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Abstract

We develop a variational technique for some wide classes of nonlinear evolutions. The nov-

elty here is that we derive the main information directly from the corresponding Euler-Lagrange

equations. In particular, we prove that not only the minimizer of the appropriate energy func-

tional but also any critical point must be a solution of the corresponding evolutional system.

1 Introduction

Let X be a reflexive Banach space. Consider the following evolutional initial value problem:

{
d
dt

{
I · u(t)

}
+ Λt

(
u(t)

)
= 0 in (0, T0),

I · u(0) = v0.
(1.1)

Here I : X → X∗ (X∗ is the space dual to X) is a fixed bounded linear inclusion operator, which we
assume to be self-adjoint and strictly positive, u(t) ∈ Lq

(
(0, T0);X

)
is an unknown function, such

that I ·u(t) ∈ W 1,p
(
(0, T0);X

∗
)
(where I ·h ∈ X∗ is the value of the operator I at the point h ∈ X),

Λt(x) : X → X∗ is a fixed nonlinear mapping, considered for every fixed t ∈ (0, T0), and v0 ∈ X∗

is a fixed initial value. The most trivial variational principle related to (1.1) is the following one.
Consider some convex function Γ(y) : X∗ → [0,+∞), such that Γ(y) = 0 if and only if y = 0. Next
define the following energy functional

E0

(
u(·)

)
:=

∫ T0

0

Γ

(
d

dt

{
I · u(t)

}
+ Λt

(
u(t)

))
dt

∀u(t) ∈ Lq
(
(0, T0);X

)
s.t. I · u(t) ∈W 1,p

(
(0, T0);X

∗
)

and I · u(0) = v0 . (1.2)

Then it is obvious that u(t) will be a solution to (1.1) if and only if E0

(
u(·)

)
= 0. Moreover, the

solution to (1.1) will exist if and only if there exists a minimizer u0(t) of the energy E0(·), which
satisfies E0

(
u0(·)

)
= 0.

We have the following generalization of this variational principle. Let Ψt(x) : X → [0,+∞) be
some convex Gâteaux differentiable function, considered for every fixed t ∈ (0, T0) and such that
Ψt(0) = 0. Next define the Legendre transform of Ψt by

Ψ∗
t (y) := sup

{〈
z, y
〉
X×X∗

−Ψt(z) : z ∈ X
}

∀y ∈ X∗ . (1.3)

It is well known that Ψ∗
t (y) : X

∗ → R is a convex function and

Ψt(x) + Ψ∗
t (y) ≥

〈
x, y
〉
X×X∗

∀x ∈ X, y ∈ X∗ , (1.4)

1E-mail: poliakov@math.bgu.ac.il

1

http://arxiv.org/abs/1112.2304v12


with equality if and only if y = DΨt(x). Next for λ ∈ {0, 1} define the energy

Eλ

(
u
)
:=

T0∫

0

{
Ψt

(
λu(t)

)
+Ψ∗

t

(
− d

dt

{
I·u(t)

}
−Λt

(
u(t)

))
+λ

〈
u(t),

d

dt

{
I·u(t)

}
+Λt

(
u(t)

)〉

X×X∗

}
dt

∀u(t) ∈ Lq
(
(0, T0);X

)
s.t. I · u(t) ∈W 1,p

(
(0, T0);X

∗
)

and I · u(0) = v0. (1.5)

Then, by (1.4) we have Eλ

(
·
)
≥ 0 and moreover, Eλ

(
u(·)

)
= 0 if and only if u(t) is a solution to

{
d
dt

{
I · u(t)

}
+ Λt

(
u(t)

)
+DΨt

(
λu(t)

)
= 0 in (0, T0),

I · u(0) = v0
(1.6)

(note here that since Ψt(0) = 0, in the case λ = 0 (1.6) coincides with (1.1). Moreover, if λ = 0 then
the energy defined in (1.2) is a particular case of the energy in (1.5), where we take Γ(x) := Ψ∗(−x) ).
So, as before, a solution to (1.6) exists if and only if there exists a minimizer u0(t) of the energy
Eλ(·), which satisfies Eλ

(
u0(·)

)
= 0. Consequently, in order to establish the existence of solution to

(1.6) we need to answer the following questions:

(a) Does a minimizer to the energy in (1.5) exist?

