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1 Introduction

Consider the following controlled parabolic equation with equivalued surface boundary conditions:

( n

ye— Y (@7 (@)ya,)z; = f(2, 1) XwXE> in Q,

i, j=1
ylr, = 0,y|r, = k(t) (an unknown function),

n ..
/ Y aysdl =0,
T

04,5=1

(1.1)

y(z,0) = yo, in Q.

Here, @ = Q x [0,T], the time 7' > 0 is given, and Q© C R"(n € N) is a bounded domain with a
C3 boundary I' = I'; U T, such that o N T'; = 0. The coefficients a” (z) € C*(Q) (1,5 =1,---,n)
satisfy that a” = a’* and, for some positive constant A,

n

> alg = AP, V(2,6 € QxR™ (1.2)

i,j=1
Let w be an arbitrarily given nonempty open subset of Q and E C [0, T] with positive measure.
Denote by x,, the characteristic function of w, and by v = (v1, 19, - ,14,) the unit outward normal
vector of €. In equation (1.1), y = y(z,t) is the state variable, yo(-) € L?(Q) is the initial
datum, k(-) € L?(0,T) is unknown but determined by the state y = y(x,t) itself, and f(x,t) €
L>(0,T; L*(9)) is a control function. Thanks to [2, 10], it is easy to show that system (1.1) is
well-posed in Y, where Y is defined by

Y = {y e C([0,T]; L*(Q)) N L*(0,T; HY(Q)) Ylr, x(0,r) = 0, L0 is the equivalued surface of y}

System (1.1) is a controlled parabolic equation with equivalued surface boundary condition for
which y|r,(= k(t)) is a constant for each ¢t € (0,7) and therefore I'g is said to be the equivalued
surface of the state y = y(z,t).

This paper is addressed to establishing the L®°—null controllability for equation (1.1). The
controlled equation (1.1) is said to be L — null controllable in Y at time T if for any yo € L?(£2),
there is a control f € L>(0,7T; L?(f2)) such that the solution of equation (1.1) with this control
satisfies

y(z,T) =0, x €. (1.3)

To our best knowledge, there are only a few papers (published or not) concerning the control-
lability of the parabolic equation with equivalued surface boundary conditions. In [8], the null
controllability was considered but with a technical condition and the insensitizing control problem
was described in [9].

Our main result in this paper is the following theorem:



Theorem 1.1 For any yo € L*(R), there is control f € L°°(0,T; L*(Q2)) such that y, which solves
(1.1), can be driven by f to zero at time T, i.e., y(x,T) = 0. The control f has the estimate

2 2
11120 0,m52200)) < Lllwollz2q)
with L a constant independent of yo.

The constant L appeared in Theorem 1.1 will be given in Section 3 explicitly. The control
in Theorem 1.1 is associated to the set E X w, but not as in most published papers depends on
the set (0,7") x w for the null controllability of linear parabolic equations. We complete the proof
of Theorem 1.1 by using the Lebeau-Robianno-type iteration, according to a special result in the
measure theory in [6] and the observability estimate on the partial sums of eigenfunctions of the
elliptic operator with equivalued surface boundary conditions (we state this result in Section 2 and
give its proof based on two lemmas, which are proven in the appendix.) It is remarkable that we
assume only that the boundary of Q is C? regular, not C™ as in [3].

The rest of this paper is organized as follows. In Section 2, we give some preliminaries. In
Section 3, we give the proof of Theorem 1.1. Finally, in the Appendix, we give the proofs of the two
lemmas based on which the estimate for the eigenfunctions of the elliptic operator with equivalued

surface boundary condition is established, which also has independent interest.

2 Some Preliminaries

In this section, we give some auxiliary results, which will be used in the proof of Theorem 1.1.

Define an unbounded operator A on L?(2) as follows

D(A)=que H2(Q)‘U|F1 = 0,/ Z a“ug,v;dl = 0,ulr, = ¢ (unknown)
r

vhi=l (2.1)
Au=— > (a"uq,)s;, Vu€D(A).
i, j=1
Let {X\i}2,,0 < A1 < A2 < ---, be the eigenvalues of A defined in (2.1) and let {e;}°;

be the corresponding eigenfunctions such that |le;l| 2y = 1(¢ = 1,2,3,---), which serves as an

orthonormal basis of L?(£2). We have an estimate of the eigenfunctions of operator A as follows:

Theorem 2.1 There exist two positive constants C1,Co such that

Z |a;|” < 01602\/?/ ‘ Z a;e;

Ai<lr @\ <r

2
dx (2.2)

for every finite r > 0 and every choice of {a;}x,<,r with a; € C.

In [3], Lebeau and Zuazua addressed a sketch presentation for the case of Direchlet boundary
conditon and based on which they analyzed the null controllability of a linear system of thermoelas-

ticity. As for the case with equivalued surface boundary condition, things are different. Due to the
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special boundary condition, in order to obtain a global Carleman estimate, we need to construct a
special corresponding weight function, which plays a crucial role in the proof of obtaining Theorem
2.1.

Proof of Theorem 2.1. First, we introduce two lemmas for the following elliptic equation with

equivalued surface boundary conditions:

n
Ugt + Z (a7 ug,)z;, =0 in Q,
i,j=1
" (2.3)
ulp, = O,/ Z aug,v;dl' = 0,ulr, = c(t) (unknown).
To g j=1
NE
Lemma 2.1 Let 0 < v < %,’y <T' <T" <T—~, then there exists a constant u € (0,1) such that
for any u € H*(Q), which solves equation (2.3), satisfies

||u||L2(Q><(T’,T”)) <C ||u”22(w><('y,T—7)) HUH}LEEQ) : (2.4)

Lemma 2.2 Let 0 < v < %, then there exists a constant § € (0,1) such that for any u € H*(Q),

which solves equation (2.3), satisfies

6 —
il i1 iy < C (N0 2y + O ey + T oy ) Nulliidgy - (25)

The proofs of these two lemmas is very long, we leave it to the Appendix for simplicity.

Second, we adopt the standard method (see [3, 4]) to complete the proof. For simplicity of no-
tations, we take T'= 4,7 = 1,T” = 3. Following Lemma 2.1 and Lemma 2.2, we have respectively,
for u € H%(Q) solving equation (2.3), that

lull 205 (1,3 < C Il 72 (ra— el i) - (2.6)

and 5
el 1 o=y < C (1000 2y + [1(0) | 20y + IVl g2y ) il (27)

which conclude that
78 _r
ull 2x 1,3 < € (HU(O)HLQ(UJ) + ue(0)] 2wy + HVUHLQ(w)> IIuH}ql(g) : (2.8)
Let bj = \/)\j and
shtb;
y(a.t) = Y = ajej, (2.9)
Ai<r J

and Shg)tb) =t for b = 0. It is a straightforward calculation to show that y given as above solves

equation (2.3), which vanishes when (z,t) € w x {0}. It is obvious that both Rey and Imy satisfy
(2.8). Applying (2.8) to Rey gives that

IRe Yl 120 (1.3)) < C IRe %1 (0) 173, HRGZ/H}LI_I%) : (2.10)
4



Next, we do some estimate on both sides of (2.10). First, we have that

Revloeasy = [ [ |2
“o T\ <r
= Z Rea,|?
A;<r
2 [° 8 2
> Z |Re a;l /1 tdt = 3 Z Rea;|”.

