
Porting a Lattice Boltzmann Simulation to
FPGAs Using OmpSs

Enrico CALORE a,1, Sebastiano Fabio SCHIFANO a,b

a INFN Ferrara, Italy
b University of Ferrara, Italy

Abstract. Reconfigurable computing, exploiting Field Programmable Gate Arrays
(FPGA), has become of great interest for both academia and industry research
thanks to the possibility to greatly accelerate a variety of applications. The interest
has been further boosted by recent developments of FPGA programming frame-
works which allows to design applications at a higher-level of abstraction, for ex-
ample using directive based approaches.

In this work we describe our first experiences in porting to FPGAs an HPC ap-
plication, used to simulate Rayleigh-Taylor instability of fluids with different den-
sity and temperature using Lattice Boltzmann Methods. This activity is done in the
context of the FET HPC H2020 EuroEXA project which is developing an energy-
efficient HPC system, at exa-scale level, based on Arm processors and FPGAs. In
this work we use the OmpSs directive based programming model, one of the models
available within the EuroEXA project. OmpSs is developed by the Barcelona Su-
percomputing Center (BSC) and allows to target FPGA devices as accelerators, but
also commodity CPUs and GPUs, enabling code portability across different archi-
tectures. In particular, we describe the initial porting of this application, evaluating
the programming efforts required, and assessing the preliminary performances on
a Trenz development board hosting a Xilinx Zynq UltraScale+ MPSoC embedding
a 16nm FinFET+ programmable logic and a multi-core Arm CPU.

Keywords. FPGA, OmpSs, EuroEXA, HPC, Lattice Boltzmann

1. Introduction

Reconfigurable computing using Field Programmable Gate Arrays (FPGA) is attracting
lot of attention from the scientific community for its potential to accelerate a large vari-
ety of applications with interesting performance-energy ratios. However, the complexity
of programming such devices has been one of the major issues preventing FPGAs to
become widely adopted in scientific software communities. In fact, FPGAs have been
commonly programmed using Hardware Description Language (HDL) such as VHDL
and Verilog, which allow to describe arbitrary circuitry at Register Transfer Level (RTL).
This approach is too low level for many application programmers, and has restricted the
use of FPGA mainly to electronic engineering experts.

1Corresponding Author: Enrico Calore, INFN Ferrara, Via Saragat 1, 44121 Ferrara, Italy; E-mail:
enrico.calore@fe.infn.it.

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200100

701

Despite of this, FPGAs have been successfully used in the past to boost the comput-
ing performance of several scientific applications. As an example: COPACOBANA [1]
for code breaking; RIVYERA [2] for bioinformatics applications; EXTOLL [3] for com-
munications and Janus [4,5] for spin-glasses simulations. These are all relevant projects
using FPGAs as processing elements for HPC and scientific applications in general [6].
However, they required strong customization of applications, using data structures and
implementations, very far from that used on commodity CPUs.

Recently, the resources available on FPGA chips have increased a lot, integrating
high-end interfaces (e.g., PCIe, DDR3, GbitE, etc. . .) large static memories, large num-
ber of DSPs and also CPUs cores. The last feature in particular has raised the interest
of many researchers for enabling FPGA-accelerated computing. A CPU is integrated on
the device together with the programmable logic, and is able to run a full operating sys-
tem, commonly based on GNU/Linux, allowing to start applications on the CPU to later
offload specific functions on the FPGA.

In the last years, also the programming environments have been extensively devel-
oped. Languages such as OpenCL and High-Level Synthesis (HLS) frameworks based
on pragmas directives are now available for different FPGAs, allowing to describe ap-
plications at algorithmic level [7]. This can be then interpreted and transcompiled by
automatic software tools into a Register-Transfer Level (RTL) and finally synthesized to
the gate level. In particular, for applications already developed for ordinary CPUs and
accelerators, directive approaches allow to just annotate legacy C and Fortran codes with
pragmas that guide the compilers in the synthesis process. Clearly, this approach is more
abstract compared to a low level manual programming of the HDL code, and can re-
sults in less optimized designs in terms of timing and FPGA resources usage. Despite
of this, the reduced programming effort required, combined with a faster design space
exploration and a much higher software portability, make this approach very attractive
and usable by larger application developers communities.

