
High-Level Stream Parallelism
Abstractions with SPar Targeting GPUs

Dinei A. ROCKENBACH a,1, Dalvan GRIEBLER a,c, Marco DANELUTTO b and
Luiz G. FERNANDES a

a School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre – Brazil.

b Computer Science Department, University of Pisa (UNIPI), Pisa, Italy.
c Laboratory of Advanced Research on Cloud Computing (LARCC),

Três de Maio Faculty (SETREM), Três de Maio – Brazil

Abstract. The combined exploitation of stream and data parallelism is demonstrat-
ing encouraging performance results in the literature for heterogeneous architec-
tures, which are present on every computer systems today. However, provide par-
allel software efficiently targeting those architectures requires significant program-
ming effort and expertise. The SPar domain-specific language already represents a
solution to this problem providing proven high-level programming abstractions for
multi-core architectures. In this paper, we enrich the SPar language adding support
for GPUs. New transformation rules are designed for generating parallel code us-
ing stream and data parallel patterns. Our experiments revealed that these transfor-
mations rules are able to improve performance while the high-level programming
abstractions are maintained.

Keywords. Parallel Programming, Domain-Specific Language, C++11 Attributes,
Parallel Patterns, Stream Processing, GPGPU, GPU Programming

1. Introduction

Stream processing applications are present in different domains and are receiving re-
newed attention in the last decade, mostly because of the importance of stream process-
ing in the core of big data and Internet of Things technologies [4]. In addition to that,
the ubiquitous presence of parallel hardware architectures [16] led researchers to develop
new tools focused on stream parallelism [22,2,9]. In recent studies [23,13,1,21,7], data
parallelism has been exploited via proper software extensions to take advantage of the
emerging massively parallel architectures such as GPUs (Graphics Processing Units),
which were intentionally designed for data parallelism.

Parallel programming libraries [1,21] offer good performance but lower-level pro-
gramming abstractions. To meet higher-level abstractions, some tools [23,13,7] prefer to
focus on compiler techniques to alleviate the parallel programming burden of GPUs. The
problem is that they still require code refactoring to properly exploit the parallelism in

1Corresponding Author: {dinei.rockenbach, dalvan.griebler}@edu.pucrs.br

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200083

543

stream processing applications. Alternatively to these options, the SPar2 domain-specific
language [9] provides a productive parallel programming model without adding signif-
icant performance overheads for multi-cores [11]. Although that SPar is demonstrating
a good compromise between productivity and performance among different stream pro-
cessing applications for multi-core architectures [11,10,12], automatic code generation
for heterogeneous architectures composed of CPU and GPU is still not supported. Our
recent investigations using SPar to annotate stream parallelism for multi-cores with man-
ually programming data parallelism for GPUs have shown promising performance re-
sults [20]. In this paper, we present an extension to SPar language for supporting GPU
data parallelism. We also discuss the compiler transformation rules and evaluate them in
a set of experiments. Therefore, our contributions may be summarized as follows:

• we introduce new SPar attributes that enrich the expressiveness and semantics of
the language;

• we design new compiler transformation rules suitable to implement both stream
and data parallel patterns after proper source code annotations;

• we describe experiments aimed at assessing performance of our transformation
rules targeting code generation for heterogeneous parallel architectures.

This paper is organized as follows: Section 2 presents the related work. Section 3
presents two new attributes for the SPar language. Section 4 presents the definitions and
compiler transformation rules for the Map parallel pattern based on the new attributes.
In Section 5 we perform a performance evaluation of the transformation rules. Finally,
Section 6 present our conclusions and future work.

2. Related Work

Skeleton-based frameworks like FastFlow [2] and DSLs like StreamIt [22] provide dif-
ferent programming approaches and levels of abstraction to developers. Libraries like
Intel’s TBB (Threading Building Blocks) [18] also offer support to the parallel imple-
mentation of stream processing applications by instantiating the Pipeline parallel pattern.
Support for GPGPU in FastFlow [3,1] focus in Stencil parallel pattern but also allows
the implementation of Map, Reduce, and its combinations. Another C/C++ library based
on algorithm skeletons/parallel patterns is represented by SkelCL [21]. On SkelCL, user
defined kernels are passed as string to the parallel pattern classes like Map, Zip (a special
case of gather [16]), Reduce, and Scan. These functions are combined with skeleton code
to generate the final OpenCL kernels.

