at run-time, where a new strat-
egy alleviates from application programmers the need to set time-consuming and
error-prone parallelism parameters. The new strategy was implemented and vali-
dated on SPar. The results have shown that the proposed solution increases the level
of abstraction and achieved a competitive performance.
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1. Introduction

A significant amount of applications/systems must gather and analyze data in real-
time [2]. Processing continuous stream sequences and responding fast enough requires
powerful machines and robust runtimes/languages. Performance optimization for stream
processing applications concerns parallelism, which is important because computer ar-
chitectures have multiple processing units per chip. Therefore, performance gains are
usually conditioned to parallel executions.

We have seen the emergence of parallel programming frameworks and libraries for
stream processing, such as Intel TBB [11], Streamlt [13] and, FastFlow [4,1]. However,
the programming abstractions provided by the parallel programming frameworks remain
arguably complex for application programmers?, which are more concerned with the de-
veloping of stream processing algorithms than implementing low-level techniques for

ICorresponding Author: adriano.vogel @edu.pucrs.br

2The separation of concerns covers the skills and aspects for different types of programmers. Application
programmers are software developers focused on the algorithm design and implementation while system pro-
grammers are focused on better using computational resources.
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exploiting the parallel architecture. Recently, SPar® [6] was created for providing addi-
tional parallel programming abstractions on stream parallelism targeting multi-core ar-
chitectures.

Although FastFlow was supported with abstraction concerning parallelism and en-
ergy in [12,3], we believe that opportunities exist for novel higher and ready to use par-
allelism abstractions in the stream parallelism domain. In this work, we aim at providing
additional abstractions regarding the definition of the degree of parallelism. In the con-
text of stream processing, manually defining and statically using a degree of parallelism
throughout the execution is not suitable. Defining the degree of parallelism tends to be
a complicated and time-consuming task because the programmer has to run the same
program several times to decide which is the optimal configuration.

Moreover, a significant part of stream processing applications requires recurrent op-
timizations at run-time. Mainly because stream processing applications have load fluc-
tuations (e.g., performance, environment, or input rates). Consequently, static/unchange-
able executions can lead to inefficient resources usage (waste) or poor performance. One
way to respond to fluctuations is by adapting the degree of parallelism to improve the
performance and/or the efficiency of stream processing applications. Regarding adapta-
tion to load fluctuations, a conventional approach for handling it could be a proactive one,
attempting to predict the future load. The challenge is that it is very difficult to predict
performance peaks due to the combination of input temporal changes, irregular behavior,
and different workload patterns. In this scenario, reactive approaches that are effective
by reacting fast, accurately, and run with low computational complexity are a potential
solution for enabling suitable adaptations to runtimes.

Abstracting the definition of parallelism configurations is an opportunity for sim-
plifying the process of running parallel applications. In previous work, we presented a
new latency-aware self-adaptive strategy [15], where we demonstrated how the degree of
parallelism impacts in the latency of stream items. We also provided abstractions [8,14]
that enable users/programmers to express service-level objectives (SLO), such as energy
bounds, system utilization, and throughput. These implemented strategies require the
definition of a target performance or SLOs. Yet, this can be a usability challenge since
users/programmers may have no performance/system expertise. However, it is challeng-
ing for a completely abstracted strategy to make adaptation decisions without user hints.
For instance, approaches that require a definition of a target performance or service ob-
jective can decide by comparing such parameters to the actual system/application state.

In this paper, the main contributions can be summarized as the following: 1) We pro-
vide a new fully abstracted self-adaptive strategy for the autonomic management of the
parallelism in stream processing applications, this new strategy seamlessly manages the
parallelism by detecting workload fluctuations; 2) A characterization and comparison of
the decision making of the new strategy with respect to other solutions; 3) A validation of
the proposed solution with video stream processing applications in terms of performance
and resources consumption.

This paper is organized as follows. The background scenario is presented in Sec-
tion 2. The proposed solution is shown in Section 3. Then, Section 4 shows the experi-
mental results of this paper and Section 5 discusses aspects related to the proposed solu-
tion. Finally, the conclusion is presented in Section 6.

