
Documenting Computing Environments
for Reproducible Experiments

Jason CHUAH, Madeline DEEDS, Tanu MALIK a,1,
Youngdon CHOI, Jonathan L. GOODALL b

a School of Computing, DePaul University, Chicago, IL 60637
b Dept. of Engineering Systems and Environment, Univ. of Virginia,

Charlottesville, VA 22904

Abstract. Establishing the reproducibility of an experiment often requires repeat-
ing the experiment in its native computing environment. Containerization tools
provide declarative interfaces for documenting native computing environments.
Declarative documentation, however, may not precisely recreate the native comput-
ing environment because of human errors or dependency conflicts. An alternative
is to trace the native computing environment during application execution. Tracing,
however, does not generate declarative documentation.

In this paper, we preserve the native computing environment via tracing and
and automatically generate declarative documentation using trace logs. Our method
distinguishes between inputs, outputs, user and system dependencies for a variety
of programming languages. It then maps traced dependencies to standard package
names and their versions via querying of standard package repositories. We use
standard package names to generate comprehensive declarative documentation of
the container. We verify the efficacy of this approach by preserving the native com-
puting environments of several scientific projects submitted on Zenodo and GitHub,
and generating their declarative documentation. We measure precision and recall
by comparing with author-provided documentation. Our approach highlights over-
and under-documentation in scientific experiments.

1. Introduction

Experiments in computational research are vital for establishing and validating an idea. A
computational experiment typically has three components: goals, means, and claims [1].
While goals and claims are typically text-based, the means of an experiment, includ-
ing experimental environment, procedures, and execution, are primarily computational.
Sharing the means of an experiment is increasingly being recognized as critical toward
establishing the reproducibility of results [2]. Previously sharing the means of an ex-
periment implied sharing code and data relating to an experiment. There is increasing
consensus that to establish reproducibility of results, authors must also share a descrip-
tion of computing environments, such as the documentation of used system libraries,
configuration files, and parameters. Other users can use documentation about computing
environments to build and extend environments.
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Documenting computing environments, however, can be challenging. Typically, a
user determines primary applications within an experiment’s scope. The applications of-
ten depend upon complex software packages, which internally depend upon other pack-
ages. Documenting a computing environment often requires a user to know all packages
and their dependencies including specific release versions. This can be too onerous for
users who have not installed or built the application in different computing environments.

Recently, two prominent methods have emerged that document computing environ-
ments:
• The container method is a declarative method to describe application dependencies

using a set of known packages. The known packages are determined either from doc-
umentation or from having a general familiarity of the application. If part of an appli-
cation does not belong to any known package, the user documents this part manually.

• In the tracing method, a system observes the execution of an application and tracks
direct or indirect references to binaries, input data files, and dependencies. The auto-
matically tracked files comprises of all accessed package dependencies in a computing
environment.

The container method is coarse-grained and is useful for documenting computing en-
vironments of standard applications, such as database servers, web servers, compilers,
where an application builds from well-known packages. Systems such as Docker [3] and
Singularity [4] adopt this approach. The tracing method is more fine-grained and is more
useful for ad hoc, user-compiled applications where the user has either never built the
application from source or does not recollect the complete dependency toolchain. Sys-
tems such as Sciunit [5,6], ReproZip [7], and CARE [8] adopt the latter approach for
documenting dependencies.

While both methods document computing environments, using the documentation
for establishing reproducibility of experiments is a challenge. Container methods rarely
specify version numbers of binaries or packages; neither do the container engines (such
as Docker) verify if the built container environment is the same as the experiment’s na-
tive environment. Tracing methods are too fine-grained—at the granularity of each file in
the package—and thus lose package-level semantics. Thus, while tracing methods guar-
antee exact native computing environments, without an accompanying documentation it
is difficult to change or extend such environments.