StreamIt [22] is a new imperative programming language focused on stream pro-
cessing applications. There are only the works of [23] and [13] that extended StreamIt to
support CUDA code generation and so far is no longer updated. Sarek (Stream ARchitec-
ture using Extensible Kernels) [5] is a customized language for writing GPGPU kernels
in the OCaml language. There is also SkePU 2 [7], which provides a source-to-source
compiler tool and a parallel runtime. The source code can be compiled by any C++11
compiler to produce a sequential executable. SkePU 2 compiler generates all CUDA and
OpenCL kernel code.

2SPar home page: https://gmap.pucrs.br/spar

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs544

SPar is unique in the stream parallelism domain regarding the level of abstraction
and code intrusion. While sharing similar streaming concepts with FastFlow and StreamIt
as well as a slightly similar approach as SkePU 2 (that uses C++11 attributes for some
advanced features), no other study aims to provide stream parallelism support without
requiring code refactoring and restructuring. There are only solutions that aim for se-
quential code maintainability for data parallelism like OpenMP [6] and OpenACC [17].

3. New Attributes for SPar

SPar offers five standard C++11 attributes that application programmers may use to an-
notate the source code [14]. Two of them are “identifiers” (ID): ToStream annotation
delimits the streaming region and Stage delimits each of the computation “phases” (or
stages). The other three are “auxiliary“ (AUX) attributes: Input and Output are used
to specify the stream items, while Replicate is used to specify the degree of paral-
lelism for a stage. Listing 1 demonstrates how these attributes are used to annotate se-
quential source code. This example is computing the Mandelbrot Streaming application.
ToStream marks where the stream parallelism region starts and also refers to the stream
generator stage. Inside the stream computation there are two Stages annotations identi-
fying the stream operators. The data stream dependencies are specified through the Input
and Output attributes. Replicate in line 5 indicates the degree of parallelism for that
specific stage, running the amount of replicas given as argument in the attribute. The last
Stage simply shows line by line the Mandelbrot image. It cannot be replicated because
ShowLine is a stateful operator.

The current SPar attributes are closely related to the stream parallelism domain.
Also, they do not express any semantics of the data parallelism properties. Therefore, we
created a novel attribute called Pure to be used along with the Stage attribute list or as
identifier inside Stage annotated regions. This attribute indicates that the annotated code
block is a pure function, “whose output depends only on its input, and does not modify
any other system state” [16]. In SPar, a Stage or code block will be considered a pure
function when it satisfies the following statements to guarantee correct use and correct
code generation:

1. The Pure region should not have any side effects (i.e., mutation on non-local
variables).

2. The Pure region should not have execution order dependency (i.e., depending on
the values modified by previous iterations).

3. The Pure region should not access any global variable that are not listed in the
Input attribute.

From the programmer perspective, the Pure attribute is just another attribute allow-
ing to identify data parallelism inside the Stage. On the other hand, the compiler trans-
formation rule identifies that this region/function can be computed in parallel over mul-
tiple data. It is up to the compiler decide which parallel architecture (GPU or multi-core)
generate the stream parallelism with data parallelism code. Section 4 will describe the
design of the compiler transformation rules to target data parallelism for GPUs.

In our previous work, we evaluated different parallel programming models when
implementing stream and data parallelism combined [19]. One lesson learned is that

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs 545

fine-grained stream processing may not generate enough workload to properly exploit
massively parallel architectures such as GPUs. Thus, some stream processing applica-
tions may not provide the expected performance scalability when using GPUs. For these
cases, we are providing the possibility to express stream batches in SPar through the
new auxiliary attribute for the ToStream, named Batch. The programmer can specify
as argument the size of the batch with literal or integer variable. In principle, this is the
amount of stream items to be computed at once by the subsequent stages, which can be
or not a Pure stage. In short, Batch will now allow programmers to define the stream
item granularity.

