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Abstract. The Sparse Matrix-Vector Multiplication kernel (SpMV) has been one
of the most popular kernels in high-performance computing, as the building block
of many iterative solvers. At the same time, it has been one of the most notori-
ous kernels, due to its low flop per byte ratio, which leads to under-utilization of
modern processing system resources and a huge gap between the peak system per-
formance and the observed performance of the kernel. However, moving forward
to exascale, performance by itself is no longer the holy grail; the requirement for
energy efficient high-performance computing systems is driving a trend towards
processing units with better performance per watt ratios. Following this trend, FP-
GAs have emerged as an alternative, low-power accelerator for high-end systems.
In this paper, we implement the SpMV kernel on FPGAs, towards an accelerated
library for sparse matrix computations, for single-precision floating point values.
Our implementation focuses on optimizing access to the data for the SpMV kernel
and applies common optimizations to improve the parallelism and the performance
of the SpMV kernel on FPGAs. We evaluate the performance and energy efficiency
of our implementation, in comparison to modern CPUs and GPUs, for a diverse set
of sparse matrices and demonstrate that FPGAs can be an energy-efficient solution
for the SpMV kernel.
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1. Introduction

Sparse matrices appear in multiple scientific problems, putting sparse linear algebra at the
core of high-performance scientific computing. The Sparse Matrix-Vector Multiplication
kernel (SpMYV') has been one of the most popular kernels of this category, as the building
block of many iterative solvers. At the same time, it has been one of the most notorious
kernels, due to its low flop per byte ratio, which leads to under-utilization of modern
processing system resources and a huge gap between the peak system performance and
the observed performance of the kernel. A plethora of sparse matrix formats [1] and
a variety of optimizations for multi-core processors [2], many-core processors [3] and
GPUs [4] have been proposed and applied, to improve the performance of the SpMV
kernel.
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However, moving forward to exascale, performance by itself is no longer the holy
grail; the requirement for energy efficient high-performance computing systems is driv-
ing a trend towards processing units with better performance per watt ratios. Following
this trend, FPGAs have emerged as an alternative, low-power accelerator for high-end
systems. This trend has been further supported by the development of high-level synthe-
sis tools, which significantly reduce the programming effort required to port applications
to FPGAs. FPGAs are already used as accelerators in production in datacenters, and sev-
eral efforts focus on bringing FPGAs to the HPC world. Such an effort is EuroEXA [5],
the EU-funded project that aims to implement and prototype a petascale-level system,
embracing FPGA acceleration.

In this paper, in the context of the EuroEXA project, we implement the SpMV kernel
on FPGAs, towards an accelerated library for sparse matrix computations, for single-
precision floating point values. Our implementation focuses on optimizing access to the
data for the SpMYV kernel and applies common optimizations to improve the parallelism
and the performance of the SpMV kernel on FPGAs. We evaluate the performance and
energy efficiency of our implementation, in comparison to modern CPUs and GPUs, for
a diverse set of sparse matrices, and demonstrate that FPGAs can be an energy-efficient
solution for the SpMV kernel.

2. An efficient implementation of SpMYV on FPGAs
2.1. Experimental platform

Our experimental platform is a Xilinx Zynq UltraScale+ MPSoC ZCU102 board. The
MPSoC of the board consists of a quad-core ARM Cortex AS53 processor, operating at
(up to) 1.5 GHz and a Zynq UltraScale ZUIEG FPGA. The FPGA contains around 600K
logic cells, 32 Mbs of BlockRAM and about 2500 DSP slices. The MPSoC contains 4GB
of DDR4 DRAM (referred to as main memory from now on), which is accessible from
both the ARM processor and the FPGA. We use the Xilinx SDSoC environment (version
2018.1) which utilizes the Xilinx Vivado-HLS compiler and Vivado Design Suite tools
to compile synthesizable C/C++ functions into programmable logic.

void SpMV(int nnz, int nrows, float xvalues, float xcol_ind,
float xrow_ptr, float xx, float =xy)

{
for (int i = 0 ; i < nrows ; i++)
for (int j = row_ptr[i] ; j < row_ptr[i+1] ; j++)
y[i] += values[j] % x[col_.ind[i]];
return ;
}

Algorithm 1. The CSR-SpMYV kernel
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2.2. CSR-SpMV: Properties and challenges

The Compressed Sparse Row (CSR) representation is the most commonly used sparse
matrix representation, since it is generic, agnostic to the sparsity pattern and leads to fair
performance on CPUs with no preprocessing cost. In the CSR format, a sparse matrix
is represented with three vectors: the values vector contains the values of all non-zero
elements of the matrix, the col_ind vector contains the column index for each non-zero
element and the row_ptr vector stores the row pointers. The y = A x x CSR-SpMV ker-
nel, for the sparse matrix A with nrows rows and nnz non-zero elements is presented in
Algorithm 1.