3SPar home page: https://gmap.pucrs.br/spar
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2. Context

The scenario of this study is related to extending SPar DSL features, SPar is briefly de-
scribed in Subsection 2.1. Moreover, Subsection 2.2 presents relevant related approaches.

2.1. SPar Overview

SPar [6] provides a standard C++ annotation interface, fully compatible with the host
language and compiler. In Spar, programmers are invited to simply add annotations on
their source code with C++ attributes that represent stream parallelism properties. Then,
the compiler interprets the annotations added and generates parallel code with source-to-
source transformations.

SPar provides five attributes to exploit key aspects of stream parallelism. The
ToStream attribute represents the beginning of a stream region, the code block between
the ToStream and the first Stage will run as the first processing stage. More Stages can be
created inside the ToStream. The Input attribute allows programmers to define the data to
be processed inside a stream region. In contrast, the Ouzput attribute is used to define the
processing results produced. Replicate* is the attribute used to define the degree of par-
allelism. In the code example shown in Listing 1, the data type is a “string”” and the input
stream comes from a file (read in line 3). This code block is a loop with iterations and a
new stream item is read and computed (line 6) on each iteration. In line 5, the attribute
Replicate defines the degree of parallelism with 4 replicas, which is the static number of
replicas used during the entire execution. Finally, in line 8 an output is produced. Figure
1 represents the activity graph with 3 stages of the parallel execution implemented in the
runtime according to the annotations introduced in Listing 1.

[[spar:: ToStream]] while(1){
2| std::string data;
3| read_in(data);

1| if(stream_in.eof ()) break;

s| [[spar::Stage,spar::Input(data),spar:: g ° 6 Q
Output(data) ,spar:: Replicate (4) ]] N

6| { compute(data); }
71 [[spar::Stage,spar::Input(data)]]
g { write_out(data); }

ol }

Listing 1 SPar code example. Figure 1. Parallel activity graph.

2.2. Related Approaches

In the related literature exist studies for adaptivity on stream processing. Noteworthy,
Sensi et al.[12] present a programming interface and runtime called NORNIR, which
aims at predicting performance and power consumption. NORNIR manages the system
for maintaining a given power consumption and/or a performance goal. The execution

“4The term replicate refers to the degree of parallelism in SPar, here the number of replicas and degree of
parallelism are used interchangeably.
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is managed by adapting system configurations (e.g., number of cores, clock frequency)
at run-time. In addition, Matteis and Mencagli [10] presented elastic properties for data
stream processing, their goal was to improve performance and energy consumption. The
proposed model was implemented along with the FastFlow runtime using one controller
thread for monitoring the environment as well as for triggering changes.

Gedik et al. [5] and Heinze et al. [9] address distributed stream systems. Our ap-
proach in contrast targets parallelism abstraction for stream parallelism in multi-core sys-
tems. The algorithm implementations provided by related works arguably do not provide
sufficient abstractions for application programmers. Differently, our goal is to provide
new parallelism abstractions for parallel stream processing applications that is ready-to-
use. Our solution require no additional configuration nor drivers installation. Addition-
ally, we propose an improved evaluation of the overhead caused by the adaptivity as we
measured the performance and memory consumption. The solution is also compared to
the regular static executions.

3. Seamless Parallelism Management

Defining a performance goal is presumably easier for application programmers than
defining a low-level parameter of the runtime library. Therefore, in previous works [14,8]
we presented strategies that abstracted from users the need to set parallelism parame-
ters related to the number of replicas. The parallelism abstraction was achieved by mon-
itoring the actual application performance and responding to performance violation by
continuously adapting the number of replicas. In listing 2 is shown a SPar example with
the solution proposed in [14], where the difference compared to the Listing 1 is that the
definition of the number of replicas inside the Replicate attribute was no longer required.
Regarding the adaptation at run-time, in Figure 2 is shown the solution that creates a pool
of replicas and dynamically changes the status of the replicas (active, suspended).