1 void mandel(int dim ,int niter ,double init_a ,double init_b ,double step) {
2 [[spar::ToStream , spar::Batch(size), spar::Input(dim , niter , init_a ,

init_b , step)]]
3 for (int i=0; i<dim; i++) {
4 unsigned char *img = new unsigned char[dim];
5 [[spar::Stage , spar::Pure , spar::Input(dim , niter , init_a , init_b ,

step , i, img), spar::Output(img), spar::Replicate(workers)]]
6 for (int j=0; j<dim; j++) {
7 double im = init_b + (step * i);
8 double cr;
9 double a = cr = init_a + step * j;
10 double b = im;
11 int k = 0;
12 for (k=0; k<niter; k++) {
13 double a2 = a * a;
14 double b2 = b * b;
15 if ((a2+b2) > 4.0) break;
16 b = 2 * a * b + im;
17 a = a2 - b2 + cr;
18 }
19 img[j] = (unsigned char) 255-((k*255/ niter));
20 }
21 [[spar::Stage , spar::Input(img , dim , i)]] {
22 ShowLine(img , dim , i);
23 delete img;
24 }
25 }
26 }

Listing 1: Mandelbrot Streaming annotated with SPar using the new attributes.

Observe that none of these attributes are actually related to underlying parallel archi-
tecture. They were intentionally designed to express data parallelism properties such as
data granularity (Batch) and single instruction for multiple data (Pure). If we compare
to existing data parallel programming models such as OpenMP [6], Batch has a mean-
ing to OpenMP chunk and Pure has a meaning similar to OpenMP parallel for where
every computation inside the region can be performed in parallel and independently. For
this work, data parallelism will be purposely exploited in GPUs. However, these new
attributes are also open for further investigations and research on multi-core and clus-
ter parallel architectures. The central point is that the programmer is no longer obliged
to reason about the parallel architecture details when developing its application such as
required by CUDA or OpenCL. SPar’s compiler and transformation rules handle this
complexities in place of programmers through its high-level annotation-based language.

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs546

Listing 1 exemplifies the use of our new attributes in the existing SPar annotations.
We are just adding the Pure attribute in the Stage annotation in line 5 of Listing 1 be-
cause the for loop in line 6 is a pure function. Moreover, we inserted the Batch at-
tribute in line 2, allowing the control of the stream granularity. It is worth point out that
the application latency and throughput are directly impacted by the use of this attribute.
However, the programmer may test and choose the best configuration (size of the batch)
that fits the performance requirements. Section 5 will discuss the performance impacts
of these attributes.

4. New Compiler Transformation Rules for SPar

In his PhD Thesis, Griebler [8,9] designed the original structure of the SPar language.
The SPar attributes are combined in annotation schemas, which trigger transformation
rules in the compiler. These transformation rules are based on previous definitions. We
present current SPar definitions and transformation rules for Pipeline and Farm parallel
patterns and built upon those to generate novel definitions and transformation rules for
the Map parallel pattern.

To express the definitions and transformation rules, Griebler created a particular no-
tation: ToStream and Stage attributes are represented by Tid and Sid , where id represents
a numeric identifier. Input, Output, and Replicate attributes are represented by Ii, Oi,
and Rn, respectively. Ii and Oi may contain a list of typed variables ai, and n denotes the
integer number of replicas for Replicate argument. To denote a code block with one or
more statements it is used �id . The scope of the sentence is denoted by {...}. The anno-
tations that contain one identifier attribute and optionally a list of auxiliary attributes, are
denoted using [[...]] [14].

The current definitions and transformation rules of SPar [9] are generating the stream
parallel patterns Pipeline and Farm. They are implemented in the SPar compiler for trans-
forming the annotated code into C++ code with calls to the FastFlow library, which pro-
vide classes and built-in functions for implementing these parallel patterns. Griebler uses
functional semantics to define the Farm and Pipeline patterns: f arm(E,W,C) has argu-
ments E (Emitter, the stream item scheduler), W (Worker, that compute stream items),
and C (Collector, which gather results/stream items from the workers), where E, C, and
W receive a �id as argument; and pipe(S1,S2, ...) has two or more stages, which can be
�id or f arm instances. The current SPar transformation rules can generate a combination
of these patterns based on the annotation schema.