There are two key observations regarding CSR-SpMV; first, the x vector is accessed
randomly, and second, there is no reuse for the elements of the A matrix, i.e., the ker-
nel is memory-bound. This is particularly important for our FPGA implementation: ac-
cessing data on the main memory of the MPSoC is costly, due to the limited memory
bandwidth, and it is preferable to move data to the FPGA BRAM. However, BRAM ca-
pacity is limited. Thus, an efficient implementation requires careful data movement and
placement.

Another challenge for the FPGA implementation of CSR-SpMV using HLS tools is
that the boundaries of the inner loop are unknown at compile time. This impedes efficient
loop unrolling by the compiler and limits the parallelism of the implementation.

2.3. pCSR: A packed, CSR-based representation format for sparse matrices

Using our key observations about the CSR-SpMV code, we opt for an implementation
where the sparse matrix A is efficiently streamed from the main memory to the FPGA.
The x vector is stored locally on the FPGA BRAM, to ensure fast access. The y vector is
accessed sequentially, therefore we stream it from the FPGA back to the main memory,
and do not store it locally on the BRAM. To efficiently stream the sparse matrix to the
FPGA, we need to exploit the four available High Performance (HP) memory ports of
our MPSoC. These ports allow for the highest throughput of data transfer from the main
memory to the FPGA. Extending the MCSR representation proposed in [6], we first
transform the row_ptr vector to a row_length vector, where each element refers to the
number of non-zero values per row. We then pack the row_length, col_ind and values
vector into a single stream of data, as following: for a single row of the sparse matrix, we
use a zero element to denote a new line, followed by the number of non-zero elements in
this row. For every non-zero element in the row, the col_ind and the value of the element
follow in pairs. In order to fully exploit the available bandwidth of HP ports, the stream is
then split into 128-bit wide parts. We also use the hls: : stream objects, which are FIFO
queues, to stream the data to the FPGA through each available port. We note that, in our
SpMV implementation, the x vector is copied and stored locally on the FPGA BRAM,
to ensure fast access. Therefore, the largest problem size that we can solve on our FPGA
depends on the number of columns of the sparse matrix, i.e. the length of the x vector.
On the other hand, the length of the y vector does not constrain our design: since the y
vector is accessed sequentially, it is streamed from the FPGA back to main memory.
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2.4. Optimizations

2.4.1. Increasing parallelism with vectorization

To increase the parallelism of our design, we implement SIMD parallelism by partially
unrolling the inner loop of the SpMV code, by a factor of 71. We note that, in order to
implement vectorization, zero-padding is required, so that the elements of each row are
a multiple of the vectorization factor. We test our design with vectorization factors of 2,
4 and 8.

2.4.2. Increasing parallelism with 1D-blocking

To further increase parallelism in our design, as well as the resource utilization of the
FPGA, we employ multiple compute units (CU). The multiple compute units implement
multiple instances of the SpMV kernel. This is equivalent to row-wise partitioning or 1D-
blocking: each compute unit works on a contiguous subset of rows of the sparse matrix.
We test our design with 2, 4 and 8 compute units. We note that using more than four
compute units leads to full utilization of the available HP ports. However, compute units
cannot share data and therefore, each compute unit requires a separate copy of the vector
x. Therefore, increasing the number of compute units limits the maximum size of the x
vector that can fit in the FPGA BRAM.

2.4.3. Increasing problem size with 2D-blocking

To overcome the limitation of the limited BRAM capacity that arises when using mul-
tiple compute units, we employ 2D-blocking, i.e. row-wise and column-wise partition-
ing, of the sparse matrix. In this way, each compute unit only needs to store part of the
x vector, i.e. the part that is used by the columns of the 2D-block. Intermediate results
are stored in y_partial vectors, which are then accumulated on the host side. Blocking
on this second dimension allows us to split the matrix to as many blocks needed to fit
the multiple copies of the partial x vectors on the FPGA BRAM. However, to imple-
ment 2D-blocking, alongside vectorization, the number of elements of each row of each
block needs to be a multiple of the vectorization factor, which results to additional zero
padding. Compression of the zero-padded elements can be employed to alleviate the
memory overhead that occurs in this case.

2.4.4. Load balancing

Depending on the sparsity pattern of the matrix, 1D-blocking, i.e. row-wise partition-
ing, commonly produces load imbalance among the multiple compute units. We easily
mitigate this problem by equally distributing non-zero elements across compute units. In
this case, each compute unit solves the SpMV kernel on variable numbers of contiguous
rows, but with better load distribution.