Aj<r Aj<r

sh tb;

JRe ajej‘ dxdt

sh tb;

‘ dxdt (2.11)

Second, for the right hand side of (2.10), we have that

o Rey(x,0) Z Reaje;,
Aj<r

(2.12)
[ReylZn g < Vi (1+1) 3 [Reas? < €' 3 Reay.
A;<r A;j<r
This together with (2.11) gives that
2
Z Rea;|* < CleCQ‘ﬁ/ ‘ Z Reajej‘ dx. (2.13)

A <r w A;<r
By the same manner, we have for the imaginary part Imy that
Z Tm a;]* < C’leCQ‘[/ ‘ Z Ima]ej’ . (2.14)
A;<r w A;<r
Combing (2.13) and (2.14), we complete the proof with
Z la;* < CleCQ‘[/ ‘ Z aje] (2.15)
A;<r w A <r

as in desire. 0O
Let X, be the finite dimensional space spanned by {e;(z)}r,<, and P, : L*(Q) — X, the
projection operator from L?(Q2) to X,. In the sequel, the symbol m(-) represents the Lebesgue

measure of a measurable set.
Lemma 2.3 For each r > 0, there corresponds a control f,. € L>(0,T; L*(Q)) with

Cre@2VT
1]z irszae) < Ty W0l22@) (2.16)

such that P.(y(-,T)) = 0, where y solves system (1.1) with f = f, and C1,Cy are two constants
appeared in (2.2).

Proof. The idea of the proof is as follows: First, we prove an estimate with respect to ¢(z,0),

then we deduce the expected result by dual argument and Riesz Representation Theorem.
5



Let q(z,t) be the solution of the following equation:

;

qt + Z U Q:trZ z; =0, ian(O,T),
i, j=1
qlr, = 0,4|r, = c1(¢) (an unknown function), in (0,7),
] (2.17)
/ Z aiqu vidl’ =0,
o, j=1
q(z,T) € X,

For that X, is of finite dimension, g(x,T) has representation of the form
- S
A <r

for a sequence {a;}x;<,. It is easy for one to verify that the solution of equation (2.17) has the

representation as

Zal Ves(x), Vtelo,T)

A<r
Then thanks to (2.2), we have that

/Q (x,0)dz Zae AT

A <r
< 3 Jawee0f
AT (2.18)

< C’leC?\[/ ‘ Z (az Ai(T— t)) e; de

“N<r

= 01602\/F/ ¢*(z,t)dr, Vtel0,T).

As a result, it follows that

L[ o] i< (e [ ][ ¢ o] o

We therefore arrive at the necessary inequality needed later, i.e.,

/Qq2(m,0)dx < m {/OT [/Q ’XEqu(l"t)de} 5}2

01602\[
= (B IXEXll D1 (0.1:12())

(2.19)

Next, Let y(z,t) be the solution of system (1.1) and multiply system (1.1) by g(z,t), which
solves equation (2.17), then integration by parts gives that

T
/Q y(x, T)q(x, T)dz — /Q yo(z)q(x, 0)da = /O /Q xExef (@ (e, dzdt, g(z,T) € X,
6



It is clear that if we can find a f.(x,t) € L°°(0,T; L?(2)) such that P.(y(-,T)) = 0, then the first
term in the above equation can be deserted. In what follows, we are to shows the existence of
such control function f,(x,t) with the help of Riesz-type Representation Theorem (See [1, Page 98,
Theorem 1]). Define

Ve = {x, (t)xw(z)q(z,t) | q(z,t) solves equation (2.17)},

which is a linear subspace of L!(0,T; L?(Q)). Define F, : Y, — R by

Fr(XxEXwq) = —/Qyo(l‘)Q(fUaO)diU,

then following from (2.19) we have that

2 2 2 Cre@2Vr 2 2
[Fr(Xexwd)|” < 1yollz2q) lla(@, 0)[I72q) < Tm(EE lyoll72(0) IXEXWAl L1 (0.7:22(02)) -

which tells that F). is a bounded linear functinal on Y,. According to the Hahn-Banach theorem,
one can extend F' to the whole space L'(0,7T;L?(Q2)) as a bounded linear functional with norm
preserved. We use F' to denote this extension. By means of Riesz representation theorem, there
must be some f, € L°°(0,T; L?(12)) satisfying

F(g) = /0 ' /Q gfrdzdt, Vg€ L'0,T;L*(Q))

with Carfi
Cre~2Vvr
2 2 1 2
1frllzoo o, 0200)) = IF L (n0,m200)m) < B lvollz2(q) -
In particular, take ¢ = xgxw,q and then we complete the proof. O

We also need the following lemma:

Lemma 2.4 [6, Page 256-257] For almost allt € E, there is a sequence of real numbers {t,}°, C
[0, T with the properties

(a) tn <tny1 <tandt, >t asn— oo;

(b) m(EN[ty, thy1]) > pltnsyr —tn); (2.20)
t —t
(C) ntl = SCO,?’L:LQ,"',
tpto — Tnt1

where Cy, p are two positive numbers depending only on the set E itself.

3 Proof of the Theorem 1.1

Now we turn to the proof of Theorem 1.1. We use the Lebeau-Robianno-type iteration to do this

and borrow some idea from [5] and [7].



Proof of Theorem 1.1. To make use of Lemma 2.4, we take ¢ € F with ¢ < T and {ty}3_, C
(0,T) such that (b) and (c) of Lemma 2.4 hold for some p and Cj and such that

t—t; <min{l, \}.

We present

[tl,t): (INUJN),

1

T3

Iy = [tan—1,tan], JINn = [tan, tan11], N eN.
Based on Lemma 2.4, it is clear that m(E N Iy) > 0 for all N € N.
Step 1. In this step, we prove that for any 3o € L?(f), there exists a control f € L>™(ty, t: L2(2))
: 7112
W0 AW, 7 2200))

of 7o, so that the solution 7 of equation (1.1) satisfying 7(z,t ) = 0 in L?(Q), where g(x,t) solves

<Ly ||%2 (@)> Where L is some constant to be determined but independent

the following equation:

n

U= > (a7 (@)F)a, = XeXwf(@,1), in Q x (t1,1),
i,j=1
7lr, = 0,7|r, = k(t) (an unknown function), t € (t;,t),
"o (3.1)
/ Y agdl =0,
Tog,j=1
g(x7t1) = Yo, in .
We shall verify this claim by induction.
Consider the following two kind of equations:
n ..
ui' = Y (@ (@)yn)e, = xexuSN(2,1), in Q% (tan-1, ton),
i,j=1
N _ N _ .
vy |r, =0,y |r, = k(t) (an unknown function),
(3.2)
n ..
/ Z ayNv;dl =0,
Loy j=1
| v (@ tan—1) = 2N (@, v ), in Q,
on the interval Iy, and on the interval Jy we have that
n ..
7 — Z (a”(2)22))e, =0, in Q x (tan, tan11),
i, j=1
N _ N _ .
2|, = 0,27 |r, = k(t) (an unknown function),
(3.3)
n ..
/ Z a”zﬁyjdf =0,
Lo j=1
Nz, toy) = y™ (2, tan), in Q,




with zg = go(z) € L*(Q) be given in advance. We will prove by deduction that for each ry > 0,
there exists some certain control fy € L®(Iy,; L?(f)) satisfying

