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CHRISTOPHE PRANGE∗

Abstract. This paper is concerned with the homogenization of the Dirichlet eigenvalue
problem, posed in a bounded domain Ω ⊂ R2, for a vectorial elliptic operator −∇·Aε(·)∇
with ε-periodic coefficients. We analyse the asymptotics of the eigenvalues λε,k when
ε → 0, the mode k being fixed. A first-order asymptotic expansion is proven for λε,k

in the case when Ω is either a smooth uniformly convex domain, or a convex polygonal
domain with sides of slopes satisfying a small divisors assumption. Our results extend
those of Moskow and Vogelius in [17] restricted to scalar operators and convex polygonal
domains with sides of rational slopes. We take advantage of the recent progress due
to Gérard-Varet and Masmoudi [11, 10] in the homogenization of boundary layer type
systems.

1. Introduction

This paper is devoted to the homogenization of the Dirichlet eigenvalue problem

(1.1)
{
−∇ ·A

(
x
ε

)
∇vε = λεvε, x ∈ Ω
vε = 0, x ∈ ∂Ω

posed in a planar domain Ω with periodic microstructure. Some reasons for the study of
the asymptotical behaviour of the eigenvalues when the period ε → 0 are expounded in
[19]. Among physical motivations is the analysis of low frequency vibrations in periodic
composite media. Significant progress in the direction of a better understanding of the
asymptotics of λε when ε → 0 has been achieved first by Santosa and Vogelius in [19]
then by Moskow and Vogelius in [17] under weaker assumptions. Our work extends the
results of [17] to the case of elliptic systems and more general domains Ω. Moreover, error
estimates have been improved.

Before entering into more details, let us state our mathematical framework. Let N ∈ N,
N ≥ 1. Throughout this paper, Ω stands for a bounded open subset of R2, vε = vε(x) ∈
RN and A = Aαβ(y) ∈ MN (R) is a family of periodic functions of y ∈ T2 indexed by
1 ≤ α, β ≤ 2. Therefore, taking advantage of Einstein’s convention for summation:(

∇ ·A
(x
ε

)
∇vε

)
i

= ∂xα

(
Aαβij

(x
ε

)
∂xβv

ε
j

)
.

All along these lines, C > 0 denotes an arbitrary constant independant of ε. The main
assumptions on A are:

(A1) ellipticity: there exists λ > 0 such that for all ξ =
(
ξ1, ξ2

)
∈ RN ×RN , for all

y ∈ R2,
λξα · ξα ≤ Aαβ(y)ξα · ξβ ≤ λ−1ξα · ξα;

(A2) periodicity: for all y ∈ R2, for all h ∈ Z2,

A(y + h) = A(y);

(A3) regularity: A is supposed to belong to C∞(Ω);
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(A4) symmetry: for all 1 ≤ α, β ≤ 2, for all 1 ≤ i, j ≤ N , Aαβij = Aβαji .

Unless otherwise specified, we always assume (A1), . . . , (A4). In a very classical fashion,
boundedness of Ω and ellipticity of A imply, through Poincaré inequality and Lax Milgram
lemma, that the linear mapping

T ε : f ∈ L2(Ω) 7−→ uε ∈ H1
0 (Ω),

where uε is the unique weak solution of (1.1) with r.h.s. equal to f , is well defined,
continuous and injective. If one composes T ε with the compact injection of H1

0 (Ω) in
L2(Ω), one gets a compact operator, again denoted by T ε, from L2(Ω) in itself. Assumption
(A4) tells that T ε is self-adjoint.

From the previous considerations, we know that our eigenvalue problem (1.1) is well
posed. There exists a sequence of eigenvalues 0 < λε,0 ≤ λε,1 ≤ . . . λε,k

k→∞−−−→ ∞ and a
hilbertian basis (vε,k) of L2(Ω) of corresponding eigenvectors. To tackle the issue of the
asymptotical behaviour of (λε, vε) we deeply use the periodic structure of the problem at
microscale contained in (A2). We expand, at least formally, vε and λε in powers of ε

vε(x) ≈ v0
(
x,
x

ε

)
+ εv1

(
x,
x

ε

)
+ ε2v2

(
x,
x

ε

)
+ . . .(1.2)

λε ≈ λ0 + ελ1 + ε2λ2 + . . .(1.3)

where for all i ∈ N, vi = vi(x, y) is periodic in the y ∈ T2 variable. Plugging (1.2) and
(1.3) in (1.1) and identifying the powers of ε yields that v0 does not depend on y and that
(λ0, v0) solves the homogenized eigenvalue problem

(1.4)
{
−∇ ·A0∇v0 = λ0v0, x ∈ Ω

v0 = 0, x ∈ ∂Ω
.

As usual, the constant homogenized tensor A0 = A0,αβ ∈MN (R) in (1.4) is given by

A0,αβ :=

∫
T2

Aαβ(y)dy +

∫
T2

Aαγ(y)∂yγχ
β(y)dy,

where the family χ = χγ(y) ∈MN (R), y ∈ T2, solves the cell problem

(1.5) −∇y ·A(y)∇yχγ = ∂yαA
αγ , y ∈ T2 and

∫
T2

χγ(y)dy = 0.

Note that A0 fulfils assumptions (A1) and (A4), so there exists a sequence of eigenvalues
0 < λ0,0 ≤ λ0,1 ≤ . . . λ0,k k→∞−−−→∞ and a hilbertian basis (v0,k) of L2(Ω) of corresponding
eigenvectors. Let T 0 denote the operator similar to T ε with A0 in place of Aε := A

( ·
ε

)
.

1.1. What is at stake? Let us now focus on the convergence properties of the eigenvalues
λε,k when ε→∞ and the mode k is fixed. The first thing we know from [4], among other
papers, is that for all k ∈ N,

(1.6)
∣∣∣∣ 1

λε,k
− 1

λ0,k

∣∣∣∣ ≤ ∥∥T ε − T 0
∥∥
L(L2(Ω))

and that
T ε

ε→0−−−→ T 0

in L
(
L2(Ω)

)
norm. Therefore, for all k ∈ N,

λε,k
ε→0−−−→ λ0,k

no matter wether λ0,k is simple or not. When N = 1, i.e. the system (1.1) is a scalar
equation, on condition that one has enough regularity on v0,k (v0,k ∈ H2(Ω) is sufficient)
so that an estimate like

(1.7)
∥∥vε,k(x)− v0,k(x)

∥∥
L2(Ω)

≤ Cε
∥∥v0,k

∥∥
H2(Ω)

2



holds, one has in addition the error estimate

(1.8)
∣∣λε,k − λ0,k

∣∣ ≤ Ckε.
Estimate (1.8) is the starting point of the work of Moskow and Vogelius. Indeed, it leads

to natural questions, such that:

(1) What are the limit points of

(1.9)
λε,k − λ0,k

ε
?

(2) Is there possibly one unique limit point?

(3) What is the next term in the asymptotic expansion?

When it does not lead to any confusion, we shall now omit the exponent k:

λε := λε,k (resp. λ0 := λ0,k)

vε := vε,k (resp. v0 := v0,k).

In [17], Moskow and Vogelius get an asymptotic formula for the eigenvalue λε of the
scalar equation (N = 1), valid up to the order 1 in ε, provided that v0 ∈ H2(Ω), which
is actually true for sufficiently smooth domains Ω (convex or C2 domains). They fully
describe the first-order corrections, i.e. the limit points of (1.9), in the case when Ω is a
convex polygonal domain with sides of rational slopes. In this case there is a continuum
of accumulation points for (1.9).

Theorem 1.1 (Moskow and Vogelius in [17]). Assume that Ω is a convex polygonal domain
with sides of rational slopes and that N = 1. Assume furthermore that λ0 is a simple
eigenvalue.
Then, there exists ϑ∗bl ∈ L2(Ω) solving an explicit homogenized elliptic boundary value
problem (see (3.6)), and a sequence (εn) tending to 0 such that

(1.10) λεn = λ0 + εnλ
0

∫
Ω
ϑ∗bl(x)v0(x)dx+ o(εn).

1.2. Difficulties and strategy. One faces essentially two kind of difficulties in proving a
first-order asymptotic expansion for the eigenvalues like (1.10): the first is linked with the
homogenization of boundary layer type systems, the second has to do with the regularity
of solutions to elliptic systems in nonsmooth domains like polygons. We sketch how these
difficulties are addressed by Moskow and Vogelius and how we extend their results to the
case of elliptic systems and more general polygonal or smooth domains Ω.

1.2.1. Homogenization of boundary layer systems. While v0 solves (1.4) with a homoge-
neous Dirichlet boundary condition on ∂Ω, v1

(
·, ·ε
)
does not cancel in general on ∂Ω. For

this reason, the formal asymptotic expansion (1.2) is inadequate to establish a first-order
expansion for the eigenvalues. Boundary layers need to be taken into account. Considering

vε(x) ≈ v0(x) + ε
[
v1
(
x,
x

ε

)
+ v1,ε

bl (x)
]

+ ε2
[
v2
(
x,
x

ε

)
+ v2,ε

bl (x)
]

+ . . .

where vi,εbl solves

(1.11)
{
−∇ ·A

(
x
ε

)
∇vi,εbl = 0, x ∈ Ω

vi,εbl = −vi
(
x, xε

)
, x ∈ ∂Ω

proves to be more relevant than (1.2). Moreover, ϑ∗bl, appearing in (1.10), comes from the
homogenization of an elliptic boundary layer system like (1.11).

3



The heart of the proof of theorem 1.1 is subsequently the homogenization of boundary
layer type systems

(1.12)
{
−∇ ·A

(
x
ε

)
∇uεbl = 0, x ∈ Ω
uεbl = ϕ

(
x, xε

)
, x ∈ ∂Ω

with ϕ = ϕ(x, y) := Φ(y)ϕ0(x), Φ being, unless stated otherwise, a smooth function on T2

and ϕ0 ∈ H
1
2 (∂Ω).