In this paper, we define a reproducible experiment as a shared experiment that is
repeated for verification and modified for establishing reproducibility. To repeat an ex-
periment, we preserve its native computing environment via tracing. We document this
environment in terms of declarative container-specific instructions. To generate such in-
structions, we first distinguish between inputs, outputs, user and system dependencies in
a trace log for a variety of programming languages. We then map traced dependencies to
standard package names and their versions via querying of standard package repositories
to generate container-compatible documentation.

The advantage of this approach is that it repeats computational experiments exactly;
The container contains only the necessary traced files, and its contents are declaratively
documented for extensions and reproducibility of the experiment. We verify the efficacy
of this approach by tracing the computing environments of several scientific projects sub-
mitted on Zenodo and GitHub. We compare their generated documentation with author-
provided documentation and also if the container execution provides similar output. Re-
sults show instances of over- and under-documentation in scientific experiments.
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We organize the rest of this paper as follows. We describe container and tracing
methods to document computing environments in Section 2. We describe our process
for generating declarative documentation in Section 3. We present our experiments in
Section 4, and conclude in Section 5.

2. Documenting Computing Environments

In this section we describe the container and tracing methods for documenting computing
environments. We use Docker [3] and Sciunit [5,6] as representative methods to describe
the documentation.

2.1. Containers and Docker

Containers are an OS-level virtualization technique in which the virtual environment
shares the OS kernel of the host environment. A container virtual environment isolates
processes and files using namespaces, chroot, and cgroups. Docker is a container engine
that allows users to create and maintain containers.

A dockerfile is a text-based file with declarative instructions defining the contents of
a Docker container. The sequential instructions specify the order of execution for creat-
ing a desired image. Users typically build an image using a Dockerfile as an argument to
the Docker build command. We summarize available instructions that help to document
the native computing environment of an application. A Docker container can inherit in-
frastructure definitions from another container (FROM instruction). This can either be an
operating system container, such as Ubuntu, but also any other existing container (e.g.,
with a pre-installed JDK installation). For maintenance, a dockerfile should provide the
name and email of an active maintainer (MAINTAINER instruction). The ENV instruction
sets environment variables. ADD and COPY instruction allow to place files into the con-
tainer. A user may document a file as a URL, relative to the current path or as a zip file,
which unpacks the archive within a container. RUN allows to execute any shell command
within the container, and is often used to retrieve dependencies, and install and compile
software. A container’s main running process is the ENTRYPOINT and/or CMD at the end
of the Dockerfile, which may subsequently fork other processes. Each instruction results
in a layer in the Docker image. Thus a well documented dockerfile is a programmatic
specification of the dependencies of an application.

2.2. Tracing and Sciunit

Application virtualization creates a sandbox in which it copies all files and environment
variables referenced by an application. Similar to a container, a sandbox shares the host’s
kernel but unlike a container processes are not isolated—only files are. The sandbox
engine monitors the running application process using strace and then copies each ref-
erenced file within a sandboxed directory. Strace internally attaches itself to the main
application process using the ptrace system call, which monitors all the system calls of
the running process [5]. Ptrace intercepts each system call to determine the running state
of the process. The sandbox engine uses the arguments to file-system specific system
calls to copy accessed files. Sciunit is an engine for creating and maintaining sandboxed
applications.
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The sandboxed creates a log of the traced system calls, which is a file-level doc-
umentation of the native computing environment. The log begins with a special “root
path” which is where the application directory resides in the host system. The log con-
tains all the dependencies identified during the reference execution audit. The sandbox
engine locates the dependencies at the same path within the special root path as it iden-
tifies them in the original system. The trace log also contains interactions between pro-
cesses if they fork or exec other processes and between processes and files when files are
read and written. The log also stores the logical range of times that processes interacted
with other processes or with files. Figure 1 shows a sample trace log of an high-energy
physics application available on Zenodo [9]. Semantically the log comprises binaries,
system libraries, configuration files, input data files, or temporary cache files, which must
be distinguished into packages, sub-packages, and inputs to generate declarative docu-
mentation.

Figure 1. Description of trace logs in column order: (i) timestamp, (ii) process identifier, (iii) type of system
call traced, and (iv) accessed file path name

3. Using Trace Logs to Generate Documentation

We describe how to automatically generate a Dockerfile from a trace log.