All of these factors contributed to the possibility of using FPGAs as computing ac-
celerators, and many projects are now following this path. One of this is the EuroEXA
project 2, a H2020 project funded by the EU, that following an hardware/software co-
design approach, aims to port a rich mix of applications to its architecture. One of these
applications consist in the simulation of fluids using Lattice Boltzmann Methods (LBM).
The increasing popularity of LBM comes from its flexibility, allowing to study com-
plex geometries and different types of boundary conditions, and from being particularly
suitable for highly scalable implementations on massively parallel architectures [8].

In the EuroEXA project Xilinx FPGAs are adopted. Xilinx provides the VivadoHLS
Design Suite to annotate C codes with proprietary HLS directives, allowing to offload a
specific function to an FPGAs, automatically managing the host code compilation and the
synthesis of the function to be offloaded. Anyhow, in this work we include a further level
of programming abstraction over VivadoHLS and in particular we use the OmpSs di-
rective based programming model in conjunction with its OmpSs@FPGA extension [9].
OmpSs allows to annotate the application code with directives to compile and offload a
kernel on FPGAs, enabling accelerated computing, but given the same source code, it is
also able to target other devices, such as GPUs or multi-core CPUs, easily enabling code
portability [10].

2https://euroexa.eu/

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs702

https://euroexa.eu/

The remainder of this contribution is organized as follows: in the next Section we
introduce the EuroEXA project, in Sec. 3 we describe our LBM application, and in Sec. 4
we briefly overview OmpSs@FPGA. Sec. 5 describes our code porting to FPGA, Sec. 6
reports our results, and finally Sec. 7 highlights some concluding remarks.

2. The EuroEXA Project

The Co-designed innovation and system for resilient exascale computing in Europe: from
application to silicon (EuroEXA) is a H2020 FET HPC project funded by the EU com-
mission with a budget of ≈ 20Me. The aim of the project is to develop a prototype of an
exascale level computing architecture suitable for both compute- and data-intensive ap-
plications, delivering world-leading energy-efficiency. To reach this goal this project pro-
poses to adopt a cost-efficient, modular integration approach enabled by: novel iner-die
links; FPGAs to leverage data-flow acceleration for compute, networking and storage; an
intelligent memory compression technology; a unique geographically-addressed switch-
ing interconnect and novel Arm based compute units. As main computing elements are
going to be adopted multi-core Arm processors combined with Xilinx UltraScale+ FP-
GAs, to be used both as compute accelerators and to implement an high bandwidth and
low-latency interconnect between computing elements.

Form the software platform point of view, EuroEXA provides five high-level pro-
gramming frameworks that enable FPGA-accelerated computing: Maxeler MaxCompil-
erMPT 3, OmpSs@FPGA [9], OpenStream [11], SDSoC or SDAccel 4 with OpenCL,
and Vivado High Level Syntesis 5. These frameworks are used to implement several key
HPC applications across climate/weather, physics/energy and life-science/bioinformatics
scientific domains. More details about the EuroEXA project can be obtained from its
website: https://euroexa.eu.

In this work we describe our early steps towards the porting of our application within
the EuroEXA Project using the OmpSs programming model. In preparation for the Eu-
roEXA prototype, we are working on a Trenz TE8080 development board where we have
developed our early implementations and performed preliminary performance measure-
ments.