In this paper, we focus in the combination of data stream and data parallel patterns.
First, we concentrate only in the Map pattern, as it is the simplest and widely used pattern
for data parallelism [16]. Using functional semantics, we defined this pattern as: data =
map(�p

id), where �p
id is the pure function or code wrapper that computes over multiple

data independently and transforms them into data. This data can be a list, vector, or an
array of data.

Before introducing our novel definitions and transformation rules, we extend the
previous SPar notation: Pi denotes a Pure attribute and ∀id(�id) denotes a for state-
ment [14] with a code block. The Batch attribute is not discussed in this section since it
only changes the data management and does not interferes in the pattern generation.

There are six definitions presented in [9] related to the transformation rules for gen-
erating Pipeline and Farm parallel patterns from SPar annotations. Table 1 presents our

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs 547

new definitions aimed at supporting the transformation rules with the Map pattern. The
changes with respect to the definitions from [9] are highlighted in blue color.

Table 1. Definitions for transformation rules adapted from [9].

D0 A generic stage ψ is a � annotated with S that contains in its attribute list Rn and Oi and therefore
requiring a further � gathering its results.

D1 A � may appear as a pipe stage, as an E or C stage in a f arm or as the map function if its
annotation list S does not contain the attribute Rn.

D2 A � where the first statement is a ∀id annotated with a S followed by P in its attribute list becomes
a map.

D3 A � with an annotation list S containing an Rn attribute may appear as a W stage in a f arm or as
the parameter of a map.

D4 When D1 and D2 applies on a �, a map is instantiated as a pipe stage.

D5 When D2 and D3 applies on a �, a map is instantiated inside the W stage of the f arm.

D6 A ∀(�) annotated with only P inside a S’s code block becomes a map nested into a pipe’s S or
f arm’s W .

D7 T is a map when a � has ∀0 as the first statement annotated with T , where right after this ∀0 there
is only a single � which is a ∀1 annotated with S and contains P in its attribute list.

D8 A T is a f arm when the first S annotation contains Rn in the attribute list of a maximum two S.

D9 A T is a pipe when the first S does not have Rn in the attribute list or when there are more than two
Ss.

D10 A f arm is a stage of pipe when D7 cannot be applied and � is annotated with S that contains Rn
in the attribute list.

From the original SPar transformation rules [9], we take the fourth transformation
rules as an example to demonstrate the combination of stream and data parallelism.
Adding Pi and considering a ∀(�) as the code block of the first S in the transformation
rule 4 from [9], we can apply D2 and D4 to obtain Rule 1. In this case, we combine the
Map and Pipeline patterns. Each stream item produced by the first pipe stage instantiate
the map to exploit data parallelism.

[[T0]]{�0, [[S0,Pi]]{∀(�1)}}⇒ pipe(�0, map(�1)) (1)

Similarly, if we take transformation rule 3 from [9], add Pi and consider a ∀(�) as
the code block of the first S, we can apply D2, D3, and D5 to obtain Rule 2. In this case,
a new parallel pattern is generated, combining Farm with workers instantiating the Map
pattern.

[[T0]]{�0, [[S0,Oi,Rn,Pi]]{∀0(�1)}, [[S1]]{�2}}
⇓

f arm(E(�0), W (map(�1)), C(�2))

(2)

Adding Pi in the fifth rule from [9], with ∀(�) as the code block, we can apply
D2, D3, and D5 and obtain Rule 3. This Rule combines three parallel patterns: Pipeline,
Farm, and Map. The pipe is generated based on D9. The f arm appears as a pipe stage
(based on D10) and the map pattern comprises the f arm’s worker stage (W), according
to D5.

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs548

[[T0]]{�0, [[S0]]{�1},[[S1,Rn,Pi]]{∀(�2)}}
⇓

pipe(�0, f arm(E(�1), W (map(�2))))

(3)

Definition D6 allows P to be employed as ID attribute, which provides more flexi-
bility to SPar application. If only part of the last Stage from Rule 3 is a pure function, Pi
could be applied in this specific code block, as demonstrated by Rule 4.