2.5. Increasing performance with clock frequency configuration
The FPGA of our experimental platform can be configured to operate under clock fre-

quencies ranging from 100 to 600 MHz. Our implementation meets the timing require-
ments for frequencies up to 300 MHz. Figure 1 shows how execution time and power
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Figure 1. Comparison of execution time and power consumption of FPGA-SpMYV for different clock frequen-
cies. Each line represents a different sparse matrix.

consumption vary while we increase the clock frequency. Connected points represent
measurements for the same matrix under different clock frequencies. As expected, higher
clock frequency leads to higher power consumption. For all the matrices, execution time
decreases as we increase the clock frequency up to 200MHz. The decrease is more sig-
nificant for the larger matrices. However, when the frequency is set at 300MHz, the syn-
thesized bitstream consumes more of the BRAM resources, limiting the available BRAM
to store the x vector. This causes large size matrices to be split in more blocks, hence we
observe an increase in execution time. Due to the algorithmic nature of SpMYV, increas-
ing the clock frequency of the FPGA does not proportionally improve the performance
of our implementation. Therefore, we conclude that the optimal frequency, considering
both performance and power consumption, is 150 MHz.

3. Evaluation

To evaluate our FPGA implementation, we use a diverse set of 19 sparse matrices from
the University of Florida Sparse Matrix Collection [7], with a variety of sparsity patterns
and sizes. The number of floating point operations per non-zero element is 2 (multipli-
cation and addition). For the pCSR representation,we use 64 bits to store each row of the
matrix, and 64 bits for each non-zero element of the matrix (value and col_ind index).
Therefore, the flops:byte ratio is calculated by the formula nnz/(4 * nrows + 4 nnz). We
compare the performance and energy efficiency of SpMV on our FPGA against CSR-
SpMYV using the Inte]l MKL library on an Intel Xeon E5-2630V4 (Broadwell) CPU with
10 cores, 25MB LLC and 256GB of memory, and against CSR-SpMV using the cuS-
PARSE library on an NVIDIA Tesla K40 GPU, with 2880 cores and 12GB GDDR5
memory. We use RAPL performance counters to measure energy on the CPU. For the
FPGA, we modified the power monitoring application proposed in [8], in order to exe-
cute it on our board. For the GPU, we use the GPU power sensors and compute energy
according to the runtime.
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Table 1. Matrix suite used for experimental evaluation

Matrix Dimension Non-zeros Size(MB) f:b ratio
human_genel 22283 12345963 94.2772 0.2495
nd24k 72000 14393817 110.091 0.2488
JP 87616 13734559 105.121 0.2484
consph 83334 3046907 23.564 0.2433
poisson3Db 85623 2374949 18.4461 0.2413
barrier2-12 115625 3897557 30.1771 0.2428
FEM_3D_thermal2 147900 3489300 27.1854 0.2398
Sio2 155331 5719417 44.2282 0.2434
degme 185501 8127528 62.7158 0.2444
offshore 259789 2251231 18.1666 0.2241
Gad41As41H72 268096 9378286 72.5734 0.2431
parabolic_fem 525825 2100225 18.0293 0.1999
rajat30 643994 6175377 49.5711 0.2264
ASIC_680k 682862 3871773 32.1442 0.2125
Hardesty2 929901 4020731 34.2231 0.203
boneS10 914898 28191660 218.575 0.2421
audikw_1 943695 39297771 303.418 0.2441
webbase- 1M 1000005 3105536 27.5081 0.1891
thermal2 1228045 4904179 42.1006 0.1999

Table 2. Hardware platforms

Device Operating Frequency Memory Memory Bandwidth
Intel Xeon E5-2630V4 2.2 GHz 256 GB 40 GB/s
NVIDIA Tesla K40 745 MHz 12 GB 6 GB/s

Xilinx MPSoC ZCU102 150 MHz 4GB 9.6 GB/s

Figure 2 shows the execution time for SpMV on the 19 matrices, for the CPU, the
GPU and the FPGA. For our FPGA implementation, we showcase the results for a vec-
torization factor of 4, and 4 compute units. In addition, the frequency of the FPGA is
set to 150MHz. We note that the execution time for the FPGA implementation includes
transfers from the main memory to the FPGA and vice versa. For a fair comparison
against the GPU, we compare against the performance with and without transfers over
the PCle (6GB/s). In comparison to the CPU, our FPGA implementation is slower from
7 to 62 times, with an average slowdown of 26x. We consider this performance gap to be
reasonable, given the 15x difference in frequency and the 2.5x difference in cores (com-
pute units), between the CPU and the FPGA. GPU performance is close to that of the
CPU, apart from three matrices in our suite (ASIC_680K, rajat30, degme), which suffer
from imbalance [3]. However, if we include the transfers from the host to the GPU, the
average slowdown for SpMV on the FPGA is 3x.