3. The Lattice Boltzmann Application

In this contribution we address CFD simulation applications based on the Lattice Boltz-
mann Method (LBM), a class of CFD solvers able to describe efficiently the physics
of complex fluid flows, through a mesoscopic approach. LBM are stencil-based algo-
rithms, discrete in space, time and momenta, operating on regular lattice grid. A set of
synthetic pseudo-particles called populations are sitting at the edges of the lattice, and
evolved for several time steps. At each time step, populations propagate from lattice-
site to lattice-site, and then collide among each other updating their physical parameters.
These two steps are the most compute intensive parts of actual LBM codes. In both rou-

3https://www.maxeler.com/solutions/low-latency/maxcompilermpt/
4https://www.xilinx.com/products/design-tools/all-programmable-abstractions.html
5https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs 703

https://euroexa.eu
https://www.maxeler.com/solutions/low-latency/maxcompilermpt/
https://www.xilinx.com/products/design-tools/all-programmable-abstractions.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

tines, there are no data dependencies between different lattice points, so they can exe-
cute in parallel on as many lattice sites as possible and according to the most convenient
schedule. Boundary conditions, specific to each particular problem could be applied but
have a truly minor computational impact on simulation time. A model labeled as DxQy
describes a fluid in x dimensions using y populations per lattice point.

The specific model used in this work, the D2Q37, has been extensively used for con-
vective turbulence studies [12], but has been also deeply optimized and used as a bench-
marking application for several programming models and HPC hardware architectures.
In the D2Q37 model the propagate function gather at each lattice site populations values
from neighbors at distance up to 3 in the grid, generating a large number of sparse mem-
ory accesses and resulting to be strongly memory-intensive. The collide kernel performs
≈ 6600 double precision floating-point operations on data local to each lattice site, and
is strongly compute-intensive with an arithmetic intensity greater than 10 [13]. Different
implementations of this code have been designed and implemented, adopting several di-
rective based languages to address both multi-core CPUs [14] and accelerators [8], such
as GPUs [15] and also many-core devices [16].

4. The OmpSs Programming Model

In this work we have implemented our application using the OmpSs directives based
programming model, developed at the BSC, and its OmpSs@FPGA extension [9].

OmpSs is very similar to the widely known OpenMP, and in fact it is a forerunner
of OpenMP, where new features are introduced and developed before possibly getting
pushed in the OpenMP standard. OmpSs is one of the tools selected to be used in the
framework of the EuroEXA project to exploit FPGAs as accelerators, and allows to de-
fine task functions to be offloaded to such devices. It provides an automatic generation
of a wrapper code handling data copies to and from the FPGA device, and manages
flow dependencies and synchronizations. These data dependencies can be specified by
the programmer using directives, as shown in Listing 1, where an example function is
decorated with pragmas in order to be offloaded to an FPGA. Different buffers are set as
input and outputs, giving also their sizes, in order to be copied in and out as needed. The
function body to be actually offloaded onto FPGA, once processed by the OmpSs source
to source toolchain, gets transformed into a bitstream by the VivadoHLS synthesis tool,
allowing the programmer to add also proprietary HLS directives in the source code.

Thanks to the OmpSs directives, simply changing the offload target (which directly
affect the final compiler to be used), the same source code can be compiled for several
architectures, possibly targeting different accelerators. Interestingly enough, the use of
OmpSs allows us also to exploit a wider set of tools developed at BSC, meant for per-
formance analysis. In particular, we used Extrae [17], a tracing tool allowing to collect
information during the execution of an application, such as: hardware counters; calls to
MPI, OpenMP and OmpSs libraries; etc. To later utilize the acquired traces, we used also
Paraver [18], a performance analysis tool which loading traces generated by Extrae pro-
vides a visual interface to analyze them. The traces can be displayed as timelines of the
execution, as shown later, but can also be used to perform much more complex statistical
analyses [19,20].

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs704

Listing 1: Example of a function performing the dot product operation, decorated with
OmpSs directives, in order to be offloaded on a FPGA accelerator.