[[T0]]{�0, [[S0]]{�1}, [[S1,Rn]]{�2, [[Pi]]{∀(�3)}}}
⇓

pipe(�0, f arm(E(�1), W (�2,map(�3))))

(4)

Rule 5 applies D7 to generate a single map pattern from a T attribute. The presence
of the Pure attribute in this specific code structure simplifies the implementation and
allows the exploitation of a pure data parallelism.

[[T0]]{∀0([[S0,Pi]]{∀1(�0)})}⇒ map(�0) (5)

5. Performance Evaluation

To support data parallelism for GPUs in SPar, we decided to generate CUDA and
OpenCL code. Although we aim to offer multi-GPU support, we focused in a single GPU
in these experiments. The transformation rules were created to generate parallel patterns,
however, CUDA and OpenCL does not offer support for a structured parallel program-
ming approach. Therefore, we implemented the Map pattern by transforming the pure
function �p

id into a GPU kernel, where each thread launched goes throughout this code
wrapper. Then, inside this GPU kernel each thread get its global index and computes
over a different data index. Consider N as the number of iterations of the annotated ∀ and
max threads the maximum number of threads per block available in the GPU. On the
absence of the Batch attribute, we launch N threads divided in N/max threads blocks.
When the Batch attribute is used, we launch N ∗batch size threads on each kernel call. In
this case, we modify the previous and next computation stages to generate and consume
stream items of size batch size. Prior to implementing the transformation rules in the
compiler, we evaluated them by generating the CUDA and OpenCL code manually when
our transformation rules were triggered. Therefore, this performance evaluation was car-
ried out by manually performing the work that would be done by the compiler. We want
to show that our transformation rules could work in a future compiler implementation.

To integrate stream parallelism on the multi-core and data parallelism with CUDA,
we added a cudaStream object on each stream item to properly define dependen-
cies between data transfer and kernel function calls. For the OpenCL runtime, we
added a cl kernel, a cl command queue, and a cl event object on each stream item.
The cl kernel are not thread-safe [15] and must be allocated for each thread. The
cl command queue allows overlapping kernel and memory copies between different

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs 549

stream items and the cl event is used to synchronize asynchronous calls between dif-
ferent pipeline stages.

The experiments ran in a server machine that has an Intel(R) Core(TM) I9-7900X
@ 3.3GHz (10 cores and 20 threads), 32GB of RAM memory and two Titan XP GPUs
(although we use only one of them in this experiments) with compute capability 6.1 and
each one has 12GB of memory. The system was running on Ubuntu OS (kernel 4.15.0-
43-generic). All programs were compiled using -O3 compiler flags. The software used
were G++ 9.1, NVCC 10.0.130, OpenCL 1.2, SPar, and FastFlow. We chose the best
degree of parallelism and batch sizes by empirical testing the applications under differ-
ent configurations. The SPar implementations ran with 20 worker replicas and versions
combining SPar with CUDA or OpenCL ran with 10 worker replicas in the annotated re-
gions with the Replicate attribute. Each version was executed five times and the average
execution time is plotted, while error-bars show the standard deviation.

We present experiments using two pseudo-applications: Mandelbrot Streaming and
Matrix Multiplication. We focused in traditional HPC metrics such as execution time and
speedup to observe the applications scalability and performance.

(a) Mandelbrot Streaming. (b) Matrix Multiplication.

Figure 1. Experiments Results.

We tested two workloads for the Mandelbrot Streaming application: generating
2000x2000 and 3000x3000 fractal images, both with a maximum of 100,000 iterations
per single pixel. This fractal image size represent 4,000,000 and 9,000,000 numbers be-
tween -2.125-1.5 and 0.875+1.5. The annotation schema presented in [8] (“SPar” in Fig-
ure 1a) shows 9.3× and 9.4× of speedup with respect to the sequential version for our
workloads. The simplest modification is to insert the Pure as auxiliary attribute in the
first Stage annotation. This annotation schema triggers Transformation Rule 2 and gen-
erates the Farm with Map pattern. This version shows 36× and 46× speedup for the
CUDA runtime (“SPar+CUDA v1” in Figure 1a), and 25× and 30× speedup for the
OpenCL runtime (“SPar+OpenCL v1”) with respect to the sequential times. These ver-
sions presented an unexpectedly high standard deviation, which is due to data transfer
between CPU and GPU.

