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Abstract. In this paper, we propose a network crossbar implementation using par-
tial reconfiguration of an FPGA in a multi-FPGA cluster computing system. With a
proposed framework, inter-FPGA network routing can be changed by reconfiguring
the crossbar module by a partial reconfiguration mechanism. The purpose of this
paper is to compare ordinary crossbar circuits and partial reconfiguration crossbar
circuits, in terms of resource usage and the maximum operating frequency. As a
result, by using partial reconfiguration, the maximum operating frequency is im-
proved by 1.6 times while reducing required ALM resources by 13%, a proper bus
sizes for a crossbar are selected.
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1. Introduction

Field Programmable Gate Arrays (FPGAs) have been attracting attention as a platform
of a power-efficient custom computing because FPGAs can construct optimal data paths
according to each application. Especially in recent years, with the improvement of the
integration degree, FPGAs have been equipped with floating-point arithmetic cores and
have devised wiring architecture to improve the operating frequency. Expectations are
rising for applications in the high performance computing field [1][2].

Stencil calculation, which repeatedly applies arithmetic processing with data refer-
ences of the same shape to data arranged in a grid, is a common design pattern used
in various scientific calculations, and it is known that an FPGA-based system able to
work efficiently in a streamwise framework [3][4][5]. Also, by connecting the operation
pipelines in series and increasing the number of operations per memory access, it is able
to improve the operation performance without increasing memory bandwidth required
for DRAM[6]. Therefore, even in constructing a parallel system in which multiple FP-
GAs are interconnected, it is promising because the performance can be scaled without
being restricted by the connection bandwidth between the FPGAs [7].

In order to build a multi-FPGA computing system, a communication mechanism is
needed to exchange data between FPGAs. Many research projects have been carried out
to extend the switch mechanism for network on chip (NoC) used for inter-module com-
munication inside the chip, and to connect FPGAs [8] [9] [10] [11] [12]. These NoC-
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derived switch mechanisms are mainly based on packet-based routing and have excellent
flexibility. On the other hand, in multi-FPGA cluster computing systems that perform
stream-based processing, depending on the application, it is not always necessarily re-
quired to route input packets to different destinations in a short time, as shown in the
left figure of Figure 1. As shown in the right figure, it just needs to support routing as a
stream for some amount of data.
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Figure 1. Comparison of routing

Since a general-purpose crossbar that can route any packets to any destinations is
implemented in FPGAs as a set of multiplexers, it is thought that implementation effi-
ciency decreases in terms of resource usage and frequency as the number of input / output
bits increases. However, it is inflexible that only fixed routing can be performed for each
application. That is, there is a trade-off between flexibility and performance / efficiency
in crossbars for multi-FPGA systems, and there can be various design options.

In this paper, we propose a stream-based network crossbar that uses partial reconfig-
uration technology of FPGAs for path switching. Partial reconfiguration is a technology
to change a specific circuit of FPGAs while other circuits in operation. Crossbars that use
partial reconfiguration are expected to reduce resource usage and improve the maximum
operating frequency, although their dynamic flexibility is limited compared to conven-
tional general-purpose crossbars. In order to clarify these trade-off relationships and to
evaluate the effect of partial reconfiguration for the crossbar, the conventional crossbar
circuit is compared with the partial-reconfiguration-based crossbar in terms of resource
usage and the maximum operating frequency, and the reconfiguration time required for
partial reconfiguration is also evaluated. In this paper, assuming a multi-FPGA system
with a two-dimensional torus as shown in Figure 2, we evaluate and verify a crossbar
with a total of 5 inputs including 4 external inputs, and 1 internal input and 5 outputs as
shown in Figure 3.

2. Partial Reconfiguration under Intel Environment

In this work, Partial Reconfiguration (PR) is performed with Intel FPGA Arria 10. In the
experiment, JTAG is used to transfer configuration data and partial reconfiguration data.
We use Intel’s Quartus Prime Version 18.1 Pro Edition as a development environment.

2.1. Design procedure for partial reconfiguration design

The design procedure of the partial reconfiguration circuit in the Intel FPGA is as follows
[13].
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Figure 2. 2D torus consisting of FPGA
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Figure 3. Example of stream connection

1. Circuit design and description
2. Creating Design Partition and LogicLock region
3. Allocating Placement region and Routing region
4. Adding the Partial Reconfiguration Controller IP Core
5. Creating Revisions
6. Compiling the Base Revision
7. Generating a qdb file
8. Compiling each persona

Details of the above procedures are described in the following.