3.1. Generating Dockerfile Instructions

The workflow to generate a Dockerfile from trace logs is first encapsulating a computa-
tional artifact into a sciunit, and then using the trace log to distinguish between various
entities namely inputs, outputs, processes, and system/user dependencies. Our method
uses a representation of the trace log in terms of lineage graph to determine these enti-
ties and, once distinguished, maps them to declarative commands in the Dockerfile. We
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Figure 2. Workflow to generate Dockerfile declarative instructions from trace logs

manually compare generated documentation with author-supplied documentation and by
building and executing the container. Figure 2 shows the workflow.

A trace logs maps to lineage graph via logged READ/WRITE/EXECVE calls. In partic-
ular, files represent entities and processes represent activities. Each READ/WRITE/EXECVE
represent a data dependency. Given a lineage graph it can be used simply to determine
inputs as nodes with no in-going edges, outputs as nodes with no out-going edges, and
processes as nodes with process-to-process edges. The log is noisy in that it also contains
information about temporary files, outputs, and process memory execution. We filter
such files as this is execution-specific information and not relevant for documentation.

Distinguished files are converted to declarative instructions. Since each Dockerfile
must begin with a FROM command, and the log provides OS information in its header as
part of @machine command, our method instantiates an @machine specific base image.
Identified input datasets and binaries are documented as ADD statements; Environment
specific information is documented using the ENV command.

A bulk of the trace log consists of references to dependencies, which are either part
of standard system packages or are user-defined. Distinguishing between system and
user dependencies is crucial as the system documents them using different declarations.
In particular, user dependencies are copied via the COPY command, and system depen-
dencies are documented using the RUN command. One may perhaps copy system depen-
dencies too using the COPY command. However, if all system dependencies are docu-
mented similar to user dependencies it leads to only one layer of the docker image. A
one-command Dockerfile provides poor indication about the complexity of the software
or the quality of the Dockerfile [10]. Knowing the documentation precisely is helpful if
the user wishes to extend the experiment. In such cases a more verbose documentation
can indicate if extended dependencies will conflict with the container contents.

Unlike a user dependency which is mentioned directly as part of a COPY command,
a system dependency cannot be directly mapped to a RUN command. We must iden-
tify the corresponding package that maps to this dependency. Packages contain more
than one dependency and for all identified dependencies only the corresponding pack-
age need to be stated in the RUN command. For instance, if the trace log specifies a
path to libcrypto.so.1.1, then the corresponding RUN command is to invoke the package
manager to install libssl as in RUN apt-get install libssl1.1. libssl also maps to
libssl.so.1.1 and libpthread.so.0.

To generate the above RUN instruction, we need to map between a dependency and
its package name. For this we use programming language-specific package managers.
Our method currently works for C/C++, Python and R languages. For instance C/C++
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libraries are searched using apt-get and yum package managers, and Python libraries
are searched through pip. Package managers provide a search interface to determine a
package name from a dependency file2. Sometimes the search returns multiple packages,
and our current policy is to document the first package obtained as part of the search
result. Querying language-specific repository for each package is costly (˜1 min for each
package query). For this we create a local database to curate all queries packages and
known sub-packages to avoid repeated querying.

The process of mapping between a dependency and its package depends on how the
language maintains the packages in the file system. While the most common paths where
libraries are installed are /usr/lib and /lib, depending upon the language packages may
be found under sub-directories site-packages, dist-packages or site-library (Python and
R) or under architecture specific directories (C/C++). Typically a package name follows
these paths along with the version information.

Figure 3. A automaticaly generated Dockerfile for Davix

Detecting packages using path information may result in false positives. In particu-
lar, Python and R interpreters check for the existence of several packages during loading.
The container log is not able to distinguish between paths in which a package is checked
for its existence and a path in which the the content of the package is used (e.g. when
libraries are indeed imported into source code). This distinction is possible by tracing the
logs at a finer granularity and determining if content was indeed read, but that increases
the overhead of tracing. Since the paths of checked packaged is same as the path of a
used package, we distinguish them by identifying patterns of usage. For instance, if a
package is simply checked then there is an entry in specific paths such as dist-info, egg-
info for Python and R, but no sub-package path or file path within a package is present.
Such false positives do not arise with respect to C/C++.