#pragma omp target device(fpga)

#pragma omp task in([BSIZE]v1, [BSIZE]v2) inout ([1] result)

void dotProduct(float *v1, float *v2, float *result) {

int resultLocal = result [0];

for (size_t i = 0; i < BSIZE; ++i) {

resultLocal += v1[i]*v2[i];

}

result [0] = resultLocal;

}

5. Implementation

Our application, when exploiting accelerators, is commonly implemented allocating the
whole data domain into the device memory once for all, at the beginning of the simula-
tion, and then performing several iterations of the algorithm following a double buffering
approach [8]. Despite of this, when using FPGAs, the on-board memory is quite limited
(although faster) with respect to other accelerators, thus we developed a blocking im-
plementation, allowing to move slices of the whole lattice, to the FPGA device, in or-
der to compute one slice at a time. To slice the lattice, gather and scatter operations are
required in order to move just contiguous memory buffers, in and out from the FPGA
BRAMs. The host part of this implementation is shown in Listing 2. Here we can see
an outer loop over the iterations and an inner loop over different blocks of the lattice.
Once the gather operation is completed on the host side, the lbmBlocking task function
is called, which automatically handles the copy in and out of buffer arguments thanks to
the OmpSs directives shown in Listing 3.

As described in Sec. 3, for each iteration, two different functions are commonly
implemented: propagate and collide. In a first ported version, we directly implemented
these two as inline functions, calling one after the other inside the lbmBlocking one. This
requires a temporary intermediate buffer allocated in the FPGA’s BRAMs which could
be easily removed by merging the two function in a single one, saving about one third of
the BRAM required.

Using proprietary VivadoHLS directives, as the ones shown in Listing 3, we have
also optimized the placement of arrays in the BRAMs (using HLS array partition direc-
tive), allowing for the concurrent access of multiple data items. Using HLS pipeline and
HLS unroll directives we have been able also to achieve pipelining or unrolling of the
loops performing the collide operation, increasing the performance as reported in Sec. 6.

On other parallel accelerators, such as GPUs, this application is commonly paral-
lelized computing several lattice sites at the same time, exploiting the independence be-
tween the loops over the lattice sites [8]. On an FPGA this would translate to the un-
rolling and replication of the whole function body, which is not possible with the avail-
able resources on our development board. On the other side, to achieve a certain level of
resources reuse, one may pipeline the execution over the lattice sites, allowing to start
the computation of a new lattice site every few clock cycles. Unfortunately, at this stage,
the resources of our target FPGA should be enough to pipeline the execution over the

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs 705

Listing 2: Core of the LBM application showing the call to the function to be offloaded
on the FPGA and computing one iteration on one block of the lattice.

for (i=0; i<NITER; i++) {

for (ix = HX; ix < HX+LX ; ix+=BCOL) {

// Gathering

Bprv [...] = f1_soa [...];

lbmBlocking(Bnxt , Bprv , param);

#pragma omp taskwait

// Scattering

f2_soa [...] = Bnxt [...];

} // Block loop

} // Iter loop

lattice sites, but the high routing congestion, due to the collide operation complexity, did
not allowed us to produce a working bitstream.

From the portability point of view, interestingly enough, when compiling the appli-
cation for architectures not using VivadoHLS, these directives are just ignored. In partic-
ular we compiled exactly the same code to run on the Arm cores of the Cortex A53 pro-
cessor available in the same Trenz development board. Other directives could be added
in the future, exploiting other directive based languages, to target other architectures.

6. Results

From the portability point of view, a first result is that we now have a single implemen-
tation able to be compiled for a multi-core CPU, just selecting smp as device target, or to
offload the most time consuming part of our LBM application to FPGAs, selecting fpga
as target device.

In this work, to test the application exploiting the FPGA offload on an actual hard-
ware device, we have used a Trenz TE8080 development board 6, which hosts a Xilinx
UltraScale+ ZU9 MPSoC. The FPGA in our Trenz board is much smaller, both in terms
of resources and capabilities, wrt the one that will be used in the EuroEXA project, nev-
ertheless, it is supported by OmpSs and it allows us to test and run our preliminary ported
code and measure initial results. From the performance point of view, in fact, results are
still very preliminary and even on this testbed a wide range of further optimization could
be still explored. We report in Tab. 1 results measured with different implementations
of our code showing the percentage of the ZU9 FPGA resources utilized, and the corre-
sponding overall execution time divided by the lattice size (set to 256×256), giving the
execution time required for each lattice site. We underline this is one of the handiness
of using high level synthesis tools, which allow to easily test different implementations,
possibly changing just pragma directives.