Compared to uε solution of

(1.13)
{
−∇ ·A

(
x
ε

)
∇uε = f, x ∈ Ω
uε = ϕ0, x ∈ ∂Ω

whose homogenization is now a classical topic, the analysis of the asymptotics of uεbl when
ε→ 0 is complicated by the oscillating boundary data in (1.12) for at least two reasons:

(1) We lack uniform a priori estimates for uεbl in H
1(Ω) norm. This is due to the fact

that ∥∥ϕ(x, xε )∥∥H 1
2 (∂Ω)

= O
(
ε−

1
2
)
.

(2) The behaviour of the boundary layer along the boundary ∂Ω deeply depends on
the interaction between the periodic lattice and the boundary. Thus one can not
expect in general periodicity of the boundary layer along the boundary.

The proofs of Moskow and Vogelius intensively rely on a result due to Avellaneda and
Lin, which addresses a priori estimates for elliptic equations in domains Ω with quite low
regularity.

Theorem 1.2 (Avellaneda and Lin in [6] theorem 3). Assume that Ω is Lipschitz and
satisfies a uniform exterior sphere condition. Assume furthermore that N = 1.
Then, for all 1 < p < ∞, there exists C > 0 such that for all boundary data function
ϕ
(
·, ·ε
)
∈ Lp(∂Ω), there is a solution uεbl ∈ Lp(Ω) of (1.12) satisfying

(1.14)
∥∥uεbl∥∥Lp(Ω)

≤ C
∥∥ϕ(·, ·ε)∥∥Lp(∂Ω)

.

Its usefulness for our boundary layer system (1.12) comes from the following simple
remark: ϕ

(
·, ·ε
)
is bounded in L2(∂Ω) norm, but not in H

1
2 (∂Ω) norm. Consequently,∥∥uεbl∥∥L2(Ω)

= O(1). An estimate similar to (1.14) holds also for elliptic systems, yet under
stronger regularity assumptions on Ω.

Theorem 1.3 (Avellaneda and Lin in [5] theorem 3). Let N be any positive integer.
Assume that Ω is C1,α with 0 < α ≤ 1.
Then, the conclusion of theorem 1.2 remains true.

This theorem can be applied when Ω is smooth, but due to its strong regularity assump-
tion on Ω, it is useless in the case when Ω is a polygonal domain. A precise analysis of the
boundary layer system is needed in this case. Beyond the results of Avellaneda and Lin,
the analysis of (1.12) has been carried out in the context of:

(1) convex polygonal domains Ω, first with edges of rational slopes by Moskow and
Vogelius in [17], Allaire and Amar in [3] (scalar case), then with edges of slopes
satisfying a generic small divisors assumption by Gérard-Varet and Masmoudi in
[11];

(2) smooth domains with uniformly convex boundary by Gérard-Varet and Masmoudi
in the recent paper [10].

This recent progress in the homogenization of (1.12), due to Gérard-Varet and Masmoudi,
opens the way to our generalizations.
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1.2.2. Regularity. Besides the issue of the homogenization of boundary layer systems comes
the problem of regularity. Regularity is required in order to carry out the energy estimates
of the paper. Of course this is only a problem when Ω is a polygonal domain; if Ω is
smooth, all functions we deal with belong to C∞(Ω).

Assume now that Ω is a convex polygon. In the scalar case the results of Grisvard in [12]
(theorem 3.2.1.2) and [13] (section 2.7), recalled in [17], yield that v0 ∈ H2(Ω), because
of convexity. We even know better. Indeed v0 solves (1.4) with r.h.s. λ0v0 ∈ H1(Ω).
Therefore, v0 ∈ H2+ω(Ω), with 0 < ω.

This H2+ω(Ω) regularity on v0 appears to be the minimal regularity one has to assume
in order to get a first-order expansion like (1.10). It is a corollary of the work of Dauge
[8] on the one hand, and Kozlov, Maz’ya and Rossmann [14] on the other hand, that the
results of Grisvard extend to systems with constant coefficients. More precisely:

Theorem 1.4. Let N ≥ 1 and u0 ∈ H1
0 (Ω) be the unique solution of (1.4) with r.h.s.

equal to f ∈ H−1(Ω). Assume that Ω is a convex polygonal domain.

(1) If f ∈ H−1+ω(Ω) with 0 < ω < 1 and ω 6= 1
2 , then u

0 ∈ H1+ω(Ω).

(2) If f ∈ L2(Ω), then u0 ∈ H2(Ω).
(3) If f ∈ H1(Ω), then there exists 0 < ω ≤ 1 such that u0 ∈ H2+ω(Ω).

Let us give a sketch of how to deduce such regularity statements from [8] and [14] (see
these references for more details). We know from [8] (see lemma 5.7) that for all s > 0, for
all vertex x ∈ ∂Ω

{0 < Re(λ) < s} ∩ SpLx is finite,
where SpLx denotes the spectrum of a pencil associated to our problem at vertex x.
Besides, Kozlov, Maz’ya and Rossmann prove in [14], theorem 8.6.2, that for strongly
elliptic systems, with constant coefficients, satisfying the symmetry assumption (A4),
posed in the convex polygonal domain Ω,

{0 ≤ Re(λ) ≤ 1} ∩ SpLx = ∅
for all vertex x. This fact collapses if Ω has at least one angle ≥ π. Yet Ω being polygonal
and convex, it follows from [8], in particular paragraph 7.16, corollary 5.16 and theorem
5.5, that the operator

L(s) : u ∈ Hs+1(Ω) ∩H1
0 (Ω) 7−→ −∇ ·A

(x
ε

)
∇u ∈ Hs−1(Ω)

is a Fredholm operator for all 0 ≤ s 6= 1
2 satisfying {Re(λ) = s} ∩ SpLx = ∅ for all vertex

x ∈ ∂Ω. At this point, one deduces that L(s) is a Fredholm operator for all 0 ≤ s ≤ 1,
s 6= 1

2 . Moreover, there exists 0 < ω ≤ 1 such that L(1+ω) is a Fredholm operator.
Let 0 ≤ s such that L(s) is a Fredholm operator and let f ∈ Hs−1(Ω). Two situations

are possible. If there is a vertex x ∈ ∂Ω and λ ∈ {0 < Re(λ) < s} ∩ SpLx, then theorem
5.11 in [8] yields the existence of u0

reg ∈ H1+s(Ω), the regular part, and u0
sing ∈ H1+γ(Ω),

the singular part, with 0 < γ < minλ∈{0<Re(λ)<s}∩
⋃
x SpLx Re(λ), such that

u0 = u0
sing + u0

reg ∈ H1+γ(Ω).

On the contrary, if for all vertex x, {0 < Re(λ) < s} ∩ SpLx = ∅, then u0 = u0
reg is in

H1+s(Ω). The two first points of theorem 1.4 as well as the third now easily follow from
the preceding results.

Each point of theorem 1.4 plays a role in our reasoning. One can alternatively invoke
weaker regularity results such as:

Theorem 1.5 (Agranovich in [2] theorem 1). Assume that Ω is a Lipschitz domain. Let
uε ∈ H1

0 (Ω) be the unique variational solution of (1.1) with r.h.s. equal to f ∈ H−1(Ω).
5



Assume furthermore that f ∈ H−1+ω(Ω) with 0 ≤ ω < 1
2 .

Then, uε ∈ H1+ω(Ω).

1.3. Outline of our results. This article answers relevant questions asked by Moskow
and Vogelius. Quoting [17] (section 5):

It should be extremely interesting to derive a similar representation formula
for polygons with sides of irrational slopes or for smooth domains. In
particular, it would be interesting to see if this leads to a single first-order
correction for any eigenvalue.

We manage to free ourselves from the assumption N = 1. Our main results then sum
up in the upcoming theorems. We treat separately two different classes of domains Ω: on
the one hand very smooth domains, on the other hand convex polygonal domains. All the
definitions we use are made rigourous later in the paper.

Assume that λ0 is an eigenvalue of order m. Let λ0 = λ0,k = λ0,k+1 = . . . = λ0,k+m−1 be
the eigenvalues repeated with multiplicity. We call Eλ0 the finite-dimensional eigenspace
associated to the eigenvalue λ0. Note that the eigenvectors v0,k, . . . , v0,k+m−1 form an
orthogonal basis of Eλ0 .

Our first theorem is concerned with smooth domains Ω.

Theorem 1.6. Assume that Ω is a smooth C∞ bounded domain with uniformly convex
boundary.
Then, for every 0 ≤ j ≤ m − 1, there exists a unique ϑ∗j,bl ∈ L2(Ω) such that for all
0 ≤ γ < 1

11 ,

(1.15)

 1

m

m−1∑
j=0

1

λε,k+j

−1

= λ0 + ε
λ0

m

m−1∑
j=0

∫
Ω
ϑ∗j,bl(x) · v0,k+j(x)dx+O

(
ε1+γ

)
.

The next theorem faces the same problem for convex polygonal domains Ω.

Theorem 1.7. Assume that Ω is a convex polygonal domain with sides of slopes satisfying
a generic small divisors assumption; see section 3.2.

(1) Then for every 0 ≤ j ≤ m− 1, there exists a unique ϑ∗j,bl ∈ L2(Ω) and 0 < γ such
that

(1.16)

 1

m

m−1∑
j=0

1

λε,k+j

−1

= λ0 + ε
λ0

m

m−1∑
j=0

∫
Ω
ϑ∗j,bl(x) · v0,k+j(x)dx+O

(
ε1+γ

)
.