2For R, the CRAN repository only provides a GUI-based search interface which required web-scraping to
build a local database.
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Finally, the sciunit contents are copied into a Docker container but the instructions
for creating path directories are not documented as it does not provide any information
about the native computing environment. Instead we provide as comments the location
of directories which are of relevance to the user. We also use comments to document
versions of packages when package managers do not install specific versions of pack-
ages. Figure 3 shows an example of a generated Dockerfile from the trace log shown in
Figure 1. We would like to highlight that in case of Python applications it is sufficient
to use trace logs to generate a setup file instead of a Dockerfile, and the Dockerfile can
simply reference to executing the setup file. Such optimizations are outside the current
scope.

4. Experiments

We collected scientific computational artifacts from GitHub and Zenodo. GitHub and
Zenodo [9] artifacts are not shared using any virtualization. Our experimental setup con-
sists of the following steps: (i) download and manually install a project; (ii) determine
if they execute successfully in a new environment, possibly generating an output; (iii)
execute the application to containerize under Sciunit; (iv) use the Sciunit log file to gen-
erate a Dockerfile that builds a Docker container consisting of necessary dependencies,
data, and source code; and finally (v) execute the Docker and Sciunit containers to de-
termine is same output is produced. Since our setup depended on generating a valid re-
sult, we downloaded, in total, about 100 repositories from GitHub and Zenodo. How-
ever, we could build and successfully execute only 29 repositories. Out of these, 19 are
Zenodo repositories and 10 are GitHub repositories. The other repositories reported an
error which we did not try to fix. The successful repositories consisted of 19 Python ap-
plications, 10 C/C++ applications, and 1 R application. The first three columns of the
Table 1 shows the information. We would like to re-emphasize that since we are not orig-
inal authors of these applications, we assumed the container result as the correct one if it
matched with the execution.

Language Source
# of
repositories

# of
Dockerfile built

# of
Sciunit executed

# of
Docker execution

C/C++ Zenodo 10 10 10 7

Python
Zenodo
& GitHub

18 18 18 14

R GitHub 1 1 1 1
Table 1. Repository Description

We measure two kinds of experiments: (i) if the generated Dockerfile generates the
same output, and (ii) if the author provided documentation corresponds to the Dockerfile
documentation. The former is determined by first building the Dockerfile and then by
manually comparing the contents of the output in the container with the native execution.
Table 1 shows that we are able to build Dockerfiles for all projects. However some of
the C/C++ and R projects did not produce the same output. In our dataset, most C/C++
projects that did not generate a correct output had a networking component which we
believe was not sufficiently documented. Currently the trace log does not audit network
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events. The single R project that did not run was due to poor mapping of the dependency
to a package name. This owes to the poor search interface of the R package manager.
Python projects were the most stable in terms of result comparison.

To measure if the author provided documentation corresponds to the Dockerfile doc-
umentation. we measure the quality of documentation in terms of precision and recall.
Precision is defined as the ratio of the number of user-listed packages identified in the
trace log to all that our method can potentially identify, and recall is defined as the ratio of
the number of user-listed packages to all those that our method identified. In other words,
precision computes the number of application-specific packages identified amongst all
identified packages, and recall computes the number of packages identified by our sys-
tem which are also listed by the author in the documentation. Equations (1) and (2) state
them formally.