N N(N 1)
N 2 N C1 o
Hy ( ) tZN)HLZ(Q) < 2 <,02(t2 — t1)2> Hal HyOHL2 Q)
2 _ _ 2
HZN('atQN—&-l)HLz(Q) < e 2rn (tan+1—tanN) HyN(iL‘>t2N)HL2(Q)
C N N( N 1)
2 N-1 1 4D
0o (Tn - < 2 —_ Cy
[Enyl¥s (In; L2(Q)) = <p2(t2 _ t1)2> HOék ||y0||L2(Q)
N
~ - ~ 12
= oV H Ak ||y0”L2(Q)
k=1
with
(O, N=1
AN = (3.4)
ecz\/me_%\’—l(t3_t2)0072(N72>, N >2

and such that P, (yn (-, tay)) =0 and C = % C2.
In what follows, we do this step by step. First, consider on the time interval Iy = [t1,to] the

following controlled parabolic equation

n

Y — Z (a7 (x)yy,)z; = FH (2, t) XX ES in Q x (t1, t2),
i, j=1
y'lr, = 0,y |r, = k(t) (an unknown function),
(3.5)
/ Z a”yw vids =0,
Lo ,j=1
y' (2, t1) = 7o, in Q,

Making use of Lemma 2.3, for any 71 > 0, there is a control f; € L*(t1,t; L?(£2)) with the

property
C 1 602 VL

||f1HLoo(t1,t2,L2(Q) = [m(E N[t ta]) 2 ||?JU||L2(Q

such that P, (yi(-,t2)) = 0. Then by (b) and (c) of (2.20) in Lemma 2.4, one has that

17212 < e Ol
U Zoo (4 ta522(2)) < 2ty — )2 1500172y = 2l — )2 M 190ll72(0)

by letting a; = €2V, Furthermore, multiplying (3.5) by y1 and integration by parts shows that

d
2" Ol a0 < 22 (18" 020 +2/ Yo, X pXw fi (@, t)do



Integrating this equality from ¢; to t5 with respect to the time variable ¢, one finds that

2 2 b2 2
S A Pl A Y A PR A
1
to
+2/ /yl(x,t)XExwf1($,t)dxdt
t1 Q
1 2 t2 1 2 t2 1 2
< Il =20 [ I Ol de+ 2 [ Ol o
1 1
to — 1
55 Ml iz
~ to —t
< ollzeay + =5 Il o)

Cq ~ 2
2——— .
p2(t2 — t1)2 ai HyOHL2(Q)

On the other hand, on the interval J; = [t3, t4], we consider the following equation but without

control: ) .
2z — Z (a"j(a:)z;i)xj =0, in Q x (tg,t3),
i,j=1
2, =0, zl\po = k(t) (an unknown function),
n_ (3.6)
/ Z a”z;iyjdl1 =0,
Foi,j=1
zl(x7t3) :ﬂl(x7t2)7 in €.

\
Recalling that P, (y(:, t2)) = 0, we have that
2

% Hzl('at)HL2(Q) <=2 Z ajzal:i('>t)z:}:j('?t) < —2n Hzl(at)”%z(ﬂ)
=t 12(9)

Utilizing Gronwall inequality, we obtain that

2 —2r -
121Gty < €2 (1) 22

1 21 (ta—t2) (|~ (|2
2 r1(t3—t2) )
P2t — 01)2 19011z
For Iy = [t3,t4], we consider the following controlled equation:
( n
vi = D (@Y(@)y})e, = fol@, t)xwxE: in Q x (t3, t4),
i,j=1
v?|r, = 0,%%|r, = k(t) (an unknown function),
n
/ Z a”yiyjdf =0,
Toj j=1
2 _ 1 .
Yy (x7t3)_z (‘ra t3)7 1mn Q

\

10



With the similar argument to that for Iy = [t1,ts], there exists a control fo € L™®(t3, t4; L*(Q))
which having the estimate

Cref2Vr 1 2
miE nfes, @ | O W e

IN

2
Hf2HL<>o(t3, t4;L2(Q))

Gy ? ~ 2
< 2 2t — 1)’ Coorez [[Wollz2 (o

with ay = e“2V2e=2r1(t3=%2) and P, (y5(-, t4)) = 0. Furthermore, as the argument on the interval

I1, we have estimate for y?(x,t) that

2 2 2 2 t 2 2
Hy ("t4)HL2(Q) < Hy ("t3)HL2(Q) - 2>\1 ] Hy ('7t)HL2(Q) dt
3

ta
t3 Q

ta ta
2 2
<t gy~ 2 [ POt n [ [ WP
t3 t3 Q
t4_t3 ’ H2
o Nliee g, 20
2 ty — 13 2
< 12 ) ey + N Mol g, sz

C1 ~ 2
< 22—\t .
< <p2(t4 — t3)2> 0 o1 a2 [[Yollz2
Thus, we proved the cases for N = 1,2. Now suppose that we had proved the case for N, we

consider the case for N + 1.

Consider
n
v - Z (@?(@)yp ey = (@, )X EXw, in Q< (fan+1, Tan+2),
Z7j:1

yn+1lr; = 0,yn+1|r, = k(t) (an unknown function),

/ > aytydt =0,
To g j=1
YN (@, tan ) = 27 (2, tan 1), in Q,

on the interval 41 and

n
Z£N+1 - Z (a”($)z;]n\i+1)x]’ =0, in Q) x (t2N+2, t2N+3);
i,j=1
A =0, :<:N+1|p0 = k(t) (an unknown function),
n (3.7)
/ Z a”zﬁ“yjdf =0,
Lo, j=1
NN @ tans2) =y (2, tan12), in Q,

11



on the interval Jy41.
First, by Lemma 2.3, we have that there exists fyi1 € L®(tany1,tans2; L2(2)) such that

Py (y(e, tany2)) = 0 and that fx 1 satisfies the following estimate

2
fv+1 ”Loo(t2N+1,t2(N+1); L2(Q))

01602\/m N 5
< Ly
(BN [tan+1s tans2]) 2 176 tave)ll ey

01602\/7’1\1+1

p?(tan+2 — tan+1)?

em2ralan =) ||y N (. ty)y) Hi?(n)