Figure 3 shows the energy consumption for SpMYV, for the CPU, the GPU and the
FPGA. Despite the large difference in execution times, the CPU consumes up to 5 times
more energy than the FPGA for the SpMV kernel, with the exception of the largest
matrices in our dataset (webbase_IM, thermal2). The GPU consumes about the same
energy with the FPGA for the computational part of the SpMV kernel, with the exception
of the three imbalanced matrices. However, if we take into account the data transfers
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Figure 2. Comparison of performance of the CSR-SpMV kernel among different architectures.
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Figure 3. Comparison of the energy consumption (in Joules) of the CSR-SpMYV kernel among different archi-
tectures. The y axis is in logarithmic scale.

from the host to the GPU, the GPU becomes the least energy-efficient option among the
three architectures.

Another metric that can be used to measure the energy efficiency of each architec-
ture is the performance per Watt, i.e. FLOPs per Watt [9]. In SpMV, two floating-point
operations occur for each non-zero element; multiplication with the respective element
of the x vector and accumulation of the result in the y vector. Thus, SpMV FLOPs are
calculated by dividing the doubled number of non-zeros of the matrix with the execu-
tion time. Figure 4 shows how each architecture performs in GFLOPs/W. For smaller
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Figure 4. Comparison of the energy efficiency (in GFLOPs/W) of the CSR-SpMV kernel among the different
architectures.

matrices (leftmost part of the figure), the FPGA significantly outperforms the other ar-
chitectures in terms of energy efficiency. For larger matrices, although the performance
of our FPGA implementation is degraded due to extensive zero-padding, the FPGA still
performs well in the GFLOPs/W metric, being a viable, energy-efficient option for the
SpMYV kernel.

4. Related work

Multiple works present implementations of the SpMV kernel on FPGAs, using hardware
design tools. Zhuo et al. [10] provide an efficient design for CSR SpMV on FPGAs, using
a number of subtrees of multipliers and a specialized reduction unit. Their implementa-
tion also stores the x vector on the FPGA. Sun et al. [11] describe a design using multiple
processing elements which include a deep pipeline with a multiplier, an accumulation
circuit and FIFO queues. Their implementation uses both CSR and Row Blocked CSR.
Kestur et al. [12] design a library for SpMV and propose the CVBV format, to reduce
memory capacity requirements and memory bandwidth requirements. Dorrance et al.
[13] implement the SpMV kernel using CSC, to make memory accesses to the x vector,
stored in the main memory, sequential, reducing memory bandwidth requirements. Grig-
oras et al. [14] propose a dictionary-based compression format to improve the effective
memory bandwidth of SpMV designs. Their implementation uses Maxeler tools. Several
implementations of SpMV with OpenCL appear in recent work [15,9,16]. Our work ex-
tends the implementation of CSR SpMV proposed by Hosseinabady et al. in [6], which
uses HLS tools to synthesize SpMV as a streaming dataflow engine.

In addition, a number of works examine the performance and energy efficiency of
various algorithms on CPUs, GPUs and FPGAs. Vestias et al. [17] explore general trends
in peak performance and power for CPUs, GPUs and FPGAs. Betkaoui et al. [18] com-
pare the performance and energy efficiency of GPUs and FPGAs for four commonly used
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benchmarks. Fowers et al. [19] focus their analysis of performance and energy efficiency
on sliding-window applications. Rucci et al. [20] focus on state-of-the-art implementa-
tions of the Smith-Waterman protein database search, on CPUs, co-processors, GPUs
and FPGAs. Finally, Giefers et al. [9] perform a performance and energy-efficiency anal-
ysis for sparse matrix-vector and sparse matrix-matrix multiplication on co-processors,
GPUs and FPGAs.

5. Conclusions

In this work, we examine the performance and energy efficiency of the sparse matrix-
vector multiplication on FPGAs. We design and optimize the CSR-SpMV kernel for a
Xilinx Zynq UltraScale+ board with a ZU9EG FPGA, using HLS tools. We evaluate the
performance and energy efficiency of this kernel with the equivalent CSR-SpMV imple-
mentations on an Intel Broadwell CPU and an NVIDIA Tesla K40 GPU. Our experimen-
tal results show that the CPU and GPU outperform the FPGA in terms of performance
for the SpMV kernel, however, the energy consumption of the FPGA is lower for most of
the matrices in our dataset. In addition, comparing the achieved FLOPs/W for the three
platforms, the FPGA is a particularly energy-efficient option for the SpMV kernel, and
a further optimized design can bring in additional gains for energy consumption and en-
ergy efficiency. Future directions of this work focus on solving the SpMV on FPGAs and
include further optimizations of the CSR-SpMV kernel for the FPGA, the exploration of
alternative storage formats for the sparse matrices and their impact on performance and
energy efficiency, as well as the evaluation of our CSR-SpMV kernel on FPGAs with
higher BRAM capacity, higher bandwidth and more DSP units.
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