(2) If Eλ0 ⊂ H3(Ω) ∩ C2(Ω), then for every 0 ≤ j ≤ m − 1, there exists a unique
ϑ∗j,bl ∈ L2(Ω) such that

(1.17)

 1

m

m−1∑
j=0

1

λε,k+j

−1

= λ0 + ε
λ0

m

m−1∑
j=0

∫
Ω
ϑ∗j,bl(x) · v0,k+j(x)dx+O

(
ε

3
2
)
.

We stress that theorem 1.7 has two parts. The first point is a general result: due to
the assumptions on A (in particular (A1) and (A4)) and on Ω (polygonal and convex),
the H2+ω(Ω) regularity, with 0 < ω, needed on the eigenvectors for the proof, happens
to be automatically fulfilled. The second part of the theorem states an optimal result in
view of our proof, in terms of convergence rate, but needs to assume more regularity on
the eigenfunctions.

There is a analog of theorem 1.7 in the case of a convex polygon with sides of rational
slopes, which improves theorem 1.1. Estimate (1.16) (resp. (1.17)) still holds however up

6



to the extraction of a subsequence (εn). Throughout the paper, we indicate how to adapt
the proofs to this case.

When λ0 is simple, (1.15), (1.16) and (1.17) yield the first-order expansion

λε = λ0 + ελ0

∫
Ω
ϑ∗bl(x)v0(x)dx+ o

(
ε1+γ

)
.

valid for appropriate exponents γ.
A consequence of these two theorems 1.6 and 1.7 is that the first-order correction to the

eigenvalue λ0 is identified and unique. Furthermore, it appears in the course of the proof of
theorem 1.7 that ϑ∗j,bl is a solution of an homogenized elliptic boundary value problem (see
(3.7)), whose data can be made explicit. It thus opens the door to numerical computations.

1.4. Organization of the paper. In section 2, we prove some corrector results for uε
solution of (1.13). Such estimates do exist in the litterature, but we focus on minimal
regularity assumptions. In particular, we extend the bounds of [17] to elliptic systems
(non necessarily symmetric) and get new ones, which are useful in the rest of the paper.
Section 3 is devoted to the homogenization of boundary layer type systems. We analyse
the convergence in L2(Ω) of ϑεv,bl solution of (1.12) with ϕ(x, y) := −χα(y)∂xαv

0(x), in the
two different settings: Ω is a smooth domain with uniformly convex boundary or a convex
polygonal domain with the additional diophantine condition on the slopes. This work is
the central step in the proof of theorems 1.6 and 1.7. The final step is done in section 4,
where a first-order correction formula for λε, in terms of the limit of ϑεv,bl when ε → 0, is
obtained.

2. Some error estimates

Let f ∈ H−1(Ω) and ϕ0 ∈ H
1
2 (∂Ω). The solution uε of

(2.1)
{
−∇ ·A

(
x
ε

)
∇uε = f, x ∈ Ω
uε = ϕ0, x ∈ ∂Ω

exists, is unique in H1(Ω) and converges strongly in L2(Ω) towards u0 ∈ H1(Ω) solving
the elliptic system

(2.2)
{
−∇ ·A0∇u0 = f, x ∈ Ω

u0 = ϕ0, x ∈ ∂Ω
.

We focus here on estimates in norm showing how fast this convergence takes place. We do
not need assumption (A4), i.e. the symmetry of A.

2.1. Multiscale expansions. Before coming to the estimates, let us recall some basic
facts about multiscale expansions. In the same fashion as vε (see (1.2)), we expand uε:

(2.3) uε(x) ≈ u0
(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ . . .

Plugging (2.3) in (2.1) and identifying the powers of ε yields, at least formally,

(1) that u0 solves the homogenized system{
−∇ ·A0∇u0 = f, x ∈ Ω

u0 = ϕ0, x ∈ ∂Ω
,

(2) that u1 = u1(x, y) := χα(y)∂xαu
0(x) + ū1(x) where χα is the function defined in

(1.5),
7



(3) and that u2 = u2(x, y) := Γαβ(y)∂xα∂xβu
0(x) + χα(y)∂xα ū

1(x) + ū2(x) where Γαβ

solves

−∇y ·A(y)∇yΓαβ = Bαβ −
∫
T2

Bαβ(y)dy, y ∈ T2 and
∫
T2

χγ(y)dy = 0

with

Bαβ := Aαβ +Aαγ∂yγχ
β + ∂yγ

(
Aγαχβ

)
.

We always assume that ū1 = ū2 = 0.
The first-order correction u1

(
·, ·ε
)
to uε does not satisfy homogeneous Dirichlet boundary

conditions on ∂Ω. It is therefore responsible for a O
(

1√
ε

)
term in the H1(Ω) estimates

involving u1. In order to correct this, one introduces a boundary layer function ϑεu,bl
solution of (1.12) with ϕ(x, y) := −u1(x, y) = −χα(y)∂xαu

0(x). Note that u1
(
·, ·ε
)

+ ϑεu,bl
belongs to H1

0 (Ω).

2.2. Error estimates. We extend here the estimates of Moskow and Vogelius (cf. [17]
section 2) to systems.

Proposition 2.1. Assume that u0 ∈ H2(Ω).
Then

(2.4)
∥∥uε(x)− u0(x)− εu1

(
x, xε

)
− εϑεu,bl(x)

∥∥
H1(Ω)

≤ Cε
∥∥u0
∥∥
H2(Ω)

for C > 0 independent of ε and u0.

The proof relies on energy estimates on the error

eε := uε(x)− u0(x)− εu1
(
x,
x

ε

)
− εϑεu,bl(x).

It is a solution of the following system

(2.5)
{
−∇ ·A

(
x
ε

)
∇eε = rε, x ∈ Ω
eε = 0, x ∈ ∂Ω

where

(2.6) rε := f +∇ ·
[
A
(x
ε

)
∇u0

]
+ ε∇ ·

[
A
(x
ε

)
∇u1

(
x,
x

ε

)]
.

We intend to prove that the H1(Ω) norm of eε is of order ε by showing that the source
term rε in (2.5) is of order ε in H−1(Ω). It is not clear, looking at (2.6), that the latter
is true. To face this issue, we invoke the classic key lemma, which can be proven using
Fourier series expansions:

Lemma 2.2. Let v =

(
v1

v2

)
∈ C∞(T2;R2).

Assume

∇ · v = 0 and
∫
T2

v = 0.

Then there exists ψ = ψ(y) ∈ R such that v = ∇⊥ψ =

(
−∂2ψ
∂1ψ

)
.
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Proof of proposition 2.1. Expanding the source term rε yields

rε =
1

ε

[[
∇y ·A(y)∇yu1

](
x,
x

ε

)
+
[
∇y ·A(y)∇xu0

](
x,
x

ε

)](2.7)

+ f +
[
∇x ·A(y)∇xu0

](
x,
x

ε

)
+
[
∇x ·A(y)∇yu1

](
x,
x

ε

)
+
[
∇y ·A(y)∇xu1

](
x,
x

ε

)
+ ε
[
∇x ·A(y)∇xu1

](
x,
x

ε

)
.

The leading idea is to get rid of terms of order 0 and −1 in ε. We call

v := A(y)∇yu1 +A(y)∇xu0

and notice that

∇y · v = ∇y ·A(y)∇xu0 +∇y ·A(y)∇yu1(x, y)

= ∂yαA
αβ(y)∂xβu

0 + ∂yα
(
Aαβ(y)∂yβχ

γ(y)
)
∂xγu

0

= 0(2.8)

because χγ solves (1.5). Thus the ε−1 order term in (2.7) cancels and it remains to handle
the zeroth order term:

(2.9) f +
[
∇x ·A(y)∇xu0

](
x,
x

ε

)
+
[
∇x ·A(y)∇yu1

](
x,
x

ε

)
+
[
∇y ·A(y)∇xu1

](
x,
x

ε

)
= f +

[
∇x · v

](
x,
x

ε

)
+
[
∇y ·A(y)∇xu1

](
x,
x

ε

)
.

Here again, we take advantage of (2.8) and the definition of A0: on the one hand

∇y ·
(
v −A0∇u0

)
= 0

and on the other hand ∫
T2

(
v −A0∇u0

)
= 0.

It follows that one can apply lemma 2.2, component by component, and get a function
ψ = ψ(x, y) ∈ RN such that

v −A0∇u0 = ∇⊥y ψ.

Due to the fact that v−A0∇u0 is a function of separated variables x and y, ψ itself is and
factors into

(2.10) ψ(x, y) = Ψ(y)∇u0(x).

The function Ψ =
(
Ψα(y)

)
1≤α≤2

∈MN (R)2 is given by the lemma and is therefore of class
C∞. As u0 is assumed to be in H2(Ω), ψ is in H1(Ω) with respect to x. We set

w := ∇⊥x ψ

of regularity L2(Ω) towards x, we compute

∇y · w = ∇y · ∇⊥x ψ = −∇x · ∇⊥y ψ = −∇x · v − f

and use this equality to simplify (2.9)

(2.11) f +
[
∇x · v

](
x,
x

ε

)
+
[
∇y ·A(y)∇xu1

](
x,
x

ε

)
= −

[
∇y · w

](
x,
x

ε

)
+
[
∇y ·A(y)∇xu1

](
x,
x

ε

)
.
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Finally, using ∇x · w = 0 one obtains

rε = −
[
∇y · w

](
x,
x

ε

)
+ ε∇ ·

[
A
(x
ε

)
∇xu1

(
x,
x

ε

)]
= −

[
∇y · w

](
x,
x

ε

)
− ε
[
∇x · w

](
x,
x

ε

)
+ ε∇ ·

[
A
(x
ε

)
∇xu1

](
x,
x

ε

)
= −ε∇ ·

[
w
(
x,
x

ε

)]
+ ε∇ ·

[
A
(x
ε

)
∇xu1

(
x,
x

ε

)]
.(2.12)

It remains to estimate the H−1(Ω) norm of rε. The expression (2.12) is convenient for
two reasons: it is a sum of two terms of order 1 in ε and is written in divergence form.
Moreover, w

(
·, ·ε
)
as well as A

( ·
ε

)
∇xu1

(
·, ·ε
)
belong to L2(Ω) and we have∥∥w(·, ·ε)∥∥L2(Ω)
≤ C

∥∥u0
∥∥
H2(Ω)∥∥A( ·ε)∇xu1

(
·, ·ε
)∥∥
L2(Ω)

≤ C
∥∥u0
∥∥
H2(Ω)

.