C. N - N
OB Gaei—tan) oN ( G ) o [T e )20
= p(tany2 — tan+1)? p3(ta — t1)? . ()

N+1 3 N
< ¥ (gp) G v gt Tl o[l
=1
N+ joveow NH
N 4
< (mmiap) @0 el

2(N— 1)
with Ap41 = 602\/76727‘N(t3 tQ)C

Then similar to the argument for N = 1, we have that

HyNH (s tav42)) Hi?(Q)

to(N+1)
N4l 2 N+1
< |y ('7t2N+1)HL2(Q)_2>\1/t |y HL2 dt
2N+1
ta(N+1)
/ / Nt (@, ) xEXw N1 (2, t)dadt
toN+1
tan1) taN+1
N+1 2 N NH 2
< Hy (‘,752N+1)HL2(Q) - 2>\1/ Hy HLz dt+)\1/ Hy (x’t)HP(Q) du
ton 1 lo(N+1)
tQ(NJ,_l) - t2N+1 2
+ " N1l Zoo (11, 12522 (00))
2 t2(N+1) - t2N+1 2
< HyNH(',tzNﬂ)Hm(Q) + A 1N+l Loe 1, o220
N+1
Cl N N(N+1)
< 2N e
- (pQ(tg — t1)2> H ol

By means of P, (y(-, tan42)) = 0, utilizing the energy decay of the solution to equation (3.7),

we have easily get that

HZN+1( e~ 2rN41(tany3—tan 1)

$7t2N+3)HiQ(Q) < HyN(:EthN+2)Hi2(Q)

12



Therefore, we proved the claim by deduction.
In what follows, we choose suitable L such that HfNH%oo([N; ) < L H%H%Q(Q). To this end,

we let

ooN-1\" R
=) =(A0") Nz (3.8)

Noticing that C' > C2 > 1 and t3 — t2 < 1, we obtain that

24<7"1<r2<~--<rN<7"N+1<--- and ry o0 as N — o0

and that X
rh (s —1)C " 22, N >2.

As a result, it follows that

6_2TN71(t3_t2)CO_2(N_2) < 674”%]*1’ N > 2. (3.9)
From that
5 " ~
R ¢ N(N-1) C N(N-1)
CN(N De™'N  _ - : < — T
(er;\l,_l)rz,_l <€2C (Nfl))rl?l—l
¢ N(N-1)
S _ N Z 27

CRAN-1Dr3

we get from the definition of ry that there exists a N1 € N with N7 > 2 such that

Z o

CNWN-Deg'va <1, N> Ny (3.10)
Again, by the definition of 75, one finds that
3 . .
eC2VTN g -1 = C2A?C T — ARG s o (3.11)

As a result, there is a natural number Ny > 2 such that

3

CoViNeTTR1 <1, N > N (3.12)
Next, Let
N() = max{Nl, NQ} (313)
It is easy for one to verify that
ay < 17 N > N07 (314)

and from (3.9), (3.10) and (3.11) that

O N(N-1) — O N(N-1) Cav/in 672TN,1(t37t2)CO_2(N_2)

aN

3
< ON(N=1) Co\/iN ,—4r%_, (3.15)

13



Now, we let
~ N
L= maX{CN(Nl) [[es 1N < Ng} .
i=1
Thus, we proved that
1N oo (s 22002y < LllTol 720 - (3.16)

Furthermore, we take the control fto be such that

~ fN(x7t)7 $€QatGIN>N21a
f(z,t) = (3.17)
0, rxetedy,N>1.

Now, let y be the solution of equation (3.1), then from the argument before, it is easy to see
that (-, t) = yN(-, t) on Iy. Again, noting that P.,(y" (-, tan)) = 0 holding for N > 1 and

{rn}%_; is strictly increasing, together with the construction of f, we conclude that
Py, tam)) =0, M > N. (3.18)

Since tops — tas M — oo, we can also obtain that

U(-, tang) = (-, t) in L*(Q) as M — oo.
These two results tells that P, (7(-, t )) = 0 holding for all N > 1. Tt follows that g(-, £ ) = 0 for
that ry — oo as N — oo.

Until now, we have proved that there exists a control f € L>(t;,¢; L2(Q)) with the estimate
‘|f|‘2°°(t17?; @) < L||g0”3:2(9)= vzhere L is claimed as before, such that y, which solves (3.1),
vanishes at ¢, in other words, y(x,t) =0 in Q.

Step 2. We complete the proof in this step. To this end, we specify yo(z). Let ¢ be the solution
of

( n

Ve — Y (@7 (@)e,)z, =0, in Q% (0, 1),

i, j=1
Ylr, = 0,¢|r, = k(t) (an unknown function), ¢ € (0,1),

/ zn: a1y, v;dl = 0,

Lo j=1

¥(x,0) = yo(x), in €.
Let yo(x) = ¥(z, t1) and set

0, (z,1) € Q% (0,11),
flat) = fla,t), (z,t) € (t1,%), (3.19)
0, (z,t) € Qx (t,T).

14



It is easy for one to verify that f given as above lies in L>(0,T; L?(Q)), which drives the
solution y of (1.1) to zero at time 7. That is, y(z,7) = 0,z € Q and f has the estimate same to
f, ie.,

2 2
111 Zo0 0,7 22y < Lllwollz2 (@)
with L claimed as before. O

4 Appendix

In this appendix, we give a proof of Lemmas 2.1-2.2.
Let m € N, for any ¢ € C?>(R™) and positive numbers A and p, let
a=el = (4.1)

Assume that (bY)1<; j<m is a symmetric matrix with entries b € C1(R™),4,5 = 1,2,--- ,m. We

first recall the following result, whose proof can be found in [4].

Lemma 4.1 Assume thatv € C2(R™). Let w = v, then we have the following point-wise estimate:

m .. 2 m m .. m ..
62 Z b Vg5 | +2Apc Z ZMZ bkégoxk@ub”wxiw—i-)PuQaQ Z bugokcpgb”cpxiw
ij=1 ij=1| k=1 k,e=1
m .. m ..
+2 Z Vo, webw,, — Z b w,, we, b 00,
k=1 k=1 )
Ty
m .. m m ..
> Z M wgwe; + Buw? + 4 p? Z a( Z bkecpmkg%[)b” W, W (4.2)
i5=1 ij=1 k=1 .
J
2
+ 4 \po Z Z bkegax ]wxzwx + 4 p a( Z b gpxzwg,;]) )
1,j=1k (=1 i,j=1

where

moo 2 morn
B= 2/\3u4a3< > b”sozisozj) +2X°0%0 YN (00 0 o 00 )

ij=1 i,j=1k,t=1
_222mij 2_ 242mij 2
AN p o Z b @,z AN p o Z b oz, 0
ij=1 ij=1
=2\3ut ( Z b”gowlgpm]) —23030(p®) — N2a20(uh), (4.3)
1,j=1

> [m?ab“somomb” — 2pab* o, b — 2Aw<b%m>ub“]

k=1

Z 222 ab® oy, 00,07 — XaO (1), (4.4)
kt=1

15



Proof of Lemma 2.1. We borrow some idea from [4]. First, noticing that we put only par-
tial boundary condition on equation (2.3), we transform equation (2.3) to an equation with full

boundary condition. Let

T T-T —~
b = — — b = ———— 4.5
2 Y, 0 9 ( )
Some straightforward calculation shows that
T T
— =T <by<b< —.
2 0 2
We introduce ¢(t) € C§° (% —b, % + b) which enjoys the following properties
0<ot)<1, [t—F|<b,
(4.6)
T
P(t) =1, it — L] < bo.
Let u! = ¢u, then u!, according to (2.3), verifies
n ..
ug + Z (aljuii)a:j = Quru + 2¢ruy, n Q,
i,j=1
n ..
utlp, =0, Z a”uiiyj dlI’ =0, (4.7)
Toj =1
uilr, = c¢(t) (¢ is unknown),
ut =0, in (2x{0})u(Qx{T}).