[[spar::ToStream]] while(1){
std::string data;
read_in(data);
if (stream_in.eof ()) break;
s| [[spar::Stage,spar::Input(data),spar::
Output(data) ,spar:: Replicate () ]]
6| { compute(data); }
71 [[spar::Stage,spar::Input(data)]]
{ write_out(data); }
9| }

0

Listing 2 SPar code example. Figure 2. Autonomous Parallelism.

The previous proposed strategies [14,8] require from users the input of performance
hints for adapting the number of replicas. However, low-level performance aspects tend
to be complex for application programmers. Additionally, stream processing applications
are usually long running and with significant load fluctuations, where temporal changes
could require different performance objectives. Consequently, we propose a new strategy
to manage the execution in an autonomous and seamless way. This new strategy abstracts
from users the parameters set. This solution enables a fully seamless execution, which is
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achieved by a new decision strategy that monitors the application, detects changes in the
workload and performs optimizations in the number of replicas used.

The new decision strategy workflow implements a sensor with a monitor running
inside the last stage, while the parallelism is adapted by the actuator running in the first
stage. The decision (D) whether the number of replicas should be adapted is performed
by the Analyze and Plan phases with the following steps: 1) stores data regarding the ap-
plication performance collected by the monitor; 2) After the execution starts, when it has
a minimum of three (a number defined from empirical tests for having a balance between
fast and accurate decisions) performance results from monitor iterations, compares this
previously collected data with the current performance; 3) If the current performance is
significantly lower than the previous one, a new replica (R) is activated (D1); 4) If the
current performance is significantly higher than previous results, an active replica is sus-
pended (D2); 5) After the monitor executed 10 iterations with performance results, the
regulator enters a new phase where it has more performance data for deciding, which
tends to improve the decisions accuracy. Then, for the sake of stability, the average of
the previous three throughput collected is compared to the average throughput from all
historical data.

Sleep for a time interval

Yes Number of Iters No
higher than 10?

Number of Iters No

higher than 3?

Throughput with
significant changes?,

Throughput with
ignificant changes?,

Figure 3. Overview of the Analyze and Plan phases.

Figure 3 shows a high-level representation of decision phases and iterations per-
formed. It is important to note that in addition to decisions 1 and 2 (D1 and D2), there is
also the D3 that is performed when the decision is for maintaining the same number of
replicas. Moreover, the self-adaptive strategy runs continuously and decides if the num-
ber of replicas should be adapted. Although the strategy runs several times and changes
the configuration, the adaptations do not affect the regular computations of the appli-
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cation. In fact, while the application is running, the strategy periodically runs and then
sleeps for a time interval. In this study, we consider 1 second as the default sampling
time interval, which allows the strategy to achieve a suitable level of sensitivity to work-
load fluctuations. Too frequent adaptations can cause instability, while too high sampling
times can result in unresponsiveness to changes. Also, two is the minimum number of
replicas in a replicated stage, which is a value for minimum parallelism. The maximum
number of replicas is defined by the self-adaptive strategy by detecting the machine con-
figuration. The maximum number of replicas is set to at most one application thread per
hardware thread, also counting threads from other sequential stages (e.g., Read, write).

4. Evaluation

This section characterizes the new strategy comparing to other solution and to parallel
static executions. The new strategy is also evaluated in terms of performance and memory
utilization.

4.1. Methodology

The proposed solution was evaluated by implementing it to existing parallel stream pro-
cessing applications. In fact, real-world applicability was the key criterion used to select
the applications. We also selected them based on different characteristics and QoS re-
quirements. In this work, two applications were tested. The first is Lane Detection that
is an application used on autonomous vehicles to detect road lanes, which is using for
maintaining the car on the road. This is performed by reading a video feed from a cam-
era. The road lanes are detected through a sequence of operations where the parallel im-
plementation is like an assembly line composed of three stages, where the second stage
is stateless and therefore replicated [7].

Person Recognition is the other tested application that is used to recognize people
in video streams. It starts by receiving a video feed and detecting the faces. The faces
that are detected are then marked with a red circle and then compared with the training
set of faces. When the face detected matches the database one, the face is marked with
a green circle. Person recognition’s performance was evaluated with a MPEG-4 video
(1.36MB - 640x360 pixels) using a training set of 10 images with faces to be recognized
in the video [7].