Consequently, for all φ ∈ H1
0 (Ω), by Cauchy-Schwarz inequality∣∣∣∣〈rε(x, xε), φ(x)

〉
H−1(Ω),H1

0 (Ω)

∣∣∣∣
=

∣∣∣∣∣
〈
−ε∇ ·

[
w
(
x,
x

ε

)]
+ ε∇ ·

[
A
(x
ε

)
∇xu1

(
x,
x

ε

)]
, φ(x)

〉
H−1(Ω),H1

0 (Ω)

∣∣∣∣∣
=

∣∣∣∣ε∫
Ω
w
(
x,
x

ε

)
· ∇φ(x)dx− ε

∫
Ω
A
(x
ε

)
∇xu1

(
x,
x

ε

)
· ∇φ(x)dx

∣∣∣∣
≤ Cε

∥∥u0
∥∥
H2(Ω)

∥∥φ∥∥
H1

0 (Ω)

which concludes the proof. �

Corollary 2.3. Assume that u0 ∈ H2(Ω).
Then

(2.13)
∥∥uε(x)− u0(x)

∥∥
L2(Ω)

≤ Cε
1
2

∥∥u0
∥∥
H2(Ω)

.

Proof. By the triangular inequality, we get∥∥uε(x)− u0(x)
∥∥
L2(Ω)

≤
∥∥uε(x)− u0(x)− εu1

(
x, xε

)
− εϑεu,bl(x)

∥∥
H1(Ω)

+ ε
∥∥u1
(
x, xε

)∥∥
L2(Ω)

+ ε
∥∥ϑεu,bl(x)

∥∥
L2(Ω)

.

The estimate (2.13) now follows from (2.4), the uniform boundedness of u1
(
·, ·ε
)
in L2(Ω)

and from the bound

�(2.14)
∥∥ϑεu,bl∥∥L2(Ω)

≤
∥∥ϑεu,bl∥∥H1(Ω)

≤ C
∥∥χα(xε )∂xαu0(x)

∥∥
H

1
2 (∂Ω)

≤ Cε−
1
2

∥∥u0
∥∥
H2(Ω)

.

From corollary 2.3, one easily gets a similar L2(Ω) estimate under weaker assumptions
on u0.

Corollary 2.4. Assume that u0 ∈ H1+ω(Ω), with 0 ≤ ω ≤ 1.
Then

(2.15)
∥∥uε(x)− u0(x)

∥∥
L2(Ω)

≤ Cε
ω
2

∥∥u0
∥∥
H1+ω(Ω)

.

Proof. A straightforward energy estimate on the elliptic system satisfied by uε − u0 yields

(2.16)
∥∥uε(x)− u0(x)

∥∥
L2(Ω)

≤ C
∥∥uε(x)− u0(x)

∥∥
H1

0 (Ω)
≤ C

∥∥u0
∥∥
H1(Ω)

.
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Inequality (2.15) now comes from interpolating (2.16) and (2.13). The main idea is to
think of (2.16) (resp. (2.13)) as the statement that the linear operator

u0 7−→ uε(x)− u0(x)

is bounded from H1(Ω) to L2(Ω) (resp. from H2(Ω) to L2(Ω)) and then to interpolate. �

We call now ϑ2,ε
u,bl the solution of (1.12) with ϕ(x, y) := −u2(x, y), whose introduction is

motivated by the same reasons as ϑεu,bl, and state the proposition:

Proposition 2.5. Assume that u0 ∈ H3(Ω).
Then

(2.17)
∥∥uε(x)− u0(x)− εu1

(
x, xε

)
− εϑεu,bl(x)

∥∥
L2(Ω)

≤ Cε
3
2

∥∥u0
∥∥
H3(Ω)

.

Proof. The proof of (2.17) relies on a global energy estimate found in [11], section 3.3:

(2.18)
∥∥∥uε(x)− u0(x)− εu1

(
x, xε

)
− εϑεu,bl(x)− ε2u2

(
x, xε

)
− ε2ϑ2,ε

u,bl(x)
∥∥∥
H1(Ω)

= O
(
ε2
)

It requires u0 ∈ H3(Ω) and it can be showned using the same ideas than those involved in
(2.4), the key being again lemma 2.2. Following the lines of [11] it becomes clear that the
precised estimate∥∥∥uε(x)− u0(x)− εu1

(
x, xε

)
− εϑεu,bl(x)− ε2u2

(
x, xε

)
− ε2ϑ2,ε

u,bl(x)
∥∥∥
H1(Ω)

≤ Cε2
∥∥u0
∥∥
H3(Ω)

holds. It is nothing but a consequence of the way the involved functions factor in the
product of a function depending only on y and of ∇u0 (cf. (2.10)). We conclude, applying
the triangular inequality, that∥∥uε(x)− u0(x)− εu1

(
x, xε

)
− εϑεu,bl(x)

∥∥
L2(Ω)

≤
∥∥∥uε(x)− u0(x)− εu1

(
x, xε

)
− εϑεu,bl(x)− ε2u2

(
x, xε

)
− ε2ϑ2,ε

u,bl(x)
∥∥∥
H1(Ω)

+ ε2
∥∥u2
(
x, xε

)∥∥
L2(Ω)

+ ε2
∥∥∥ϑ2,ε

u,bl(x)
∥∥∥
L2(Ω)

.

The estimate (2.17) now follows from (2.18), the uniform boundedness of u2
(
·, ·ε
)
in L2(Ω)

and the (2.14)-like bound ∥∥∥ϑ2,ε
u,bl

∥∥∥
H1(Ω)

≤ Cε−
1
2

∥∥u0
∥∥
H3(Ω)

. �

We conclude this section focusing on a (2.17)-like estimate for u0 satisfying a weaker
assumption.

Theorem 2.6. Assume u0 ∈ H2+ω(Ω), with 0 ≤ ω ≤ 1.
Then

(2.19)
∥∥uε(x)− u0(x)− εu1

(
x, xε

)
− εϑεu,bl(x)

∥∥
L2(Ω)

≤ Cε1+ω
2

∥∥u0
∥∥
H2+ω(Ω)

.

As in the proof of corollary 2.4, estimate (2.4) (resp. (2.17)) states that the linear
operator

u0 7−→ uε(x)− u0(x)− εu1
(
x,
x

ε

)
− εϑεu,bl(x)

is bounded from H2(Ω) to L2(Ω) (resp. from H3(Ω) to L2(Ω)). By interpolating between
the two linear operators, one gets (2.19). All details can be found in [17] and apply without
any change to the case N > 1.
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3. Homogenization of boundary layer type systems

Throughout this section we are interested in the homogenization of the boundary layer
type system

(3.1)
{
−∇ ·A

(
x
ε

)
∇ϑεu,bl = 0, x ∈ Ω

ϑεu,bl = −χα
(
x
ε

)
∂xαu

0(x), x ∈ ∂Ω

that is in the study of the asymptotic behaviour of the sequence ϑεu,bl when ε tends to 0.
This means we both look for a possible limit of the sequence and for estimates in norm
of the speed of convergence. For all this section, we assume that u0 solves (2.2), with
f ∈ L2(Ω) and ϕ0 = 0.

This is a crucial step in the proof of theorems 1.6 and 1.7. As explained in the introduc-
tion, there is no regularity issue when Ω is smooth. On the contrary, when Ω is a polygon,
we concentrate on minimal regularity. That is why we give two convergence rates: the
first under the minimal assumption u0 ∈ H2+ω(Ω) with 0 < ω < 1, the second under the
stronger regularity assumption u0 ∈ H3(Ω) ∩ C2(Ω), where we focus on improving the
speed of convergence.

For notational convenience, let us write in this section ϑεbl instead of ϑεu,bl.

3.1. Smooth uniformly convex domains. Assume that Ω ⊂ R2 is a smooth (say C∞)
uniformly convex domain i.e. all principal curvatures are bounded from below; see [7]
section III.7 for another definition. The regularizing properties of elliptic operators in
smooth domains yield that u0 ∈ C∞(Ω) (see [1] theorem 10.5). Therefore, the boundary
data function ϕ(x, y) = −u1(x, y) = −χα(y)∂xαu

0(x) is a smooth function. Note that we
do not need assumption (A4), i.e. the symmetry of A.

Theorem 3.1 (Gérard-Varet and Masmoudi in [10]). For all 1 ≤ p < ∞ there exists
ϕ∗ ∈ Lp(∂Ω) such that ϑεbl converges in L2(Ω) towards ϑ∗bl ∈ Lp(Ω) solution of{

−∇ ·A0∇ϑ∗bl = 0, x ∈ Ω
ϑ∗bl = ϕ∗(x), x ∈ ∂Ω

.

Moreover, for all 0 ≤ γ < 1
11 ,

(3.2)
∥∥ϑεbl − ϑ∗bl∥∥L2(Ω)

= O
(
εγ
)
.