2.1.1. Creating Design Partition and LogicLock region

Design Partition is created from partially reconfigured modules. From the created Design
Partition, Quartus’s LogicLock function [14] is used to fix the placement of the partially
reconfigured modules. This fixed area is called LogicLock region. Since the designated
modules are placed and routed only at the designated locations, the degree of freedom of
placement and routing is reduced in the partial reconfiguration module, so the maximum
operating frequency may be reduced compared to the case where the placement is not
fixed. In this paper, we create LogicLock region and fix the crossbar module. And this
design is compared with the ordinarily designed circuit and the partial reconfiguration
circuit.

2.1.2. Allocating Placement region and Routing region

The LogicLock region has Placement region and Routing region. So we fix the location
and size of the Placement region and the Routing region. The Placement region is a
region for modules to be partially reconfigured, and the Routing region is a region for
arranging paths connecting to the Placement region.

2.1.3. Adding the Partial Reconfiguration Controller IP Core

PR control mechanism creates and uses IP Core in Quartus. When performing partial
reconfiguration, only one PR Controller IP is required on the FPGA [15]. The interface
of PR Controller IP is shown in Figure 4.

In Figure 4 nreset is the asynchronous reset signal input for the PR Controller IP
Core. clk is a clock for PR Controller IP Core, supporting up to 100 MHz. It begins a
partial reconfiguration event when the pr start signal changes from 0 to 1. It receives the
next pr start signal only when the freeze signal is low (0). It inputs configuration data

Y. Kawamata et al. / Crossbar Implementation with Partial Reconfiguration 723



PR_IP
data

freeze

pr_start

data_valid

data_ready
status

nreset
clk

1

1

1

n

1

1

1

3

Figure 4. PR Controller IP

for partial reconfiguration to the data port. Data width can be selected from 1, 8, 16,
and 32 bits. data valid indicates that valid data has been input to the data port. freeze
outputs a high (1) signal during partial reconfiguration. data ready indicates that the data
port is ready to receive data. status is a 3-bit error output indicating the status of partial
reconfiguration event. When performs partial reconfiguration via the JTAG interface, the
PR Controller IP exchanges signals with the JTAG interface, so insertion of clk, pr start,
data, data valid, and data ready values into these is ignored.

2.1.4. Compiling Revisions and Personas

In the partial reconfiguration design flow, Quartus uses project revision format. There
are two versions, Base and Persona Implementation. The Base revision is designed for
the entire circuit, and the Persona Implementation revision is designed for the partially
reconfigured module. Usually there are only one Base revision and multiple Persona Im-
plementation revisions. The Base revision is compiled first. This compilation operation
includes logic synthesis, placement and routing, timing analysis, configuration data gen-
eration, etc. The compiled base revision is written out into a qdb database file. The func-
tional module to be partially reconfigured is called persona. Partial reconfiguration data
using the qdb file created in the previous step is generated.

3. Evaluated Implementation

In this paper, in addition to the usual design, the LogicLock (hereinafter LL) circuit with
fixed area for crossbar module and Partial Reconfiguration (hereinafter PR) circuit which
partially reconfigures the crossbar module were created, as shown in Figure 5.
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Figure 5. Outline of each circuit

In the FPGA design created this time, stream data is generated from SrcRAM, which
is M20K Embedded Memory, and stream data is stored in DstRAM through the crossbar.
Also, the crossbar is controlled from CtrRAM.
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All crossbar modules other than PR circuit mount full crossbars. The bit widths for
stream data of 8 bits, 32 bits, 64 bits, 256 bits, 1024 bits and 4096 bits are evaluated.

3.1. Implementation of full crossbar

The implementation of the full crossbar is shown in Figure 6. It has 5 inputs and 5
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Figure 6. Implementation of full crossbar

outputs, and connection of the inputs and outputs is changed by the 8 bit selection line.
The upper 3 bits select 1 output from the leftmost crossbar, and the other outputs are
connected to the crossbar on the right without changing the order. In this way, 8-bit
connection lines are divided into 3 bits, 2 bits, 2 bits and 1 bit, used as selection lines for
each crossbar. In this structure, multiple inputs cannot be connected to a same output.

3.2. persona

Three personas (ST, RT, and X) shown in Figure 7 are evaluated. Since the PR crossbar
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Figure 7. Implemented personas

circuit changes the routing by exchanging the persona, the selection line for crossbar
control is not necessary. Therefore, the selection line is not implemented in the PR circuit.