In what follows, we apply Lemma 4.2 to equation (4.7) with

m=n+1,2m1 =t (07)1<i janp1 = ( 0 1> ’

where M = (a'/)1<; j<n, v replaced by u!, and the weight function 6 given in (4.1) and w = ful.

From [9], we know that there exists a ¢ € C?(Q2) which enjoys the following properties:

v >0 in Q,
=0 on I
V| >0 in 2\ wo, (4.8)
2 _ v -4
= [2;1 a”VZI/]} on L'y,
where wy CC w.
Let .
0 min |[Vip(x)]. (4.9)

Wl () veRw
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It is clear that ¢ > 0 following the construction of .
Without loss of generality, we assume that 7" < T — T". Otherwise, we can reverse the time

variable ¢ to T — ¢ in equation (2.3).

Let )
(,D(x,t):(C1—CQ)M+b2— <t—T> + K,
191l oo ) 2
w(x) 2 2 (4.10)
~ _ _ I
P(z,t) = (c2 Cl)i”lb”lﬁo(ﬂ) + <t 2) + K,

where ¢; = b? — (% — T’)2 ,Co = % (61 + b — b(z)) and k is chosen to be so large to make @ > 0. It
is clear that ¢; > co.
Let a(x,t) = ete@t) g = er According to the definition of o, it is easy to verify that

a(t)>eM  jt— =< = -T,

T T
217 2

T (4.11)
a(,t) <e®t, by < ‘t - 2‘ <b.

According to that M is uniformly positive with all elements being C' and ¢ € C?(R"), some

simple calculation gives that

n

A po Z Z bk(Z bz 2 Wy Way < C’)\,uoz( Z aiijiwmj + |wt|2), (4.12)
1,j=1 k=1 i, =1
and that
m m B
i Y e 30 Hhonea)| waw
ij=1 k=1
zj
n .. l
< C’)\,u2a< Z a" Wy, Wy, + ]wtl2)2\wl (4.13)
i,j=1

n
< C [WtalwP +pta( Y awws, + fwl)
i, j=1

With the help of the construction of the function ¢ and the property of (a* )1<i,j<n, one finds
that

n
> e, > CIVY[ >0, in Q\ w.
i, j=1
This together with the definition of ¢ given in (4.10) and the properties given in (4.8), implies that

there exists a positive number pg > 1 such that for all g > pg there corresponds a positive number

17



Ao > 1 so that

m n
> g, = COwa+ 1) 3 augvn, + )
irj=1 bI=t

n
s 4.14
> Q2>\N2a( § : azgwwiwxj +|wt|2), ( )
1, j=1

Buw? — CX*ptaw? > o N3 ptadw?,

\

for A\ > Ao and (z,t) € QA x (2—0,24+b) \w x (2 — bo, 2+ by).
Now integrating the point-wise estimate (4.2) over @, together with (4.14), we have that

n
)\,uQ/ a( Z aiijiwxj + |wt|2)dmdt—|—>\3,u4/ aBwidrdt
Q i, =1 Q

L 2 T
< C / 0ul+ Y alul, | dedt+ Nt / / o’w?drdt (4.15)
Q i\ j=1 0 Jwo

T n ..
+ )\,UQ/ / a( Z a" Wy, W, + \wt\z)dxdt—i-/ Ddzxdt 3 ,
0 wo Q

i,j=1

where

m m m
D= 2ua Y (20 ) WonpnbTwsw+ Npta? Y 0on 00,07 pp 0
i,j=1 k=1 k=1

(4.16)

m m

+2 Z W o, W b Wy, — Z b w,, w0 o0,
kf=1 k.0
zj

It is clear that fQ Ddzxdt represents the boundary integral with sign not determined. Next, we will
deal with this tiresome term with the appropriate choice of function 1 enjoying property (4.8) and
the construction of ¢ given in (4.10). Denote by V;,i = 1,2, 3,4 the integrals combining fQ Ddxdt

in order. First, we have that

n n
i = / 4/\,uzoc( Z akggoxkgow,_, —l—gof) Z aijwwxiyjdE
z kf=1 i,j=1

n n
{003 e + ) 3 i
k.l

i, j=1 (4.17)

n n
+ 4>‘M20‘9( Z akecpxﬁoxe + 901%) Z aijuiiij}dz
k=1 i, j=1
= Vi1 + V1o

n
me’ this together with the property of ¢ shows that Z a¥ Oz Vj <

Lo () L
0. Also noticing that the other factors of the integrand in V7 are all positive, thelq]T/lll <0. It is

18
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straightforward that

e _
2 onu (uwumm) HZ e = (uwuL )

k=1

Z ake VElVyp

k=1

holds constant according to the property of ¢ and uiz = ¢(t)ug,. This together with that all other
factors of the integrand in Vjo depending on the variable t = x,4+1 makes us conclude from the
boundary condition of equation (2.3) that Vj5 = 0. Then, it holds that

Vi <0. (4.18)

With the similar argument, it follows that

n n
Vo, = / 2)\3,u3043( Z ak%xkgom + <pt2) Z a”«pxiuijdE <0. (4.19)
z k=1 i,j=1

Next, we have that

n n
Vs = / 4/\ua( > a0, + wm) > awg,vds
b))

k=1 i,j=1
n n B
= [ {803 (3 onpn + ¢) 3 alipu
z k=1 i,j=1
2.2 92 - ke ~ 2 2 1,1 (4.20)
+ 4N ucal Z a" Qg Pr,W Z augvj + ANt o0 Z a i, viutug
k=1 i,7=1 3, 7=1
— 2 \papy w Z at ux vj —|—4)\,ua92 ( Z a”um 1/]> }dE
1,5=1 i, 5=1
= V31 + V32 + V33 + V34 + V3s.
Some straightforward calculation shows that
m m B
VvV, = / 2\ e Z akekaww Z a' g, vidY
z k=1 i =1
:/ {2)‘3N30‘3 Z ake@xkgjw Z a”@:m’/ij +4>\2N2a29 Z aZ]SO:viprjw Z akzu:rkyf
z kA=1 Q=1 i, =1 kf=1
n
+2 paf? Z aVop vy > ad*ul ul, + 2)\ua<)\uacptw + Gut) > aijcpmiuj}dz
i, j=1 k=1 i,j=1
= Vi + Vag + Vi3 + Vau.
(4.21)

Now some tedious calculation shows that the sign of the third term of the integrand in V3, which

involves ¢; and u}, can not be determined, thus we can not determine the sign of fQ Ddzdt. To
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get around this difficulty, we introduce a(z,t) = e“g(m’t),g = ¢’ where @ is given in (4.10), and
then apply Lemma 4.1 to equation (4.7) by letting w = u'.
From the definition of ¢, o, © and @, it is easy to verify that 0 < ¢ < ¢ and that

els = dls, Z a* 9030 V]‘ Z a SOgc Vj

i, j=1 i,j=1

Oé|2 = 52|2, w|2 = ﬂ}v‘g (4.22)