As demonstrated by our previous study, a single Mandelbrot line does not generate
enough workload to fully utilize the GPU [19]. Therefore, we can add Batch attribute in
the ToStream annotation to achieve further performance improvements, as demonstrated

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs550

in Listing 1. Using a batch size of 30 for this annotation schema yields 77× and 79×
speedup for the CUDA runtime (“SPar+CUDA v2” in Figure 1a), and 72× speedup in
both workloads for the OpenCL runtime (“SPar+OpenCL v2”). Each stream item of
these batch versions are calculating 30 lines of the Mandelbrot set in a single kernel call.
The performance improvement is explained by this batch of lines utilizing the massive
parallelism of the GPU.

We discuss here the matrix multiplication presented in [8] as an example of data-
parallel algorithms. We ran this experiment with matrices of 2000x2000, 5000x5000,
and 10000x10000 32-bit elements. The Pure attribute can be added to the Stage anno-
tation of [8] to trigger Transformation Rule 5. It generates a single Map pattern for this
annotation schema.

The SPar annotated version presented in [8] for multi-core architecture (“SPar” in
Figure 1b) achieved 5.6×, 5.2×, and 6.4× speedup with respect to the sequential ver-
sion in our tests. Adding the Pure attribute in the Stage annotation yields 36×, 72×,
and 160× speedup for the CUDA runtime (“SPar+CUDA”) in the three workloads. For
the OpenCL runtime (“SPar+OpenCL”) this modification yielded 20×, 66×, and 160×
speedup.

6. Conclusion

In this paper, we enriched the expressiveness of the SPar language to target data paral-
lelism for GPUs, which can in the future be extended to multi-core and cluster archi-
tectures. After, we created new compiler transformation rules for generating the Map
parallel pattern along with the existing stream parallel patterns. Lastly, we carried out a
performance evaluation using two pseudo-applications. The outcome is that the language
simplicity was maintained (Listing 1) while performance improvements were obtained
with respect to only generating parallel code to multi-core without data parallelism sup-
port (Figure 1). Using this work’s transformation rules, we obtained very similar perfor-
mance results with respect to our previous work [20], where these applications were fine
tuned and manually programmed.

We aim in the future add new definitions and transformation rules that can poten-
tially support more data parallel patterns. We also intend to implement these transforma-
tion rules in the SPar compiler to automatically generate GPU parallel code based on our
high-level annotations. Given the many challenges of GPU programming, we intend to
propose or use an intermediate library such as SkePU and SkelCL to support functional
data parallel patterns for GPUs in C++ that are fully compatible with stream parallelism
to alleviate the compiler work.

Acknowledgment This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001, Univ. of
Pisa PRA 2018 66 ”DECLware: Declarative methodologies for designing and deploying
applications”, the FAPERGS 01/2017-ARD project called PARAELASTIC (No. 17/2551-
0000871-5), and the Universal MCTIC/CNPq N 28/2018 project called SParCloud (No.
437693/2018-0). We also thank LARCC for the computing resources.

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs 551

References

[1] M. Aldinucci, M. Danelutto, M. Drocco, P. Kilpatrick, C. Misale, G. Peretti Pezzi, and M. Torquati. A
parallel pattern for iterative stencil + reduce. Journal of Supercomputing, pages 1–16, 2016.

[2] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. FastFlow: high-level and efficient streaming
on multi-core, chapter 13, pages 261–280. John Wiley & Sons, 1st edition, 2017.

[3] M. Aldinucci, G. P. Pezzi, M. Drocco, C. Spampinato, and M. Torquati. Parallel visual data restoration
on multi-GPGPUs using stencil-reduce pattern. International Journal of High Performance Computing
Applications (IJHPCA), 29(4):461–472, 2015.