We do not attempt to weaken the regularity assumption on Ω, which itself implies strong
regularity on u0. For details concerning the proof and relevant remarks, we refer to [10].

3.2. Convex polygonal domains. Let us assume Ω to be a bounded convex polygonal
domain with M edges, supported by the lines Kk of unitary inward normal nk ∈ S1. Thus

Ω =

M⋂
k=1

{
x, nk · x > ck

}
with ck ∈ R, and for all 1 ≤ k ≤M ,

Kk =
{
x, nk · x = ck

}
.

Beyond this first assumption on Ω we require either

(RAT) rationality: for all 1 ≤ k ≤M ,

(3.3) nk ∈ RQ2

or
12



(DIV) small divisors: there exists C, l > 0 such that for all 1 ≤ k ≤M ,

(3.4) ∀ξ = (ξ1, ξ2) ∈ Z2 \ {0}, |P
nk⊥

(ξ)| ≥ C|ξ|−l

where P
nk⊥

is the orthogonal projector on nk⊥.

As Ω ⊂ R2, condition (3.4) boils down to

(3.5) ∀ξ ∈ Z2 \ {0}, |nk · ξ| ≥ C|ξ|−l

where nk · ξ := nk1ξ1 + nk2ξ2. Note that a vector n ∈ R2 cannot satisfy both (3.3) and (3.4)
or (3.5).

Keeping in mind that ϑεbl solves (3.1), one has the following convergence theorems. Note
that as soon as we invoke the regularity theorem 1.4 in the proofs, we need the symmetry
assumption (A4) on A.

Theorem 3.2. Assume Ω satisfies (RAT). Assume furthermore that u0 ∈ H2+ω(Ω) with
0 < ω < 1 (resp. u0 ∈ H3(Ω) ∩ C2(Ω)).
Then there exists a sequence (εn) and (V k,α,∗)1≤k≤M

1≤α≤2
∈MN (R)2×M such that ϑεnbl solution

of (1.12) converges in L2(Ω) towards ϑ∗bl solution of

(3.6)
{
−∇ ·A0∇ϑ∗bl = 0, x ∈ Ω

ϑ∗bl = −V k,α,∗∂xαu
0(x), x ∈ ∂Ω ∩Kk, for all 1 ≤ k ≤M .

Moreover, we have the following convergence rates:
(1) if u0 ∈ H2+ω(Ω), then there exists 0 < γ < ω

2 such that∥∥ϑεnbl − ϑ∗bl∥∥L2(Ω)
= O

(
εγn
)
;

(2) if u0 ∈ H3(Ω) ∩ C2(Ω), then∥∥ϑεnbl − ϑ∗bl∥∥L2(Ω)
= O

(
ε

1
2
n

)
.

Theorem 3.3. Assume Ω satisfies (DIV). Assume furthermore that u0 ∈ H2+ω(Ω) with
0 < ω < 1 (resp. u0 ∈ H3(Ω) ∩ C2(Ω)).
Then there exists (V k,α,∗)1≤k≤M

1≤α≤2
∈ MN (R)2×M such that ϑεbl solution of (1.12) converges

in L2(Ω) towards ϑ∗bl solution of

(3.7)
{
−∇ ·A0∇ϑ∗bl = 0, x ∈ Ω

ϑ∗bl = −V k,α,∗∂xαu
0(x), x ∈ ∂Ω ∩Kk, for all 1 ≤ k ≤M .

Moreover, we have the following convergence rates:
(1) if u0 ∈ H2+ω(Ω), then there exists 0 < γ < ω

2 such that

(3.8)
∥∥ϑεbl − ϑ∗bl∥∥L2(Ω)

= O
(
εγ
)
;

(2) if u0 ∈ H3(Ω) ∩ C2(Ω), then

(3.9)
∥∥ϑεbl − ϑ∗bl∥∥L2(Ω)

= O
(
ε

1
2
)
.

The only, but major, difference between theorem 3.2 and 3.3 is that, in the small divisors
case, convergence holds for the whole sequence, whereas in the rational case, convergence
takes place up to the extraction of a subsequence (εn), the constant matrices V k,α,∗ de-
pending on (εn).

3.3. Proof of theorem 3.3. The proofs of theorems 3.2 and 3.3 follow the same steps.
They differ mainly in one intermediate result, which explains why in the rational case, the
convergence result is true only up to the extraction of a subsequence. Although we focus
on the (DIV) assumption, we underline the difference with assumption (RAT).
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3.3.1. Existence of the boundary layer tails. Let us show the existence of the matrices
V k,α,∗. Let 1 ≤ k ≤ M and 1 ≤ α ≤ 2. We are interested in the boundary layer profile in
the vicinity of vertex k. Thus, introduce vk,α,εbl solution of{

−∇y ·A(y)∇yvk,α,εbl = 0, y ∈ Ωk,ε

vk,α,εbl = χα(y), y ∈ ∂Ωk,ε

where Ωk,ε :=
{
y, nk · y − ck

ε > 0
}
. Let Mk ∈ M2(R) be an orthogonal matrix, mapping

e2 :=

(
0
1

)
to nk.

The following theorem describes the profile of V k,α,ε := vk,α,εbl (Mk·).

Theorem 3.4 (Gérard-Varet and Masmoudi in [11]). Assume that Ω satisfies (DIV).
Then,

(1) for all ε > 0, there exists V k,α,ε ∈ C∞
(
T×

]
ck

ε ,∞
[)
;

(2) there exists a matrix V k,α,∗ ∈MN (R) such that for all β ∈ N2, for all m ∈ N, there
is a constant C|β|,m > 0 satisfying for all ε > 0 and z2 >

ck

ε ,

(3.10)
(

1 +
∣∣∣z2 − ck

ε

∣∣∣m) sup
z1∈R

∣∣∣∂βz (V k,α,ε(z1, z2)− V k,α,∗)∣∣∣ ≤ C|β|,m.
Remark 3.5. Note that (3.10) is true not only for m ∈ N but for m ∈ R, m > 0. Indeed,
[m] denoting the integer part of m, we have∣∣∣∣z2 −

ck

ε

∣∣∣∣m <

∣∣∣∣z2 −
ck

ε

∣∣∣∣[m]+1

, if
∣∣∣∣z2 −

ck

ε

∣∣∣∣ > 1∣∣∣∣z2 −
ck

ε

∣∣∣∣m ≤ 1, if
∣∣∣∣z2 −

ck

ε

∣∣∣∣ ≤ 1.

Remark 3.6. If we rewrite the second statement of theorem 3.4 in terms of vk,α,εbl instead
of V k,α,ε we get: for all β ∈ N2, for all m ∈ N, there is a constant C|β|,m > 0 satisfying for
all ε > 0 and y ∈ Ωk,ε,

(3.11)
(

1 +
∣∣∣y · nk − ck

ε

∣∣∣m) ∣∣∣∂βy (vk,α,εbl (y)− V k,α,∗)∣∣∣ ≤ C|β|,m.
Remark 3.7. If instead of (DIV) we assume (RAT), the boundary layer tails V k,α,ε still
exist. Furthermore, an equivalent of theorem 3.4 states: there exists a sequence (εn) (here
lies the main difference between the two assumptions), a constant matrix V k,α,∗ ∈MN (R)

such that for all m ∈ N, for all z2 >
ck

εn
,(

1 +
∣∣∣z2 − ck

εn

∣∣∣m) sup
z1∈R

∣∣∣∂βz (V k,α,εn(z1, z2)− V k,α,∗)∣∣∣ ≤ C|β|,m.
The latter is sufficient to get our results. However, Moskow and Vogelius in [17], as well
as Allaire and Amar in [3] manage to prove an improved result under assumption (RAT):
the convergence of the boundary layer towards its tail is exponential.

Assume from now on that Ω satisfies (DIV). Let 0 < ω < 1 be fixed. The assumptions
u0 ∈ H2+ω(Ω) with 0 < ω < 1 and u0 ∈ H3(Ω) ∩ C2(Ω) are treated in parallel. In both
cases, by Sobolev injection, u0 ∈ C1(Ω).
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3.3.2. Well-posedness of (3.7). It is enough to prove that the boundary function of (3.7)
belongs to H

1
2 (∂Ω). One constructs a lifting φ∗bl of ϕ

∗
bl := −V k,α,∗∂xαu

0(x). There exists
G =

(
G1, G2

)
∈MN (R)×MN (R) such that

(3.12) φ∗bl = Gα∂xαu
0.

Following [11], one can show:

Proposition 3.8. If u0 ∈ H2(Ω), then φ∗bl ∈ H1(Ω). If u0, in addition, belongs to H3(Ω),
then φ∗bl belongs to H2(Ω).

3.3.3. Sketch of the proof of the estimates (3.8) and (3.9). Our strategy is to split the
problem of estimating ϑεbl − ϑ∗bl into three easier ones. For this purpose, we introduce ϑε,∗bl
solution of

(3.13)
{
−∇ ·A

(
x
ε

)
∇ϑε,∗bl = 0, x ∈ Ω
ϑε,∗bl = −V k,α,∗∂xαu

0(x), x ∈ ∂Ω ∩Kk, for all 1 ≤ k ≤M

to get via the triangular inequality:∥∥ϑεbl − ϑ∗bl∥∥L2(Ω)
≤
∥∥ϑε,∗bl − ϑ∗bl∥∥L2(Ω)

+
∥∥ϑεbl − ϑε,∗bl ∥∥L2(Ω)

.

Note that ϑε,∗bl is well defined because of proposition 3.8.
The study of the first term seems to be more classic as the boundary data function

of (3.7) and (3.13) is not oscillating. The second term, on the contrary, requires a deep
knowledge about the homogenization of boundary layer systems.