In persona ST, inputs and outputs are connected in the same order. Applying this
persona in all FPGAs will make each FPGA independent. In persona RT, the inputs are
connected to the output next to that in persona ST. The bottom input is connected to the
top output. Considering Figure 2, a system as shown in Figure 8 can be configured. In
persona X, the inputs and outputs are connected in reverse order.
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3.3. Embedded Memory

We used M20K to store bit stream data. By using M20K as single port RAM, In-System
Memory Content Editor can be used to read from / write to the RAM. In the evaluation
experiments, the circuit operation was verified by writing data to SrcRAM and reading
data from DstRAM via In-System Memory Content Editor. The number of words is set
to 8 for all the crossbar designs.

3.4. Reconfiguration area

In the evaluation, the LL circuit and PR circuit with the same bus bits were implemented
in the same area position, with setting the same area size. The LogicLock region and
the partial reconfiguration area were set as shown in Table 1. The area size was set to

Table 1. Comparison of each area

Width Height Origin

8bit LL circuit 10 10 X88 Y8

8bit PR circuit 10 10 X88 Y8

32bit LL circuit 10 10 X88 Y8

32bit PR circuit 10 10 X88 Y8

64bit LL circuit 10 10 X88 Y8

64bit PR circuit 10 10 X88 Y8

256bit LL circuit 10 30 X88 Y8

256bit PR circuit 10 30 X88 Y8

1024bit LL circuit 10 110 X88 Y8

1024bit PR circuit 10 110 X88 Y8

4096bit LL circuit 28 210 X35 Y11

4096bit PR circuit 28 210 X35 Y11

10×10 for circuits up to 64 bits. For 256 bits and 1024 bits, since it was not possible to
implement in 10×10 area, the area was expanded in the Y direction. For 4096 bits, the
area was expanded in both X and Y directions, and the position of the reference point
(Origin) was also changed so that the area could be set.
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4. Evaluation and Consideration

We evaluate and discuss the above mentioned circuits. The 1024 bit RT, 4096 bit RT
and 4096 bit X can not be implemented because they can not be placed and routed. The
evaluation environment is shown below.

• FPGA : Intel Arria10 10AX115N2F45E1SG FPGA
• CPU : Intel Core(TM) i7-8700K
• MEM : DDR4 16GB
• OS : CentOS 7.5.

4.1. Maximum operating frequency

Figure 9 and Table 2 show the maximum operating frequency of the circuit evaluated
this time.

Figure 9. Maximum operating frequency comparison

Table 2. Maximum operating frequency (MHz)

bus size (bits) 8 32 64 256 1024 4096

normal circuit 326.26 324.04 292.65 268.89 204.79 98.12
LL circuit 252.91 239.41 233.05 196.89 151.01 62.25

PR circuit ST 525.49 467.63 400.48 251.95 150.26 98.73
PR circuit RT 436.30 472.59 423.19 191.86 - -
PR circuit X 420.17 464.68 428.27 196.00 150.99 -

For 64 bits or less, the crossbar implemented by PR results in a higher maximum
operating frequency than the normal circuit. On the other hand, for 256 bits or more,
the frequency is slower than the normal circuit. The LL circuits are slower than the nor-
mal circuit for all the bits. A different PR circuit persona achieves a different maximum
operating frequency, the order of the achieved frequency is also different depending on
bit numbers. This is because a sufficient area can be allocated to the PR region for the
designs up to 64 bits PR, and a high degree of freedom for routing is kept. For larger size
designs, the freedom for routing is limited and thus the maximum frequency is degraded.
Moreover, since the place where the data streams can access to the RAM, is fixed, the
design without RAM can result in higher maximum operating frequency.
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4.2. Amount of resource used

A comparison of the ALM usage of the crossbar modules evaluated this time is shown
in Figure 10 and Table 3. Figure 10 plots the relative usage which is normalized to the

Figure 10. Comparison of ALM useage

Table 3. Resource usage of crossbar module (ALMs)

bus size(bits) 8 32 64 256 1024 4096

normal circuit 101 276 514 1911 6511 26686
LL circuit 150 450 858 2729 10300 51421

PR circuit ST 45 164 321 1386 5122 23168
PR circuit RT 45 160 321 1386 - -
PR circuit X 45 160 320 1386 5605 -

amount of ALMs used in the normal circuit. The PR circuit was smaller than the normal
circuit for all bit numbers, and the LL circuit was larger than the normal circuit. In the
ALM usage for the PR crossbar module is about 45% of that for the normal circuit when
the bus size is 8 bits. This ratio becomes higher as the bus size increases, and reaches
approximately 87% at 4096 bits. On the other hand, differences in ALM usages due to
change of personas for PR circuits are relative low, since there is only a difference in
connection between inputs and outputs in the PR circuit.