4.2. Characterization

The new seamless strategy is characterized and compared to an existing one [14] that
requires a manual definition of a target performance, which was defined to a throughput
of 50. The experiments shown here and in the next section were carried out on a multi-
core machine equipped with 32 GB of memory, a dual-socket Intel Xeon CPU 2.40GHz
(12 cores- 24 threads). The operating system used was Ubuntu Server, G++ v. 5.4.0 with
the -O3 compilation flag. The parallel version used the on-demand scheduling policy
that is suitable for stream processing, which improves the load balancing by distributing
one item to each replica. Moreover, in order to avoid overhead, the emitter and collector
stages were placed on dedicated physical cores.

The seamless strategy behavior is characterized in Figure 4 using the Lane Detection
application and the input workload was a file of 260 MB [14]. The experiment demon-
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strates the throughput and the number of replicas used by each strategy in parallel exe-
cutions. Moreover, the self-adaptive strategies are compared to static executions running
with a fixed number of replicas. For the sake of visual clarity, we only show representa-
tive results of static executions with 10 and 20 replicas.

—
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o
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Static 10 Replicas 7]
Static 20 Replicas
80 Throughput Strategy —e—

Seamless Strategy —=—

Throughput (Frames per Second)

S

Number of Replicas
IS
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Static 10 Replicas
8 Static 20 Replicas
6 - Throughput Strategy —— .
4 Seamlgss Strategy —

20 40 60 80
Time (s)

Figure 4. Characterization - Parallel Executions.

In Figure 4, we can observe throughput fluctuations caused by the input work-
load [14]. The executions with a static number of replicas also presented throughput fluc-
tuations, which emphasizes that the oscillations were caused by input workload instead
of the self-adaptive strategies. Regarding the proposed seamless performance strategy, it
is important to note that after the first iterations, the throughput increased because of the
workload fluctuation. As a consequence, the parallelism actuator changed the number
of replicas from 12 to 11. Noteworthy, considering the workload fluctuations around the
middle of the execution, the actuator responded to this fluctuation by increasing the num-
ber of replicas between the seconds 21 and 36. Another event that highlights the correct
sensitivity of this strategy is that the number of replicas was reduced when the execution
entered a new phase that increased the throughput (near the second 70).

Comparing the strategies, it is possible to note a similar performance trend caused by
the input workload. The strategy based on a manual target performance presented a short
settling time, which is notable in the adaptation of the number of replicas after the sec-
ond 20. The seamless performance strategy required more time to respond to workload
fluctuations, which can impact negatively on those applications that demand very fast
adaptations. Moreover, it is possible to note in Figure 4 that the seamless performance
strategy had a slightly lower execution time, which occurred because this execution had
a higher throughput in the first seconds by using more parallel replicas.
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4.3. Performance and Overhead

A relevant evaluation of the proposed solution concerns the performance achieved and
the resources consumption. The static executions have a simpler runtime that does not
perform any adaptation. The advantage tends to be in theory a higher performance. On
the other hand, static executions are unresponsive to workload or resources changes.
In some cases, with a specific number of replicas, we have seen that static executions
achieved the highest performance. However, manually finding the best performing num-
ber of replicas configuration is a time-consuming and sometimes counter-productive task.
In this section, we present the performance of the adaptive solution compared to static
execution. The performance metric is the average throughput, which is a result consider-
ing the number of processed items divided by the total time taken in an entire execution.
Observe that this is different from the previous performance characterization, where the
throughput was collected during different time-steps.

In Table 1 is shown the throughput and memory usage of adaptive and static exe-
cutions in the Lane Detection application. It is notable that the throughput and memory
utilization increases with more replicas. The Seamless performance strategy achieved a
slightly higher throughput than the throughput strategy. Comparing to the static execu-
tions, the static using more than 16 replicas achieved a higher performance, but these ex-
ecutions also consumed more memory space. The performance of the Seamless strategy
is less than 5% lower than the best static execution.