In fact ϑεbl − ϑ
ε,∗
bl is the solution of (1.12) with ϕ(x, y) = −

(
χα(y) − V k,α,∗)∂xαu0(x),

for all x ∈ ∂Ω ∩ Kk, for all y ∈ R2; we call u1,ε
bl the difference ϑεbl − ϑ

ε,∗
bl . It comes from

proposition 3.8 that ϕ defined like this is in H
1
2 (∂Ω). Let vk,εbl := −

(
vk,α,εbl − V k,α,∗)∂xαu0.

We expect u1,ε
bl to be close to

∑M
k=1 v

k,ε
bl

(
·, ·ε
)
:

∥∥u1,ε
bl

∥∥
L2(Ω)

≤
M∑
k=1

∥∥∥vk,εbl (x, xε )∥∥∥L2(Ω)
+
∥∥∥u1,ε

bl (x)−
∑M

k=1 v
k,ε
bl

(
x, xε

)∥∥∥
L2(Ω)

.

The rest of the proof is thus devoted to estimate each of the terms in the r.h.s. of:

(3.14)
∥∥ϑεbl − ϑ∗bl∥∥L2(Ω)

≤
∥∥ϑε,∗bl − ϑ∗bl∥∥L2(Ω)

+
M∑
k=1

∥∥∥vk,εbl (x, xε )∥∥∥L2(Ω)

+
∥∥∥u1,ε

bl (x)−
∑M

k=1 v
k,ε
bl

(
x, xε

)∥∥∥
L2(Ω)

.

3.3.4. First term in the r.h.s of (3.14). We resort to corollary 2.4 to estimate this term.
In order to get some convergence rate, we need to have a little more regularity on ϑ∗bl than
ϑ∗bl ∈ H1(Ω). According to proposition 3.8, the lifting φ∗bl of the boundary data of (3.7)
belongs to H1+ω(Ω) (resp. H2(Ω)), provided that u0 belongs to H2+ω(Ω) (resp. H3(Ω)).

Let us treat the two assumptions on u0 separately. If u0 ∈ H2+ω(Ω), it follows from the
first point of theorem 1.4, that ϑ∗bl has H

1+γ(Ω) regularity for all γ such that 0 ≤ γ ≤ ω

and γ 6= 1
2 . Therefore, ∥∥ϑε,∗bl − ϑ∗bl∥∥L2(Ω)

= O
(
ε
γ
2
)
.

If u0 ∈ H3(Ω), the second point of theorem 1.4 yields that ϑ∗bl ∈ H2(Ω). Applying corollary
2.3 implies ∥∥ϑε,∗bl − ϑ∗bl∥∥L2(Ω)

= O
(
ε

1
2
)
.
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3.3.5. Second term in the r.h.s of (3.14). By linearity of the equations, the boundary layer
tail V k,∗(x) of vk,εbl (x, ·) is equal to

V k,∗(x) = −V k,α,∗∂xαu
0(x) + V k,α,∗∂xαu

0(x) = 0.

We deduce from theorem 3.4: for all m ∈ N, there is a constant Cm > 0 such that for all
ε > 0, for all x ∈ Ω,

(3.15)
(

1 +

∣∣x · nk − ck∣∣m
εm

) ∣∣∣vk,εbl (x, xε )∣∣∣ ≤ Cm.
The uniformity in x comes from the fact u0 ∈ C1(Ω) and from the boundedness of Ω.

Proposition 3.9. For all 1 ≤ k ≤M ,
∥∥∥vk,εbl (x, xε )∥∥∥L2(Ω)

= O
(
ε

1
2

)
.

Proof. Let m ∈ N. From (3.15) we get∥∥∥vk,εbl (x, xε )∥∥∥2

L2(Ω)
≤ C

∫
Ω

1(
1 + |x·nk−ck|m

εm

)2dx

≤ C
∫

Ω̃

1(
1 +

um2
εm

)2du

where Ω̃ :=tMkΩ−
(

0
ck

)
. Therefore, we have to focus on∫

[0,∞[

1(
1 +

um2
εm

)2du2 = ε2m

∫
[0,∞[

1(
εm + um2

)2du2.

For 2m > 1 the integral is convergent and∫
[0,∞[

1(
εm + um2

)2du2 ≤
∫

[0,ε]

1

ε2m
+

∫
[ε,∞[

1

u2m
2

du2 = O
(
ε−2m+1

)
.

We immediately deduce that ∥∥∥vk,εbl (x, xε )∥∥∥2

L2(Ω)
= O(ε)

which yields the result. �

Remark 3.10. It is easy to adapt the proof of proposition 3.9 to get: for all 1 ≤ k ≤ M ,
for all 1 ≤ p ≤ ∞,

∥∥∥vk,εbl (x, xε )∥∥∥Lp(Ω)
= O

(
ε

1
p
)
. For p = ∞ it is (3.15) with m = 0; for

1 ≤ p < ∞ the proof follows the lines of the case p = 2, except that one has to replace
2 by p. In the same manner, it is very straightforward to deduce from (3.11) that for all
1 ≤ p ≤ ∞, for all β ∈ Nd, for all m ∈ N,

(3.16)
∥∥∥∂βy (vk,α,εbl

(
x
ε

)
− V k,α,∗

) |x·nk−ck|m
εm

∥∥∥
Lp(Ω)

= O
(
ε

1
p
)
.

3.3.6. Third term in the r.h.s of (3.14). We proceed as usual by carrying out energy
estimates on the error

eεbl := u1,ε
bl (x)−

M∑
k=1

vk,εbl

(
x,
x

ε

)
.

It solves the system {
−∇ ·A

(
x
ε

)
∇eεbl = rεbl, x ∈ Ω
eεbl = ϕεbl, x ∈ ∂Ω
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where the source term

rεbl :=
M∑
k=1

{
∇ ·
(
A
(x
ε

)
∇xvk,εbl

(
x,
x

ε

))
+

1

ε

[
∇x ·A(y)∇yvk,εbl

](
x,
x

ε

)}
and the piecewise defined boundary function

ϕεbl|∂Ω∩Kk := −
(
χα
(x
ε

)
− V k,α,∗

)
∂xαu

0(x)−
M∑
k′=1

vk
′,ε
bl

(
x,
x

ε

)
= −

M∑
k′ 6=k

vk
′,ε
bl

(
x,
x

ε

)
.

We estimate separately rεbl (cf. lemma 3.11) and ϕεbl (cf. lemma 3.12).

Lemma 3.11. The source term rεbl is

(1) of order O
(
εγ) in H−1(Ω) for all 0 < γ < ω

2 if u0 ∈ H2+ω(Ω);

(2) of order O
(
ε

1
2

)
in H−1(Ω) if u0 ∈ C2(Ω).

Proof. Assume u0 ∈ H2+ω(Ω) (resp. u0 ∈ C2(Ω)). Let 1 ≤ k ≤M be fixed and consider

rε,kbl := ∇ ·
(
A
(x
ε

)
∇xvk,εbl

(
x,
x

ε

))
+

1

ε

[
∇x ·A(y)∇yvk,εbl

](
x,
x

ε

)
.

We focus on the first term of rε,kbl . For all φ ∈ H
1
0 (Ω),∣∣∣∣∣

〈
∇ ·
(
A
(x
ε

)
∇xvk,εbl

(
x,
x

ε

))
, φ(x)

〉
H−1(Ω),H1

0 (Ω)

∣∣∣∣∣
=

∣∣∣∣∫
Ω

(
A
(x
ε

)
∇xvk,εbl

(
x,
x

ε

))
∇φ(x)dx

∣∣∣∣
≤
∥∥∥A(xε )∇xvk,εbl (x, xε )∥∥∥L2(Ω)

∥∥∇φ∥∥
L2(Ω)

≤ C
∥∥∥∇xvk,εbl (x, xε )∥∥∥L2(Ω)

∥∥φ∥∥
H1

0 (Ω)
.

At this point we need to estimate
∥∥∥∇xvk,εbl (x, xε )∥∥∥L2(Ω)

. As

∇xvk,εbl
(
x,
x

ε

)
=
(
vk,β,εbl

(x
ε

)
− V k,β,∗

)
∂xα∂xβu

0,

the idea is to bound the L2(Ω) norm of this term using a Hölder inequality and (3.16).
Doing so, one has to pay attention to the regularity of u0, and to carefully choose the
Lp(Ω) spaces involved.

If u0 ∈ C2(Ω),∥∥∥(vk,β,εbl

(
x
ε

)
− V k,β,∗

)
∂xα∂xβu

0
∥∥∥
L2(Ω)

≤
∥∥∥vk,β,εbl

(
x
ε

)
− V k,β,∗

∥∥∥
L2(Ω)

∥∥∂xα∂xβu0
∥∥
L∞(Ω)

.

The assumption u0 ∈ C2(Ω) plays here the same role as u0 ∈ C1(Ω) for (3.15). Use (3.16)
with p = 2 to conclude.

If u0 ∈ H2+ω(Ω), we cannot proceed as above because ∂xα∂xβu
0 does not belong to

L∞(Ω). By the Sobolev injections, Hω(Ω) is continuously embedded in Lq(Ω) for all
1 ≤ q < 2

1−ω . Yet ∂xα∂xβu
0 is in Hω(Ω). Take 2 ≤ q < 2

1−ω and q̂ ≥ 2 such that
1
q + 1

q̂ = 1
2 . Necessarily

2
ω < q̂. Hölder’s inequality yields∥∥∥(vk,β,εbl

(
x
ε

)
− V k,β,∗

)
∂xα∂xβu

0
∥∥∥
L2(Ω)

≤
∥∥∥vk,β,εbl

(
x
ε

)
− V k,β,∗

∥∥∥
Lq̂(Ω)

∥∥∂xα∂xβu0
∥∥
Lq(Ω)

.