6https://shop.trenz-electronic.de/en/TE0808-04-9BE21-AS-TE0808-04-9BE21-AS-Starter-Kit

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs706

https://shop.trenz-electronic.de/en/TE0808-04-9BE21-AS-TE0808-04-9BE21-AS-Starter-Kit

Listing 3: Sketch of the kernel function to be offloaded onto the FPGA, with OmpSs and
HLS directives, corresponding to the last column implementation in Tab. 1.

#pragma omp target num_instances (1) device(fpga)

#pragma omp task out([BS]Bnxt) in([BH]Bprv , [PS]param)

void lbmBlocking(data_t Bnxt[BS],data_t Bprv[BH],data_t param[PS]) {

#pragma HLS array_partition variable=param block factor =37

for (ix = 0; ix < BCOL; ix++) {

for (iy = HY; iy < (HY+LY); iy++) {

#pragma HLS pipeline II=32

#pragma HLS loop_flatten

#pragma HLS expression_balance

#pragma HLS dependence variable=Bnxt inter false

data_t localPop[NPOP];

#pragma HLS array_partition variable=localPop complete

// PROPAGATE

localPop [0] = Bprv[idxh - 3*NY + 1];

localPop [1] = Bprv[1* popoffh + idxh - 3*NY];

...

localPop [36] = Bprv[36* popoffh + idxh + 3*NY - 1];

// COLLIDE

for (p = 0; p < NPOP; p++) { Ops on localPop [] and param [] };

...

for (p = 0; p < NPOP; p++) { Ops on localPop [] and param [] };

Bnxt[] = ...;

}

}

The first version, on the leftmost column, refers to the original code annotated just
with OmpSs directives, giving an execution time per site of ≈ 61μsec. In the second ver-
sion, we have added also HLS directives, pipelining or unrolling the inner loops involved
in the collide operator, increasing the performance by a factor ≈ 5×, and reducing the
time per lattice-site to ≈ 12.6μsec In a third version we attempted to optimize for re-
sources, merging the propagate and collide functions, and applying just the pipelining of
the loops in the collide region. Moreover we also partitioned an array of constant param-
eters, splitting its content across different BRAMs, to allow to access different data items
during the same clock cycle. As shown in Tab. 1, this results in a reduction of resources
usage, especially for DSPs and BRAMs, without a negative impact on the time per site,
which is even slightly better. In the last version we attempted to pipeline over the lattice
sites (i.e., the outer loops). In this case, as reported by Vivado, the computing resources
of the ZU9 FPGA should be enough to fit the design, if the Initiation Interval (II) –
corresponding to the number of clock cycles to wait before filling in the pipeline a new
lattice site – is kept greater or equal to 32, as shown in Listing 3. Anyhow, unfortunately,

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs 707

Table 1. FPGA resources utilization and achieved overall execution time per lattice site at 200MHz, for dif-
ferent implementations of the offloaded function.

First version
Pipeline/Unroll Merged Funcs Pipeline

Collide loops and Partition over sites

DSP48E 2.8% 16.9% 4.8% 20.83%
BRAM 18K 29.2% 35.7% 11.4% 31.74%
LUT 9.1% 34.7% 38.28% 68.17%
FF 5.5% 15.1% 12.44% 58.66%

Exec. Time 60.62μs 12.65μs 12.4μs ≈ 0.16μs

per lattice site (Estimated)

the high amount of computing resources involved and the code complexity, result in high
routing congestion levels and consequently in a failure of the final bitstream synthesis.
Further increasing the II value allows to reduce the computing resources usage, but the
routing congestion still impairs the synthesis, unless using II values in the same order
of the pipeline depth. Neglecting routing issues, taking into account the FPGA clock fre-
quency – set to 200MHz – and the minimum II value that allows to fit FPGA computing
resources, we can estimate an execution time of ≈ 0.16μsec per lattice site. This corre-
sponds to a performance speed-up of about one order of magnitude. This is relevant in
prospective, giving us an estimation of what we could expect to obtain e.g. on the larger
Xilinx VU9 UltraScale+ FPGA, which could be adopted by the EuroEXA project.