Precision =
Identi f ied Packages

Total Identi f ied Packages
(1)

Recall =
Identi f ied Packages

User Listed Packages
(2)

We show how these measure compare with listed dependencies in two scientific
projects in Python and R, respectively. pySUMMA is a wrapper for the SUMMA [11,12]
computational hydrology model in which authors list seven packages and their versions
as were found compatible in their environment. Figure 4 shows the listed dependencies.
As available on the GitHub repository [13], pySUMMA is not encapsulated in a con-
tainer. We downloaded pySUMMA in a virtual environment and installed it with all its
dependencies and their versions as specified. Figure 4 shows the five packages and their
corresponding versions that were identified as application dependencies. In particular,
the model does not identify seaborn and jupyterthemes: the file paths from the log show
that seaborn is a sub-package of matplotlib, and so it is not a package that the author
must explicitly install. jupyterthemes on the other hand appeared as a dist-info path. So
even though jupyterthemes was listed it was not actually used. Several other packages
are listed in the log, such as NetCDF41.4.2 and geopandas0.4.0/ These packages were
identified within the logs and subsequently added by the authors in the setup.py file.
Several other packages internal to the Python interpreter are listed as ‘Python Built-in
Packages‘. These identified packages come bundled with standard Python environment.
In Figure 4, precision is 0.083 as out of 60 packages identified, the author only listed 7.
Recall is 0.714 as out of 7 that the author listed on the provided README file, only 5
were identified.

Our approach works similarly for documenting an R application. Food Inspection
Evaluation (FIE) is an R application in Table 3 and includes user-defined, standard and
commercial packages. However, in this case, the GitHub repository (not actively main-
tained) [14] does not list any R packages. It lists only a few C libraries. By download-
ing and creating a sciunit, we identified all R user-defined and standard packages and C
dependencies. For lack of space, we omit the result, and direct the user to our Github
repository of analyzed packages.

Table 2 shows the precision and recall for C/C++ and Python Zenodo applications
respectively. Tables 3 shows the precision and recall results for some of the Python and
R GitHub applications. Most of GitHub applications are poorly documented. For these
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Figure 4. Listed Vs Identified Packages in pySUMMA. 2 of the Author-listed packages were not identified as
they are not used by the program. We also identified 31 other packages that the author does not list.

GiHub/Zenodo Object Name Precision Recall

cpp-atlas 0.222 0.66
hdt-CPP 0.4 0.4

simple-web-server 0.33 0.5
research-ocr 0.024 1
c-blockchain 1 1

scram 0.25 0.66
activia 1 1
Dgtal 0 0
Davix 0.28 1

causaltrail 0 0

Zenodo Object Name Precision Recall

clam 0.12 0.5
informers 0.208 0.714

pydov: v0.3.0 0.12 0.75
lmfit-py 0.9.14 0.167 0.8
jungleweather 0.02 1.0
pianoplayer 0.069 1
GraSPy 0.1 0.12 1

fbpic 0.156 1
pyBathySfM v4.0 0.208 1

Table 2. Precision/Recall of C/C++ Zenodo applications (left) Precision/Recall of Python Zenodo applications
(right)

applications, recall is assumed to be 1 as we consider our manual virtual machine in-
stallation as the total number of author-listed packages. All Zenodo applications were
documented in that authors do list install requirements. For applications on both reposi-
tories, precision value is low since we constantly report many sub-packages that are not
reported by the author. However, our recall value is on the high end as we identify most
of the author-listed or required packages for the application to run.
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GitHub Object Name Precision Recall
zagats 0.12 0.5
snake 0.208 0.714

gooselife 0.12 0.75
pySUMMA 0.167 0.8
newmeric 0.02 1.0

asplos 0.069 1
craps 0.12 1

imdb-deeplearn 0.156 1
FIE 0.208 1

Image morphing 0.208 1
Table 3. Precision/Recall of Python & R GitHub applications

5. Conclusions

In this paper we developed a model to interpret container logs and document depen-
dencies of applications. Although precision is low, high recall shows that necessary de-
pendencies captured during tracing can be used to build a comprehensive and verbose
dockerfile. We believe this mapping from a trace provides low-overhead for users to
create and maintain containers, which is increasingly important for conducting repro-
ducible research. For full documentation of our experiments and artifacts please visit:
https://tanum@bitbucket.org/geotrust/trace-descriptions.git
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