Table 4 shows the amount of resources used for the entire FPGA design for evaluated
designs. Even though the PR circuit includes a PR controller IP circuit in addition to

Table 4. Amount to Total resource use

ALM Register RAM

32bit normal circuit 1138 1138 21
32bit LL circuit 1307 1149 21
32bit PR circuit ST 988 1109 20

4096bit normal circuit 47950 42961 2051
4096bit LL circuit 73038 42361 2051
4096bit PR circuit ST 41706 42912 2050

the normal circuit, the PR circuit is smaller than the normal circuit in terms of every
resource. The usage of ALM is about 87% of the normal circuit when the bus size is 32
bits and 4096 bits.
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4.3. Generated file size

Table 5 compares bit stream file sizes fort the evaluated designs. The sof (sram object

Table 5. File size (MB) and reconfiguration time (sec)

sof rbf : ST rbf : RT rbf : X Configuration PR :ST PR : RT PR : X
8bit normal circuit 36 - - - 21.24 - - -
8bit LL circuit 36 - - - 21.02 - - -
8bit PR circuit 36 5.9 5.9 5.9 21.12 7.68 7.69 7.62

32bit normal circuit 36 - - - 20.99 - - -
32bit LL circuit 36 - - - 21.08 - - -
32bit PR circuit 36 6.1 6.1 6.1 21.12 7.93 8.23 7.70

64bit normal circuit 36 - - - 21.05 - - -
64bit LL circuit 36 - - - 21.21 - - -
64bit PR circuit 36 6.1 6.1 6.1 21.30 7.95 7.86 7.84

256bit normal circuit 36 - - - 21.18 - - -
256bit LL circuit 36 - - - 21.28 - - -
256bit PR circuit 36 17 16 17 21.26 18.20 19.00 19.06

1024bit normal circuit 36 - - - 21.25 - - -
1024bit LL circuit 36 - - - 21.28 - - -
1024bit PR circuit 36 54 - 54 21.37 56.65 - 56.46

4096bit normal circuit 36 - - - 21.36 - - -
4096bit LL circuit 36 - - - 21.36 - - -
4096bit PR circuit 36 114 - - 21.36 163.34 - -

file) is used for entire configuration, and the rbf (raw binary file) is used for partial re-
configuration. Therefore, rbf is not generated for normal circuits and LL circuits. The rbf
file sizes for designs of 256 bits or more are larger than those for the designs up to 64
bits, probably due to a larger PR region. Even with the same area, the file size is larger
for 32 bits and 64 bits compared to the design with 8 bits. Moreover, difference in rbf
file size was shown due to change of personas even for the same bus size. On the other
hand, all designs have the same size of sof. This evaluation results mean that crossbars
with a wide bus size require a large area and large on-chip memory capacity to store the
bit stream data.

4.4. Reconfiguration time

A comparison of the reconfiguration time via JTAG interface is shown in Table 5. The
data in the table were obtained as an average of 5 measurement results. The measured
values include not only circuit reconfiguration time but also a startup overhead of the
Quartust tool. There is no significant difference in the configuration time as well as sof
size. On the other hand, in partial reconfiguration, the increase in the reconfiguration
time was observed after 256 bits, where the rbf size is large. When the bus size is 64
bits, the partial reconfiguration time is about 37% of the normal configuration time, and
it increases to 86%, 265%, and 765% when it is 256 bits, 1024 bits, and 4096 bits,
respectively.

Faster partial reconfiguration is possible by using internal memory. If partial recon-
figuration is performed at 3.2 Gbps, which is the theoretical maximum performance of
PR controller IP, it can be estimated that the time required to change a 5.9 MB of an 8-
bit crossbar module persona is about 15 milliseconds. In addition, the 4096-bit crossbar
persona, which requires the largest rbf size of 115 MB among the evaluated designs in
this time, can be theoretically reconfigured in about 285 milliseconds.
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5. Conclusion

In this paper, we described a crossbar for stream data using partial reconfiguration. The
number of required ALMs can be reduced by 13% when the bus size is 32 bits and 4096
bits, compared to a usual full crossbar. This means that partial reconfiguration is effective
for reducing the resources used in crossbar design. So it can be said that it is effective
when you want to reduce the resources used in the design. The partial reconfiguration
also improves the maximum operating frequency when a sufficient partial reconfigura-
tion area is allocated for routing. For example, the maximum operating frequency is im-
proved by 1.6 times for an 8-bit crossbar design. However, for wider bus size such as 256
bits, the maximum operating frequency degraded compared to the normal circuit. Partial
reconfiguration with JTAG interface took several seconds in this experiment. Therefore,
this approach is not suitable for applications that frequently change the routing. One of
our important future work is to verify high-speed partial reconfiguration from internal
memory.
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