To make a point of reference, we can compare the results achieved with the ones
measured on a processor with a similar power envelop. In particular, running the same
code on the Arm Cortex A53 embedded in the same MPSoC, we measure a value of
9.26μs per lattice site. This result is very close to the one measured on the ZU9 FPGA,
but as already highlighted, using the larger FPGA available in the EuroEXA computing
nodes, we expect to significantly increase this performance value.

Another interesting result is that OmpSs can be combined with a set of performance
profiling tools, such as Extrae and Paraver. Extrae allows to collect execution traces that
can be then visualize using Paraver. In Fig. 1 we show the execution traces of several
launches of our code, corresponding to the different slices (or blocks) of the lattice.
running on the Trenz board. We clearly see 5 different timelines, one for each core of the
Arm CPU and one for the FPGA. The threads (in green) spawns the tasks (in red) which
offload the lbmBlocking kernel that is executed on FPGA (in blue).

7. Conclusion and future works

Using OmpSs programming model and OmpSs@FPGA extension, after the initial setup
of a working tool-chain involving OmpSs, Xilinx VivadoHLS SDK and Xilinx Petalinux
(to generate bootable images for the Trenz board), we have been able, with minimal code
modifications, to allow an actual HPC Lattice Boltzmann application to exploit a Xilinx
FPGA as an accelerator. Interestingly, the same code can be compiled targeting different
architectures, such as x86 and Arm multi-core CPUs.

Adding proprietary HLS directives, we have been able to increase the performance
by 5× wrt the initial version, without introducing major changes to the actual C code,

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs708

Figure 1. Paraver view of the execution timeline. The 4 top rows represent the 4 Arm cores performing the
lattice initialization and the gather/scatter operations (Green) and managing the function offload to the FPGA
(Red). In the bottom row is represented the execution timeline in the FPGA, each Blue box represent the fused
Propagate-Collide computation on one lattice block.

starting from the original implementation of the two main functions of the LBM algo-
rithm. With some modifications (i.e., merging propagate and collide) we were able to
save some BRAM memory, allowing to increase the lattice slice we could process. On
the Xilinx ZU9 FPGA we have used in this work the result achieved is similar to that
measured running the code on the Arm cores of the same MPSoC; however we have
estimated that using a larger FPGA, e.g the Xilinx VU9, we can speed-up the execution
time by at least one order of magnitude. In particular, on the VU9 we expect to be able
to pipeline over the lattice sites, thanks to the increased routing resources, and to reduce
the minimum II, thanks to the higher amount of computing resources.

As future works, we plan to re-organize the loops involved in the collide kernel,
to help to parallelize reduction operations involved in the inner loops. On the host side
we aim to avoid gathering and scattering operations and succeed to overlap data trans-
fers with computations. In particular, we aim to develop a multi-FPGA implementation,
keeping one slice of lattice stored on each FPGA (e.g., in the VU9 on-board UltraRAM
will be available), and moving back and forth from the host-DRAM only the lattice-slice
halos for communications with neighbours. We also expect to work soon on a Xilinx
VU9 in order to verify our estimations.

Acknowledgments: E.C. has been supported by the European Union’s H2020 research
and innovation programme under EuroEXA grant agreement No. 754337. This work has
been done in the framework of the EuroEXA EU project and of the COKA, and COSA,
INFN projects.