With the same argument of getting (4.15), some straightforward calculation tells us that

A2 /Q a( N aVi,, i, +]ﬂ7t]2)dxdt+)\3u4 / Badrdt

i, j=1 Q

< C’{/ 92‘%:"’ Z a”uam

7]_

T n ~
v [ [ (Y a5, + @) dede + | Do},
o Juy N 2 Q

, )=

dxdt—i—)\3 4 / / wdxdt (4.23)

where

m m m
D= 2\ [2u D G B b, + N PE Y WG, B b G,
i,j=1 k=1 k=1
(4.24)

m m
R SRS S
Ef=1 k.0 z;
Similarly, fQ Ddzdt can be transformed into a boundary integral according to Gaussian Diver-
gence theorem. We use ‘71-,@' =1,2,3,4 to denote the integrals combining |, 0 Ddzdt in their natural
order as in (4.24). With the similar argument applied to V;,i = 1,2, 3,4, it follows that

n

n
= [anea( Y G+ 5) Y a0t ds
>

k=1 i j=1
= 4N 3 ( at + ) al VW
n
+ 4)‘/‘2a( Z akZSZwk@xz + &%) Z aijualﬁingw}dz
B N k=1 i, =1
= Vi1 + Via.

Noticing that ¢, = mw%, then from the construction of ¢, we find that 3 31" ., a @y v; > 0.

Also noticing that the other factors of the integrand in Vi; are all positive, we conclude then that

V11 < 0. Some simple calculation shows that

n 2 n
~ o~ C1 — C9 C1
2 @ Pnfe, = (ku ) 2 e = (uwu )
kf=1 L>(Q) ) k=1 Le
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is constant according to the property of weight function v and uiz = ¢(t)ug,. This together with
that all other factors of the integrand in Vi3 depends on the variable ¢ = x, 41, then we conclude

from the boundary condition of equation (2.3) that Viz = 0. As a result, we conclude that
Vi >0. (4.26)

Using the similar argument, we have that

n n
V2 = / 2/\3/13523( Z Clk@&xkaxg + {ﬁ?) Z aij@c,ﬂj@de > 0. (4'27)
> k=1 i,5=1

Next, we have that

n n
Vi = / 4)\H62( Z ak[@xkgxg +¢t{5t> Z a”iDziujdE
z k=1 i,j=1

n n
= [{ow@ (3 e+ ) 3w,
> k=1 i,j=1
2 29 NS ks~ o~ NS i 2 22~ 7 N~ ijs 1,1 (4.28)
+ 4 *pcach Z a" Prp Pz, W Z aug,v; + AN ot o Z a" Qg viuuy
k=1 i,j=1 i,j=1
~ 05 7 2
— 2 \pappw Z a' ug,v; +4)\ua028—(’5< Z a”uxiuj> }dZ
i,j=1 t,5=1

=‘731+‘732+%3+‘734+%5-

Some straightforward calculation shows that

m m
v, - / i Y @i, s, 3 G, 0idS
z k=1 ij=1

n n n
:/ {2)\3,u3&3 Z aké(ﬁxk@we Z aij@xil/j@Q + 42 p%a%0 Z aij@xi@cj@ Z akeuxkl/g
z k=1 ij=1 i, j=1 k=1
JURL ~ N2 .
+2 puab? Z at oq,vj Z akguikuié + 2)\;1&()\#&@117—# HU%) Z a”@ciljj}dE
i,j=1 k=1 i,j=1
= Vi + Vig + Viz + Via.
(4.29)
According to (4.8), (4.22) and the boundary integral condition with respect to u, which solves
equation (2.3), comparing Vi with ‘71, it follows Vi1 = —‘711,1/12 = ‘712 = 0. Similarly, we find
Vo = —Vo and V31 = —V31, V30 = Vag = 0,V33 = —Vi3,Vay = —Vay,Vas = V35 and Vi =
—Va1,Vao = Vo = 0, Vig = — Vi3, Vag = —Vyy. As a result, it follows that

/ Ddzdt + / Ddzdt = 0. (4.30)
Q Q
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Adding (4.15) to (4.23) and applying (4.30), it follows that

i =1 ij=1
—l—)\?’,u4/ (a3w2+&31ﬂ2)dxdt
Q
< C’{/Q(GQ‘utﬂ— Z aul -

+23 4// a’w +aw)dmdt
W / / Z 0wy, w,, + |wy] )dxdt}
wo

+02‘utt+ Z a”uzx >da:dt

1, 7=1

(4.31)

Up to now, the inequality (4.31) we got involves w and w, which is not expected for our

purpose. We in the following recover w and @ to u!'. Recalling that w = fu' and @ = Oul , some

straightforward calculation gives that

1 L
792< Z aljuglgiuglcj + ‘UHZ +>\2M2a2|u1‘2)

¢ NG
n
< Z a" Wy, Wy, + lwe)? + N p2a’w?
i, j=1
n
< 092( Z a”uglciuij + Jup|® + )\2,u2a2|u1\2).
i,j=1
Similarly, it follows that
Lao/ o 4 _
792( Z azgu;iuij + |ul 2+>\2u2a2|u1|2)
i,j=1
n
< Z A" Wy, Wy, + |\ |? + N p2ala?

t,j=1

n
< 0«92( Z aiju;,iu}cj + |up]? + A2u2&2|u1|2>.

i, j=1

(4.32)

(4.33)

We also need to get ride of & and ] appeared in (4.31). By means of the definition of «, &, 6, 5,
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it is easy to verified that « > a > 1 and 6 > 0 > 1, which in turn gives that

( n n
~72 ij, 1,1 12 2 ij, 1,1 12
af ( E a uxiuwj—l—]ut|>§oz0 ( g a uxiuxj—i-\ut]),
i,j=1 i, =1
2

2
n n
02 ij, 1 2 ij, 1
0 g Uy | <0 E Uy |

4, =1 i, j=1

(4.34)

&352’u1‘2 < a392‘u1’2_
By means of (4.31)— (4.34), it follows that
)x/f/ a02( Z aiju}ciu}vj + |uf 2) + )\3,u4/ 30%ut |Pdxdt
Q i,j=1 Q
2 T
dxdt + A3u4/ / 0%\ ut|Pdxdt (4.35)

n
= C{/ 0%ty + Y atlul,,
Q i,j=1 0 Juo
+AM2/O / a92< S aiudaul 4 fub 2>dxdt}‘
wo

i,7=1

Noticing that u! solves equation (4.7), it is easy for one to verify that
2 2
n

n
g, 1 1 2 g1
E aw vy +uy| < 2|duu + 20| + 2 E ag ug,
i, j=1 i, j=1

(4.36)
< 2|pru + 20w > + C|Vut|?.
Based on that M is uniformly positive, it follows that
n ..
Z a”u}niuij +ut|? > C (|Vul? + [uf %) . (4.37)
i,j=1