Apply now (3.16) with p = q̂ to get
∥∥∥∇xvk,εbl (x, xε )∥∥∥L2(Ω)

= O
(
ε

1
q̂
)
.
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The second term of rε,kbl needs to be treated differently. The key ingredient is Hardy’s
inequality: for all φ ∈ H1

0 (Ω) ∥∥∥ φ(x)
d(x,∂Ω)

∥∥∥
L2(Ω)

≤
∥∥∇φ∥∥

L2(Ω)

where d(x, ∂Ω) is the distance from x to ∂Ω. Let φ ∈ H1
0 (Ω). For all 2 ≤ q, q̂ ≤ ∞ such

that 1
q + 1

q̂ = 2,∣∣∣∣∫
Ω

[
∇x ·A(y)∇yvk,εbl

](
x,
x

ε

)
φ(x)dx

∣∣∣∣
≤ Cε

∥∥∥∂yβvk,γ,εbl

(
x
ε

)
∂xα∂xγu

0(x)
|x·nk−ck|

ε

∥∥∥
L2(Ω)

∥∥∥ φ(x)
d(x,∂Ω)

∥∥∥
L2(Ω)

≤ Cε
∥∥∥∂yβvk,γ,εbl

(
x
ε

) |x·nk−ck|
ε

∥∥∥
Lq̂(Ω)

∥∥∂xα∂xγu0
∥∥
Lq(Ω)

∥∥∇φ∥∥
L2(Ω)

.

If u0 ∈ H2+ω(Ω), then take 2 ≤ q < 2
1−ω and apply (3.16) with p = q̂ and m = 1. If

u0 ∈ C2(Ω), then take q =∞ and q̂ = 2 and apply (3.16) with p = 2 and m = 1. �

Lemma 3.12. The boundary function ϕεbl is

(1) of order O
(
εω) in W 1− 1

p
,p

(∂Ω) for all 1 ≤ p < 2, if u0 ∈ H2+ω(Ω);

(2) of order O(ε) in W 1− 1
p
,p

(∂Ω) for all 1 ≤ p < 2, if u0 ∈ H3(Ω) ∩ C2(Ω).

Proof. First of all, using proposition 3.8 one notices that ϕεbl belongs to H
1
2 (∂Ω). As ϕεbl

factors into V
( ·
ε

)
∇u0 we immediatly get the very rough estimate∥∥ϕεbl∥∥H 1

2 (∂Ω)
= O

(
ε−

1
2
)

which is far from being enough. We do not try further to get a bound in H
1
2 (∂Ω).

We refer to [11] for the case when u0 ∈ H3(Ω) ∩ C2(Ω). If u0 ∈ H2+ω(Ω) the proof
follows the same scheme, with differences due to the weaker regularity assumption on u0.
Assume for the rest of the proof that u0 ∈ H2+ω(Ω). The edge estimate goes on as in the
case u0 ∈ H3(Ω) ∩ C2(Ω) and one gets for all 1 ≤ p < 2, m ∈ N∥∥ψϕε∥∥

W
1− 1

p ,p(∂Ω)
= O

(
εm
)

where ψ is a smooth function on ∂Ω compactly supported in ∂Ω∩Kk outside the vertices.
Let us now focus on the estimate near a vertex O lying at the intersection of K1 and K2.

We introduce polar coordinates r = r(x) and θ = θ(x) centered at O and use a smooth
function ψ on ∂Ω compactly supported in a vicinity of O. Let 1 ≤ p. The tame estimate

(3.17)
∥∥fg∥∥

W
1− 1

p ,p(∂Ω)
≤ C

(∥∥f∥∥
L∞(∂Ω)

∥∥g∥∥
W

1− 1
p ,p(∂Ω)

+
∥∥g∥∥

L∞(∂Ω)

∥∥f∥∥
W

1− 1
p ,p(∂Ω)

)
holds for all f, g ∈ L∞(∂Ω) ∩W 1− 1

p
,p

(∂Ω). Taking advantage of the fact that H2+ω(Ω)

injects in C1,ω(Ω), one knows ∇u
0

rω ∈ L∞(∂Ω). Besides, ∇u
0

rω belongs to W 1,p(Ω) for all

1 ≤ p < 2. Therefore ∇u
0

rω ∈ L
∞(∂Ω) ∩W 1− 1

p
,p

(∂Ω) for all 1 ≤ p < 2 and (3.17) yields

∥∥ψ2ϕεbl
∥∥
W

1− 1
p ,p(∂Ω)

≤ C
(∥∥ψrωV ( ·ε)∥∥W 1− 1

p ,p(∂Ω)

∥∥∥ψ∇u0rω

∥∥∥
L∞(∂Ω)

+
∥∥ψrωV ( ·ε)∥∥L∞(∂Ω)

∥∥∥ψ∇u0rω

∥∥∥
W

1− 1
p ,p(∂Ω)

)
.
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By estimating first on ∂Ω ∩K1 then on ∂Ω ∩K2 one obtains for all 1 ≤ p < 2∥∥ψrωV ( ·ε)∥∥L∞(∂Ω)
= O

(
εω
)

∥∥ψrωV ( ·ε)∥∥Lp(∂Ω)
= O

(
ε
ω+ 1

p
)

(3.18a) ∥∥ψrωV ( ·ε)∥∥W 1,p(∂Ω)
= O

(
ε
ω−1+ 1

p
)
.(3.18b)

Interpolating (3.18a) and (3.18b) gives∥∥ψrωV ( ·ε)∥∥W 1− 1
p ,p(∂Ω)

≤ C
∥∥ψrωV ( ·ε)∥∥1− 1

p

W 1,p(∂Ω)

∥∥ψrωV ( ·ε)∥∥ 1
p

Lp(∂Ω) = O
(
ε
ω−1+ 2

p
)
.

Finally,
∥∥ψ2ϕεbl

∥∥
W

1− 1
p ,p

= O
(
εω
)
which concludes our proof. �

We conclude this section by expounding how to deduce a bound on eεbl from the lemmas
3.11 and 3.12. We focus on the case when u0 ∈ H2+ω(Ω), as the reasoning is a little more
subtle than in the case u0 ∈ H3(Ω) ∩C2(Ω). It is very straightforward to adapt the proof
in the latter case (see also [11]). Lemma 3.12 gives bounds for ϕεbl in W

1− 1
p
,p

(∂Ω) for
1 ≤ p < 2. As we lack an estimate in H

1
2 (∂Ω), we cannot bound eεbl in H

1(Ω). We thus
have to use results on elliptic equations in divergence form and with source term in some
W−1,p(Ω) space. Let us state a general theorem that suits to our framework (for references
see below).

Theorem 3.13 (Meyers). Let Ω ⊂ Rd be a Lipschitz domain, A = Aαβ(y) ∈ MN (R) a
family of C∞(Ω) functions. Assume the ellipticity of A.
There exists a p0 < 2 such that for all f ∈ H−1(Ω) if u ∈ H1

0 (Ω) is a weak solution of
−∇ ·A∇u = f in H−1(Ω) and if for all p0 < p < 2, f ∈W−1,p(Ω), then u ∈W 1,p

0 (Ω) and
there exists C(p) > 0, ∥∥u∥∥

W 1,p
0 (Ω)

≤ C(p)
∥∥f∥∥

W−1,p(Ω)
.

Such an estimate originally appeared in the work of Meyers [16], where the case of
smooth C2 domains Ω and scalar equations is treated. It has been extended by Gallouet
and Monier in [9] to domains Ω with Lipschitz boundary. In their recent survey article
[15], Maz’ya and Shaposhnikova give very general estimates working for Lipschitz domains
Ω and systems of elliptic equations. Our theorem 3.13 happens to be a very special case
of theorems 1 and 2 in [15]. To make the link obvious take m = 1, l = N , a = 0; then
s = 1− 1

p , W
m,a
p (Ω) = W 1,p(Ω) and V a

p (Ω) = W 1,p
0 (Ω).

It is important to notice that p0 (resp. C(p)) only depends on the coercivity constant
of A (resp. on the coercivity constant of A and p). This makes the theorem applicable to
our homogenization problem. We know from the proof of lemma 3.12 that

ϕεbl ∈
⋂

1≤p≤2

W
1− 1

p
,p

(∂Ω).

Thus there exists a lifting φεbl of ϕ
ε
bl belonging to W 1,p(Ω) for all 1 ≤ p ≤ 2 such that∥∥φεbl∥∥W 1,p(Ω)

≤ C(p)
∥∥ϕεbl∥∥W 1− 1

p ,p(∂Ω)

with C(p) independent of ε, as usual. The difference eεbl − φεbl ∈ H1
0 (Ω) solves

−∇ ·A
(x
ε

)
∇ (eεbl − φεbl) = rεbl +∇ ·A

(x
ε

)
∇φεbl =: F εbl.

As F εbl belongs to W
−1,p(Ω) for 1 ≤ p ≤ 2, we have

(3.19)
∥∥F εbl∥∥W−1,p(Ω)

≤ C(p)

[∥∥rεbl∥∥H−1(Ω)
+
∥∥ϕεbl∥∥W 1− 1

p ,p(∂Ω)

]
.
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Let p0 < 2 given by theorem 3.13. Then, for all p0 < p ≤ 2,∥∥eεbl − φεbl∥∥W 1,p
0 (Ω)

≤ C(p)
∥∥F εbl∥∥W−1,p(Ω)

.

Let 0 < γ < ω
2 . Then, it follows from (3.19) and from lemmas 3.11 and 3.12 that for all

p0 < p < 2, ∥∥F εbl∥∥W−1,p(Ω)
= O

(
εγ
)
.