References

[1] Güneysu, T., Kasper, T., Novotný, M., Paar, C., Rupp, A.: Cryptanalysis with copacobana. IEEE Trans-
actions on Computers 57(11), 1498–1513 (Nov 2008), doi:10.1109/TC.2008.80

[2] Wienbrandt, L.: Bioinformatics Applications on the FPGA-Based High-Performance Computer RIVY-
ERA, pp. 81–103. Springer New York, New York, NY (2013), doi:10.1007/978-1-4614-1791-0_3

[3] Fröning, H.: Extoll and data movements in heterogeneous computing environments. In: Resch, M.M.,
Bez, W., Focht, E., Kobayashi, H., Patel, N. (eds.) Sustained Simulation Performance 2014. pp. 127–139.
Springer International Publishing, Cham (2015), doi:10.1007/978-3-319-10626-7_11

[4] Belletti, F., Guidetti, M., Maiorano, A., Mantovani, F., Schifano, S., Tripiccione, R., Cotallo, M., Perez-
Gaviro, S., Sciretti, D., Velasco, J., Cruz, A., Navarro, D., Tarancon, A., Fernandez, L., Martin-Mayor,
V., Munoz-Sudupe, A., Yllanes, D., Gordillo-Guerrero, A., Ruiz-Lorenzo, J., Marinari, E., Parisi, G.,

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs 709

doi: 10.1109/TC.2008.80
doi: 10.1007/978-1-4614-1791-0_3
doi: 10.1007/978-3-319-10626-7_11

Rossi, M., Zanier, G.: Janus: An FPGA-based system for high-performance scientific computing. Com-
puting in Science and Engineering 11(1), 48–58 (2009), doi:10.1109/MCSE.2009.11

[5] Baity-Jesi, M., Baños, R., Cruz, A., Fernandez, L., Gil-Narvion, J., Gordillo-Guerrero, A., Iñiguez,
D., Maiorano, A., Mantovani, F., Marinari, E., Martin-Mayor, V., Monforte-Garcia, J., Sudupe, A.M.,
Navarro, D., Parisi, G., Perez-Gaviro, S., Pivanti, M., Ricci-Tersenghi, F., Ruiz-Lorenzo, J., Schifano,
S.F., Seoane, B., Tarancon, A., Tripiccione, R., Yllanes, D.: Janus II: A new generation application-
driven computer for spin-system simulations. Computer Physics Communications 185(2), 550 – 559
(2014), doi:10.1016/j.cpc.2013.10.019

[6] Vanderbauwhede, W., Benkrid, K.: High-performance computing using FPGAs, vol. 3. Springer (2013),
doi:10.1007/978-1-4614-1791-0

[7] Nane, R., Sima, V., Pilato, C., Choi, J., Fort, B., Canis, A., Chen, Y.T., Hsiao, H., Brown, S., Ferrandi,
F., Anderson, J., Bertels, K.: A Survey and Evaluation of FPGA High-Level Synthesis Tools. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 35(10), 1591–1604 (Oct
2016), doi:10.1109/TCAD.2015.2513673

[8] Calore, E., Gabbana, A., Kraus, J., Pellegrini, E., Schifano, S.F., Tripiccione, R.: Massively parallel
lattice-Boltzmann codes on large GPU clusters. Parallel Computing 58, 1 – 24 (2016), doi:10.1016/
j.parco.2016.08.005

[9] Filgueras, A., Gil, E., Alvarez, C., Jimenez, D., Martorell, X., Langer, J., Noguera, J.: Heterogeneous
tasking on SMP/FPGA SoCs: The case of OmpSs and the Zynq. In: 2013 IFIP/IEEE 21st International
Conference on Very Large Scale Integration (VLSI-SoC). pp. 290–291 (Oct 2013), doi:10.1109/
VLSI-SoC.2013.6673293

[10] Bosch, J., Filgueras, A., Vidal, M., Jimenez-Gonzalez, D., Alvarez, C., Martorell, X.: Exploiting paral-
lelism on GPUs and FPGAs with OmpSs. In: Proceedings of the 1st Workshop on AutotuniNg and aDap-
tivity AppRoaches for Energy efficient HPC Systems. p. 4. ACM (2017), doi:10.1145/3152821.
3152880