Take x € C§°(w) to be such that 0 < x <1 and x = 1 in wp. Multiplying equation (4.7) from
both sides by xy#%au' and then integrating by parts, we arrive at

//a02 Za”u ul +]u )da:dt
wo

b=l (4.38)
T
< C [A/ﬂ/ /a292\u1]2dxdt+/ 02\¢ttu+2¢tut\2da:dt].
0 w Q

By means of (4.35)— (4.38), it follows that

)\/ﬂ/ ab? (|Vul|® + |ui|?) dadt — C'/ 0%|Vu'! [2dxdt + )\3u4/ @30 |ut|Pdadt

N o N (4.39)

< C {/ 92|¢ttu + 2¢tut\2dxdt + A3u4/ / a392|u1|2dwdt} )
Q 0 w
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It is easy to see that there must be some p; > g, such that for any pu > @i, we have the

following inequality
A3u4/ o20%|ut|Pdxdt
Q
. (4.40)
< C {/ 02|y + 2ppuy |2 dadt + )\3u4/ / a302|u1|2dmdt} :
Q 0 w

We need do some estimates on each term in both sides of (4.40). With the help of (4.11) and (4.6),
one finds that the term in the left hand side of (4.40) is given as follows:

T//
)\3M4/ a392’u1|2dl,dt2>\3M4e3u(c1+n)62>\e#®1+ﬁ>/ /quxdt. (4.41)
Q v Ja
Similarly, we have the estimates for the two terms in the right hand side of (4.40) respectively as
follows:
/ 02| + 2¢ppuy | dadt
= / /9 |¢ttu+2¢tutl dxdt
2 (4.42)
< Qe / / u? + uf dmdt—i—/ / u? 4 ul)dxdt
5= +bo
AeH(ea+r)
< e HUHHl(Q)a
and
T4b
At / / 0 |ut|?dzdt = N3ut / / o202 |ut|Pdxdt
w %—b w
(4.43)
( +c1—co+k) T+b
<Nt e3n S c2tr) 2/\€”T e / /quazdt.
N %fb w
Putting the estimates (4.41)— (4.43) into (4.40), we conclude that
g
Tl/
)\3#4€3u(cl+fi)€2)\e“(cl+“)/ /qumdt
T JO
T (4.44)
3 4 3 22 M(lzngrCl*UZﬂLﬁ) §+b 2 2AeH(catr) 2
§ )\ N( +01 cz+/~t) e / /u dxdt—i—C’e e HUHHl(Q)'
%7b w
Noticing by definition that ¢; > co, it follows that et p2henleat), Fixing 4 = pu1,
letting
e2Aer1(e2tm) eul(TT2+Cl—C2+fi) — etaertr)
°T )\3,UZ1163M1(c1+n)62)\e“1(cl+'“‘) k= emi(citr) — epi(c2tr) ’

62)\0,3#1(02-“”»)

o = :
Agu%e?wl (c1+k) e2Xoetl (c1+k)
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thus based on (4.44), one finds that for any € € (0, o] the following inequality holds:
lull p2 gz < € el 2oy + Ce 1l (4.45)

Therefore, (4.45) holds for all ¢ > 0. Further, if we let 7 = ?1,{, €= <uL2<“1X(Z’T”))>2T, (4.45) in
turn gives that

lull 2 (77,77 < C lullL2(0x (. 0-) ||u||}1'{_17(—(2><(07T)) (4.46)
as desired. We then complete the proof of Lemma 2.1. O

Proof of Lemma 2.2. Here and thereafter, we use the symbol dist((x,t),wy x {0}) to denote the
distance between the point (x,t) and the set wg x {0}. Let

N(1) ={(z,t) | (z,t) € Q, dist((z,t),wo x {0}) < 7}.

Let 7;(i = 1,2,3) be such that 0 < 71 < 7 < 13 and N(13) C @ and N(73) N (2 x {0}) C
(w x {0}). We take a C? function h(z,t) with 3 < h < 4 when (x,t) € N(r1) but 0 < h < 1
when (z,t) € N(13) \ N(72) and |Vh| > 0 in N(73). The proof of the existence of such function
can be found in [4]. But for easy reference, we give it here. Let g : R — R be such that: ¢’ < 0;
3<g(s)<4dforse(0,78);0<g(s) <1forse (r3,73). Let h(z,t) = g(dist*((z,t),wo x {0})),
which is expected.

Now we take y € C*°(N(r3)) with the properties 0 < xy < 1 and x = 1 in N(72) and vanishes
in the intersection of N(73) and a neighborhood, which is very small, of IN(73) \ (w x {0}).

For any u € H?(Q), which solves equation (2.3), we let @ = yu, then @ solves

n n
Ut + Z (a”ﬂxi)xj = XuU + 2xu + Z anxiij

i,j=1 4 j=1
n n
g g 4.47
+2 Z a" XUz + Z ag Xa;u, (z,t) € N(73), (447)
i\j=1 i =1

L |Vu|=u=0, (z,t) € ON(73) \ (w x {0}).

Like the procedure for proving Lemma 2.1, we also let m = n 4+ 1, 2,41 = t and (bij)1§i7j§n+1
be given in the same manner. To apply Lemma 4.1 to equation (4.47), we here let 6 = " and
replace v by w, that is, w = 6u.

Some straightforward calculation gives that

n ..
>\,u2/ a( Z a" Wy, Wy, + wf) dzdt + A3u4/ Aw?drdt
N(73) i j=1 N(73)
(4.48)

< C / ez(ﬂtt+ ATz,
N(rs) 2 ’

2
dwdt—i—/ Dqdzdt 3,
i,j=1 N(r3)
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where

m m
Dy = 2Xpa Y (2 0¥ hay by 0w we, + N p?0? Y T 0¥ by he b g w®
ij=1 k¢ k=1

(4.49)
+2> g e b we, — > B we w0 b,
k=1 k=1

Zj

Of course, [ N(rs) D1dzdt stands for the boundary integral according to Gaussian Divergence
theorem, which is not welcome here. We in what follows to estimate this integral term by term
so that we can transform it to some term suitable for our purpose. For simplicity, we adopt
Vi,i =1,2,3,4 to denote the integral consisting f N(rs) Didxdt in their natural order as given in
(4.49). Remember the definition of w, it follows that

w’aN(Tg)\(wX{O}) = H8N(7—3)\(w><{0}) =0,

(4.50)
Vwlan )\ (x{0}) = VTN (r3)\(wx{0}) = 0,
which in turn inspires that
Vi :/ AN Z bkzhzkhxe bingciujwdaN(Tg)
ON(73) k=1 ij=1
<C {Apa(|Vw|? + w?) + AP aw? }dN (73) (4.51)

6N(7’3)

< C/ {Apa(|Vw|? + wy) + Apw?} da.
wx{0}

By the same manner, we have

Vs :/ 22330 Z buhxkhme Z bijhxil/jUJQdN(Tg) < C'/ Ndodw?de, (4.52)
ON(73) wx{0}

k=1 ij=1
Vs = / A\pa Z bl“whg%wgmZ Z b”wx vidN (13) < / Mpa(|Vw]? + w?)dx (4.53)
ON(73) kf=1 ij=1 wx{0}

and

V4 :/ 2\ po Z b We), W, Z b7 b, VidN(73) < / Ape(|Vw|? +wy ;)dz. (4.54)
ON(73) k=1 ij=1 wx{0}