To get an L2(Ω) estimate on eεbl use the Sobolev injection of W 1,p(Ω) in L2(Ω) and, once
again, our W 1− 1

p
,p

(∂Ω) bound on ϕεbl.

4. A first-order asymptotic expansion of the eigenvalues

This section is concerned with the final step of the proof of theorems 1.6 and 1.7. Let
Eλ0 be the finite-dimensional eigenspace associated to λ0. From the ideas explained in the
introduction, and in particular the third part of theorem 1.4, we know, in any case, that
Eλ0 ⊂ H2+ω(Ω), with 0 < ω. When Ω is a smooth uniformly convex domain, we take
ω = 1.

We have recourse to the ideas involved in [17] to prove the asymptotic expansion of the
eigenvalues. Moskow and Vogelius use abstract estimates due to Osborn in [18]. We recall
the estimate we need in terms of T ε and T 0. Assume that λ0 is an eigenvalue of order m.
Then, Eλ0 is m-dimensional. Let λ0 = λ0,k = λ0,k+1 = . . . = λ0,k+m−1. The associated
eigenvectors v0,k, . . . , v0,k+m−1 form an orthogonal basis of Eλ0 .

Theorem 4.1 (Osborn in [18]). There exists a constant C > 0 such that

(4.1)
∣∣∣ 1
λ0
− 1

m

∑m−1
j=0

1
λε,k+j

− 1
m

∑m−1
j=0

〈
(T ε − T 0)v0,k+j , v0,k+j

〉∣∣∣ ≤ C ∥∥(T ε − T 0)|Eλ0
∥∥2
,

where T ε and T 0 are seen as operators acting in L2(Ω) and 〈·, ·〉 denotes the scalar product
in L2(Ω).

This theorem is a straightforward corollary of theorem 3.1 in [17]. Its proof really uses all
properties of the operators T ε and T 0, among other things selfadjointness and compactness.

The first thing to do is to estimate
∥∥(T ε − T 0)|Eλ0

∥∥. Let f ∈ Eλ0 ; we call uε := T εf and
u0 := T 0f . We need to estimate

∥∥uε − u0
∥∥
L2(Ω)

. We can improve the bounds of section 2,
such as (2.13). Those bounds are not enough to deduce from (4.1) a first-order asymptotic
expansion of λε. The loss of O

(
1√
ε

)
in estimate (2.13) is due to the bad bound of ϑεu,bl in

H
1
2 (∂Ω):∥∥ϑεu,bl∥∥L2(Ω)

≤
∥∥ϑεu,bl∥∥H1(Ω)

≤ C
∥∥χα(xε )∂xαu0(x)

∥∥
H

1
2 (∂Ω)

≤ Cε−
1
2

∥∥u0
∥∥
H2(Ω)

.

If Ω is a smooth domain, (1.7) can be shown thanks to the results of Avellaneda and
Lin. Theorem 1.3 yields indeed∥∥ϑεu,bl∥∥L2(Ω)

≤ C
∥∥ϕ(·, ·ε)∥∥L2(∂Ω)

≤ C
∥∥u0
∥∥
H2(Ω)

.

The assumption u0 ∈ H2(Ω) being clearly fulfilled as u0 = T 0f = 1
λ0
f , it is easy to adapt

the proof of corollary 2.3 to conclude that:

(4.2)
∥∥uε − u0

∥∥
L2(Ω)

≤ Cε
∥∥u0
∥∥
H2(Ω)

≤ Cε
∥∥u0
∥∥
H2+ω(Ω)

.

Assume now that Ω is a polygonal domain satisfying either (RAT) or (DIV). A uniform
bound in ε of ϑεu,bl does not follow from the results of Avellaneda and Lin. The estimates
of section 2 are sufficient to get the convergence of the boundary layer in section 3, up
to the extraction of a subsequence under assumption (RAT). Actually theorem 3.2 (resp.
3.3) implies that: there exists a sequence (εn) such that

∥∥ϑεnu,bl∥∥L2(Ω)
≤ C

∥∥u0
∥∥
H2+ω(Ω)
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(resp. for all 0 < ε,
∥∥ϑεu,bl∥∥L2(Ω)

≤ C
∥∥u0
∥∥
H2+ω(Ω)

). We conclude, as in the case when Ω is
smooth, that (4.2) holds. In order to avoid extracting subsequences we now omit the case
of polygonal domains under assumption (RAT).

It remains to bound
∥∥u0
∥∥
H2+ω(Ω)

by
∥∥f∥∥

L2(Ω)
. Taking advantage of the equivalence of

norms on the finite-dimensional space Eλ0 ⊂ H2+ω(Ω) ⊂ H2(Ω), there exists 0 < C such
that for all w ∈ Eλ0 ,

(4.3)
∥∥w∥∥

H2+ω(Ω)
≤ C

∥∥w∥∥
L2(Ω)

.

Therefore, combining (4.2) with (4.3), we get∥∥T εf − T 0f
∥∥
L2(Ω)

≤ Cε
∥∥u0
∥∥
H2+ω(Ω)

≤ Cε
∥∥f∥∥

L2(Ω)

which shows that ∥∥(T ε − T 0)|Eλ0
∥∥ ≤ Cε.

Our final goal is to prove (1.15), (1.16) and (1.17). The reasoning, in every case, follows
the lines of [17]. Estimate (4.1) now sums up in:

(4.4)
1

λ0
− 1

m

m−1∑
j=0

1

λε,k+j
=

1

m

m−1∑
j=0

〈
(T ε − T 0)v0,k+j , v0,k+j

〉
+O

(
ε2
)
.

Let us focus on 1
m

∑m−1
j=0

〈
(T ε − T 0)v0,k+j , v0,k+j

〉
and work on

〈
(T ε − T 0)v0,k+j , v0,k+j

〉
,

j being fixed in {0, . . . ,m − 1}. We call uε,k+j := T εv0,k+j . This function solves (2.1).
According to estimate (2.19) of theorem 2.6, as v0,k+j ∈ H2+ω(Ω),∥∥uε,k+j(x)− 1

λ0
v0,k+j(x)− ε

λ0
χα
(
x
ε

)
∂xαv

0,k+j(x) + ε
λ0
ϑεv,k+j,bl(x)

∥∥
L2(Ω)

= O
(
ε1+ω

2
)
,

where ϑεv,k+j,bl solves (3.1) with v
0,k+j instead of u0. Cauchy-Schwarz inequality implies

(4.5)
〈

(T ε − T 0)v0,k+j , v0,k+j
〉

=

∫
Ω

(
1

λ0
v0,k+j(x)− uε,k+j(x)

)
v0,k+j(x)dx

=
ε

λ0

∫
Ω
χα
(x
ε

)
∂xαv

0,k+j(x) · v0,k+j(x)dx+
ε

λ0

∫
Ω
ϑεv,k+j,bl(x) · v0,k+j(x)dx+O

(
ε1+ω

2
)
.

We intend to show that the term involving χα in (4.5) is of order O
(
ε1+ω

2

)
. In order to

carry out integrations by parts, we introduce, for each 1 ≤ α ≤ 2, a periodic C∞ solution
bα = bα(y) ∈MN (R) to

∆yb
α = χα,

the Fredholm property being satisfied as
∫
T2 χ

α(y)dy = 0. An integration by part gives

ε

λ0

∫
Ω
χα
(x
ε

)
∂xαv

0,k+j(x) · v0,k+j(x)dx

=
ε

λ0

∫
Ω
ε2∆

(
bα
(x
ε

))
∂xαv

0,k+j(x) · v0,k+j(x)dx

= − ε
2

λ0

∫
Ω
ε∇
(
bα
(x
ε

))
· ∇
(
∂xαv

0,k+j(x)v0,k+j(x)
)
dx

≤ Cε2
∥∥ε∇ (bα (xε ))∥∥L∞(Ω)

∥∥∇ (∂xαv0,k+j(x)v0,k+j(x)
)∥∥
L1(Ω)

≤ Cε2.
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We deduce from (4.4) and (4.5) that

1

λ0
− 1

m

m−1∑
j=0

1

λε,k+j
=

1

m

m−1∑
j=0

〈
(T ε − T 0)v0,k+j , v0,k+j

〉
+O

(
ε2
)

=
1

m

m−1∑
j=0

ε

λ0

∫
Ω
ϑεv,k+j,bl(x) · v0,k+j(x)dx+O

(
ε1+ω

2
)
.

The results of section 3 now apply, in particular theorems 3.1, 3.2 (in this case up to
the extraction of a subsequence) and 3.3, and yield that∥∥ϑεv,k+j,bl − ϑ∗v,k+j,bl

∥∥
L2(Ω)

= O
(
εγ
)

for suitable exponents 0 < γ:
(1) for all 0 ≤ γ < 1

11 , when Ω is a smooth uniformly convex domain;

(2) for all 0 ≤ γ < ω
2 (resp. for γ = 1

2), when Ω is a convex polygon satisfying either
(RAT) or (DIV) and Eλ0 ⊂ H2+ω(Ω) (resp. Eλ0 ⊂ H3(Ω) ∩ C2(Ω)).

Therefore,

1

λ0
− 1

m

m−1∑
j=0

1

λε,k+j
= ε

1

mλ0

m−1∑
j=0

∫
Ω
ϑ∗v,k+j,bl(x) · v0,k+j(x)dx+O

(
ε1+γ

)
,

with γ given above; from the convergence of the eigenvalues λε,k+j towards λ0,k+j , we
deduce that 1

m

m−1∑
j=0

1

λε,k+j

−1

= λ0 + ε
λ0

m

m−1∑
j=0

∫
Ω
ϑ∗v,k+j,bl(x) · v0,k+j(x)dx+O

(
ε1+γ

)
,

which achieves the proof of theorems 1.6 and 1.7.
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