[11] Pop, A., Cohen, A.: Openstream: Expressiveness and data-flow compilation of openmp streaming pro-
grams. ACM Transactions on Architecture and Code Optimization (TACO) 9(4), 53 (2013), doi:
10.1145/2400682.2400712

[12] Biferale, L., Mantovani, F., Sbragaglia, M., Scagliarini, A., Toschi, F., Tripiccione, R.: Second-order
closure in stratified turbulence: Simulations and modeling of bulk and entrainment regions. Physical
Review E 84(1), 016305 (2011), doi:10.1103/PhysRevE.84.016305

[13] Calore, E., Gabbana, A., Schifano, S.F., Tripiccione, R.: Evaluation of DVFS techniques on modern HPC
processors and accelerators for energy-aware applications. Concurrency and Computation: Practice and
Experience 29(12), 1–19 (2017), doi:10.1002/cpe.4143

[14] Mantovani, F., Pivanti, M., Schifano, S.F., Tripiccione, R.: Performance issues on many-core processors:
A D2Q37 Lattice Boltzmann scheme as a test-case. Computers & Fluids 88, 743 – 752 (2013), doi:
10.1016/j.compfluid.2013.05.014

[15] Calore, E., Gabbana, A., Kraus, J., Schifano, S.F., Tripiccione, R.: Performance and portability of ac-
celerated lattice Boltzmann applications with OpenACC. Concurrency and Computation: Practice and
Experience 28(12), 3485–3502 (2016), doi:10.1002/cpe.3862

[16] Calore, E., Gabbana, A., Schifano, S.F., Tripiccione, R.: Early experience on using knights landing pro-
cessors for lattice boltzmann applications. In: Parallel Processing and Applied Mathematics: 12th Inter-
national Conference, PPAM 2017, Lublin, Poland, September 10-13, 2017. Lecture Notes in Computer
Science, vol. 1077, pp. 1–12 (2018), doi:10.1007/978-3-319-78024-5_45

[17] Servat, H., Llort, G., Huck, K., Giménez, J., Labarta, J.: Framework for a productive performance opti-
mization. Parallel Computing 39(8), 336–353 (2013), doi:10.1016/j.parco.2013.05.004

[18] Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and analyze parallel code. In:
Proceedings of WoTUG-18: transputer and occam developments. vol. 44, pp. 17–31 (1995)

[19] Mantovani, F., Calore, E.: Multi-node advanced performance and power analysis with paraver. In:
Parallel Computing is Everywhere. Advances in Parallel Computing, vol. 32, pp. 723–732 (2018),
doi:10.3233/978-1-61499-843-3-723

[20] Calore, E., Mantovani, F., Ruiz, D.: Advanced Performance Analysis of HPC Workloads on Cavium
ThunderX. In: 2018 International Conference on High Performance Computing Simulation (HPCS). pp.
375–382 (July 2018), doi:10.1109/HPCS.2018.00068

E. Calore and S.F. Schifano / Porting a Lattice Boltzmann Simulation to FPGAs Using OmpSs710

doi: 10.1109/MCSE.2009.11
doi: 10.1016/j.cpc.2013.10.019
doi: 10.1007/978-1-4614-1791-0
doi: 10.1109/TCAD.2015.2513673
doi: 10.1016/j.parco.2016.08.005
doi: 10.1016/j.parco.2016.08.005
doi: 10.1109/VLSI-SoC.2013.6673293
doi: 10.1109/VLSI-SoC.2013.6673293
doi: 10.1145/3152821.3152880
doi: 10.1145/3152821.3152880
doi: 10.1145/2400682.2400712
doi: 10.1145/2400682.2400712
doi: 10.1103/PhysRevE.84.016305
doi: 10.1002/cpe.4143
doi: 10.1016/j.compfluid.2013.05.014
doi: 10.1016/j.compfluid.2013.05.014
doi: 10.1002/cpe.3862
doi: 10.1007/978-3-319-78024-5_45
doi: 10.1016/j.parco.2013.05.004
doi: 10.3233/978-1-61499-843-3-723
doi: 10.1109/HPCS.2018.00068