Combining (4.51) — (4.54), one finds that

/ Didx 271 —|—V2 +V3 +V4
) (4.55)
<C {Mpa(|Vw)? + wi) + N pladw?} da.

wx{0}
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Returning back to (4.48), we have that

)\,u2/ a(
N(Tg) 27]:1

= ¢ /N(T3) oz’ﬂtt t Z aijﬂﬂﬁi%‘

i, 7=1

Z aijwziwwj + wf)d:ﬂdt + )\3,u4 /N( )a3w2dazdt
T3

Next, we are to recover u from w. Based on w = 0, it is easy to show that

1 L
502< > VT, + U + )\2u2a2ﬂ2)

i, j=1
n
< Z Wy Wy + w? + X2 p2alw?
i, j=1
n
< (Y i, + 4 Vtatn?).

i,j=1
For that M is uniformly positive, it gives that
n
Z a1, + gl > C(|Val +af).
i,j=1

On the other hand, for @ solves equation (4.47), one can show that

L 2
‘ Z azyﬁmm —I—ﬂtt‘
i, =1
oo L 2 L 2
< 2’Xttu+2XtUt +2 Z a" Xz Uz; + Z alszixju‘ +2‘ Z ag Uz,
i,j=1 i, =1 i, =1
L LI 2 2
< 2’Xttu+ 2yt + 2 Z a" X Uz, + Z a”xmixju‘ + C‘Vu‘

i,7=1 i,j=1

Then (4.57) — (4.59) together with (4.56) gives that

A,ﬁ/ (|Vu|2—|—ut2)da:dt—C/ 92\Vu|2dxdt+)\3u4/ a30%u 2dxdt
N(rs3) N(r3) N(r3)

.. . 2
< C {fN(Tg) 0? ‘Xttu + 2xug + 2 ZZj:l a Xz Uy + ZZJ':1 aZ]Xxiij)

+ / M| Vwl? + wi) + N pPa’w?] daz} .
wx {0}
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2
dxdt + / (M| Vw? + wi) + N aPw?
wx{0}

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)



As a result, there must be some po > 0 such that for any p > pg, it holds that

A / ad*(|Va|* + a2)dxdt + N3t / o>0%u 2dxdt
N(r3) N(

73)

2
dzdt (4.61)

n n
S C / 02 ’Xttu + 2Xtut + 2 Z Xxluag + Z X1‘11‘7u
N(7s) i, j=1 i, j=1

+ / Aua(|Val® +a2) + N p6°u?] dm} .
wx{0}

Furthermore, noticing that w = u as (x,t) € N(13), x¢ = 0,25, = 0 as (z,t) € N(m2) and
a> e 0> as (z,t) € N(m) but a < et,0 < " as (x,t) € N(73) \ N(72), we can conclude

that the following several inequalities:

/ A2ab?(|Val? + u2)dadt > ApPete ™ / (|Va|? +w2)dzdt, (4.62)
N(73) N(73)
/ Mutal0Putdadt > >\3M469#62A63H/ uldadt, (4.63)
N(73) N(m1)

n n
y » 2
/ ez‘XttU‘f‘ 2xug + 2 Z a" Xz g, + Z a”xxixju‘ dxdt
N(73) ig=1 =
(4.64)
< CeP? / (u® + |Vul? + u?)dzdt,
N(73)

/ N BaB0% 2da < N3 pdel2ne?Ae / uldz, (4.65)

wx{0} wx{0}

/ M (|Va|* +a2)de < Apetre?ret / (IVul? + ul)da. (4.66)
wx{0} wx {0}

Then (4.62) — (4.66) together with (4.61) gives that

AP bt e / (IVal® +a?) + A3t edm e / uldadt
N(11) N(

1)

< C / (U 4 |Vu)? + u?) + N pPel e e™ / ulda (4.67)
N(73) wx{0}

Fapetnere / (|[Vul* + uf)dm}

x{0}

With the similar argument for (4.45), some straightforward calculation shows that there must
be some 3 > 0 and g9 > 0 such that for any ¢ € (0, ] it follows that

ullZ vy < €PNl g2y + Nl 200y + IVl L200)) + Ce 1) (4.68)
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which implies (4.68) itself holding for any ¢ > 0.
Next, noticing that 71 > 0, there therefore must be some open ball B C N(11). It follows from
(4.68) that

el iy < € PO 2y + el oy + V0l o)) + Ce llull 1 g - (4.69)

In the above inequality, if we let

g 1 5: (O L2y + luell 2wy + VUl 20
1+8 [ull 1)
then it follows that
8 o
sy < € (J1(0) 2y + It 2y + 190l 2)) il - (4.70)

We now do the following assertion: for any K CC (), there must be some §” with 0 < §” < 1
such that

lall g 0y < C lull s || EY @) (4.71)

We will prove this assertion later. According to the assertion (4.71) together with (4.70), taking
K =wx(y,T —7) CCQ, it follows that

5
ull i1 e (y,r—yy) < C <||u(0)||L2(w) + (el o) + ||VUHL2(W)) ||UHL—1(2Q) (4.72)

with § = §’6”. Thus, we complete the proof of Lemma (2.2).

We now prove the assertion (4.71).

Let B;,7 = 1,2,3 be three open balls with the properties B] CC By CC By CC . Take
n € C3°(Q) be valued in (0,1) and n =1 in Bs.

Let y = nu, then y solves

,

n n
Yit + Z (@Y, )a; = Mt + 2neue + Z a a0
i,j=1 i j=1

L o (4.73)
+2 Z a1y, U, + Z a?jxrju, (z,t) € Q, ’

i,7=1 i,7=1

Vy=y=0 (x,t) € X.

Denote P the center of By and let 7(z,t) = dist?((z,t), P), then substitute ¢ by r in §. By the
same argument to the proof of Lemma (2.1), there must be some § with 0 < & < 1 such that

el sy < C llullgs sy Tl ity - (4.74)

For any open ball B’ CC @, there is a finite natural number m and two sequences of open balls
{B'}}; and (B ™ | such that

B'cB', B'ccBnB*, i=1,--,m—-1,
) . (4.75)
B™ cc B™, B™CB.
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By means of (4.74), there must be a sequence {&; by with 0 < 6 <1,i=1,2,--- ,m such that

1-3, 1-5
el < Nl oy < C ¥, o) Tl < € Nl o Tl .
510 510 51020 (| 1|1—8132---3m '
< Ol Tull bl < - < O ulfiszin ful s
Adopting 5= 5152 . -gm, it follows
: _
lull g gy < Cllullg s HUHHI Q) - (4.77)

For that for any K CC @, there must be a finite subcover of open balls, then from (4.77) we know
there is a constant 0 < §” < 1 such that

el 10y < C lull3s ) Il 100 (4.78)

as just claimed. O
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