[4] H. C. M. Andrade, B. Gedik, and D. S. Turaga. Fundamentals of Stream Processing. Cambridge
University Press, New York, USA, 2014.

[5] M. Bourgoin, E. Chailloux, and J.-L. Lamotte. Efficient Abstractions for GPGPU Programming. Inter-
national Journal of Parallel Programming, 42(4):583–600, Aug. 2014.

[6] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory programming. IEEE
Computational Science and Engineering, 5(1):46–55, Jan. 1998.

[7] A. Ernstsson, L. Li, and C. Kessler. SkePU 2: Flexible and Type-Safe Skeleton Programming for Het-
erogeneous Parallel Systems. International Journal of Parallel Programming, 46(1):62–80, Feb. 2018.

[8] D. Griebler. Domain-Specific Language & Support Tools for High-Level Stream Parallelism. PhD thesis,
Faculdade de Informática - PPGCC - PUCRS, Porto Alegre, Brazil, June 2016.

[9] D. Griebler, M. Danelutto, M. Torquati, and L. G. Fernandes. SPar: A DSL for High-Level and Produc-
tive Stream Parallelism. Parallel Processing Letters, 27(01):1740005, Mar. 2017.

[10] D. Griebler, R. B. Hoffmann, M. Danelutto, and L. G. Fernandes. Higher-Level Parallelism Abstractions
for Video Applications with SPar. In Parallel Computing is Everywhere, Proceedings of the Interna-
tional Conference on Parallel Computing, ParCo’17, pages 698–707. IOS Press, Sept. 2017.

[11] D. Griebler, R. B. Hoffmann, M. Danelutto, and L. G. Fernandes. High-Level and Productive Stream
Parallelism for Dedup, Ferret, and Bzip2. International Journal of Parallel Programming, pages 1–19,
Feb. 2018.

[12] D. Griebler, R. B. Hoffmann, J. Loff, M. Danelutto, and L. G. Fernandes. High-Level and Efficient
Stream Parallelism on Multi-core Systems with SPar for Data Compression Applications. In XVIII
Simpósio em Sistemas Computacionais de Alto Desempenho, pages 16–27. SBC, October 2017.

[13] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke. Sponge: Portable Stream Programming
on Graphics Engines. In Proceedings of the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’11, pages 381–392. ACM, 2011.

[14] ISO/IEC. ISO/IEC 14882:2017 - Programming languages – C++. International Organization for Stan-
dardization, Geneva, Switzerland, 5 edition, Dec. 2017. https://www.iso.org/standard/68564.html.

[15] The Khronos Group. The OpenCL Specification, Oct. 2018. v2.2-8.
[16] M. McCool, J. Reinders, and A. Robison. Structured Parallel Programming: Patterns for Efficient

Computation. Elsevier Science, 2012.
[17] OpenACC-Standard.org. The OpenACC® Application Programming Interface, Nov. 2018. v2.7.
[18] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism.

O’Reilly Series. O’Reilly Media, 2007.
[19] D. A. Rockenbach, C. M. Stein, D. Griebler, G. Mencagli, M. Torquati, M. Danelutto, and L. G. Fer-

nandes. Stream Processing on Multi-Cores with GPUs: Parallel Programming Models’ Challenges. In
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2019.

[20] C. M. Stein, D. Griebler, M. Danelutto, and L. G. Fernandes. Stream Parallelism on the LZSS Data
Compression Application for Multi-Cores with GPUs. In 27th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), Pavia, Italy, February 2019. IEEE.

[21] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - A portable skeleton library for high-level GPU pro-
gramming. In IEEE International Symposium on Parallel and Distributed Processing Workshops and
Phd Forum, pages 1176–1182. IEEE, May 2011.

[22] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for Streaming Applications. In
R. N. Horspool, editor, Compiler Construction, pages 179–196, Berlin, Heidelberg, 2002. Springer.

[23] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software pipelined execution of stream programs
on GPUs. In Proceedings of the 7th International Symposium on Code Generation and Optimization,
CGO ’09, pages 200–209, Mar. 2009.

D.A. Rockenbach et al. / High-Level Stream Parallelism Abstractions with SPar Targeting GPUs552