Execution ‘ Average Throughput (FPS) ‘ Memory Usage (MBytes)
Static 10 Replicas 47 807
Static 12 Replicas 48.26 1368
Static 14 Replicas 49.14 1276
Static 16 Replicas 50.31 1648
Static 18 Replicas 50.89 1799
Static 20 Replicas 52.11 2228
Throughput Strategy (50) 48.57 1272
Seamless Strategy 49.67 1327

Table 1. Lane Detection Application

In Table 2 is presented the throughput and memory usage of the Person Recog-
nizer application. In this case, a different performance trend can be seen. The Through-
put strategy achieved higher performance, while the Seamless strategy again achieved
a throughput similar to the best static executions. Regarding memory usage, the self-
adaptive strategies used more memory space on the Person Recognizer application.

5. Discussion

When evaluating higher level abstractions, they often tend to present less performance.
However, the best static configuration varies from machines, applications, and work-
loads. Therefore, tuning all these parameters can be error-prone, time consuming, and
may become instantly suboptimal in phase changes or fluctuations. Consequently, a
seamless strategy that reacts to workload changes can be a suitable solution that achieves
a compromise between abstractions and performance.
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Execution Average Throughput (FPS) ‘ Memory Usage (MBytes)

Static 10 Replicas 12.64 193.6

Static 12 Replicas 12.72 212.60

Static 14 Replicas 12.96 222.10

Static 16 Replicas 12.94 232.10

Static 18 Replicas 13.29 262

Static 20 Replicas 13.22 293.8
Throughput Strategy (15) 13.78 487.7

Seamless Strategy 12.99 448.4

Table 2. Person Recognition Application

There may be overheads as seen in Section 3. A self-adaptive strategy has additional
monitoring and actuators entities. For instance, monitoring has a computational cost, but
it occurs concurrently while worker replicas are computing tasks. Thereby, the parallel
execution is not suspended for monitoring because the monitor runs inside the last stage,
which periodically and asynchronously collects statistics. For instance, considering the
machine used in the experiments, it took in average only 523 nanoseconds for the monitor
implemented in C++ to measure the application throughput. In this case, such a minor
amount of time is negligible. The design choices combined with effective mechanisms
implemented in the runtime library resulted in a low overhead regarding performance
without significantly consuming memory resources.

Moreover, adapting the parallelism of applications at run-time brings additional con-
cerns about safety, which relates to the state and ordering of stream processing applica-
tions. Safety is important to ensure that an application can be changed at run-time while
preserving its correctness. In SPar, stateless stages can be replicated by default, while
stateful executions would require synchronizing a shared internal state. If the ordering of
data items is required, the last stage orders the items in SPar. Consequently, self-adapting
the parallelism of a stateless stage easily maintains stream items ordered because the last
stage is still sequential. Moreover, another aspect of safety is that a worker replica is only
suspended after it finishes its computations.

6. Conclusion and Future Work

In this study, we have seen aspects related to the complexities of abstracting parallelism
and autonomously managing parallelism configurations at run-time. The new proposed
strategy that abstracts the need to set the parallelism and performance configuration
shown to be effective. However, the strategy that uses a target performance was able to
react faster by comparing the actual performance to the target one.

The alternative that required the definition of a target performance increases the flex-
ibility at the price of additional complexities. On the other hand, running an applica-
tion transparently increases the abstraction level, but tends to provide less flexibility and
lower performance. Some users/programmers may have performance expertise, in which
case they may customize their execution by setting system parameters and target per-
formance. However, the provided strategy for seamless execution is designed for user-
s/programmers with no performance and system expertise. Regarding the experimental
results, it is important to note that the performance slightly varied among the tested ap-
plications, but the trend was similar: the self-adaptive Seamless strategy achieved a com-
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petitive performance. Consequently, an implication from the experimental results is that
self-adaptivity is suitable for seamlessly managing parallelism configurations.

This study is also limited in some aspects, the implemented strategies control ap-
plications with only one replicated stage, use parallel applications with a more complex
structure is a future goal. Additionally, our proposed Seamless strategy was validated
only with video stream processing applications. Although the applications are represen-
tative of stream processing, a different performance trend may be seen under other appli-
cation characteristics. In the future, we aim at porting related solutions from the literature
to our context for comparing them to our strategies.
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