(b) Does the minimizer u0(t) of the corresponding energy Eλ(·) satisfies Eλ

(
u0(·)

)
= 0?

To the best of our knowledge, the energy in (1.5) with λ = 1, related to (1.6), was first considered
for the heat equation and other types of evolutions by Brezis and Ekeland in [1]. In that work they
also first asked question (b): If we don’t know a priori that a solution of the equation (1.6) exists,
how to prove that the minimum of the corresponding energy is zero. This question was asked even
for very simple PDE’s like the heat equation. A detailed investigation of the energy of type (1.5),
with λ = 1, was done in a series of works of N. Ghoussoub and his coauthors, see the book [7] and
also [8], [9], [10], [11]. In these works they considered a similar variational principle, not only for
evolutions but also for some other classes of equations. They proved some theoretical results about
general self-dual variational principles, which in many cases, can provide with the existence of a
zero energy state (answering questions (a)+(b) together) and, consequently, with the existence of
solution for the related equations (see [7] for details).

In this work we provide an alternative approach to the questions (a) and (b). We treat them
separately and in particular, for question (b), we derive the main information by studying the
Euler-Lagrange equations for the corresponding energy. To our knowledge, such an approach was
first considered in [14] and provided there an alternative proof of existence of solution for initial
value problems for some parabolic systems. Generalizing these results, we provide here the answer
to questions (a) and (b) for some wide classes of evolutions. In particular, regarding question (b),
we are able to prove that in some general cases not only the minimizer but also any critical point
u0(t) (i.e. any solution of corresponding Euler-Lagrange equation) satisfies Eλ

(
u0(·)

)
= 0, i.e. is a

solution to (1.6).
The approach of Ghoussoub in [7] is more general than ours as he considered a more abstract

setting. The main advantages of our method are:

• We prove that under some growth and coercivity conditions every critical point of the energy
(1.5) is actually a minimizer and a solution of (1.6).

• Our result, giving the answer for question (b), doesn’t require any assumption of compactness
or weak continuity of Λt (these assumptions are needed only for the proof of existence of
minimizer, i.e., in connection with question (a)).

• Our method for answering question (b) uses only elementary arguments.

We can rewrite the definition of Eλ in (1.5) as follows. Since I is a self-adjoint and strictly positive
operator, there exists a Hilbert space H and an injective bounded linear operator T : X → H , whose
image is dense in H , such that if we consider the linear operator T̃ : H → X∗, defined by the formula

〈
x, T̃ · y

〉
X×X∗

:=
〈
T · x, y

〉
H×H

for every y ∈ H and x ∈ X , (1.7)
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then we will have T̃ ◦T ≡ I, see Lemma 2.7 for details. We call {X,H,X∗} an evolution triple with

the corresponding inclusion operator T : X → H and T̃ : H → X∗. Thus, if v0 = T̃ · w0, for some
w0 ∈ H and p = q∗ := q/(q − 1), where q > 1, then we have

∫ T0

0

〈
u(t),

d

dt

{
I · u(t)

}〉

X×X∗

dt =
1

2

∥∥T · u(T0)
∥∥2
H
− 1

2

∥∥w0

∥∥2
H

(see Lemma 2.8 for details) and therefore,

Eλ

(
u
)
= J

(
u
)
:=

T0∫

0

{
Ψt

(
λu(t)

)
+Ψ∗

t

(
− d

dt

{
I·u(t)

}
−Λt

(
u(t)

))
+λ
〈
u(t),Λt

(
u(t)

)〉

X×X∗

}
dt+

λ

2

∥∥T ·u(T0)
∥∥2
H
−λ
2

∥∥w0

∥∥2
H

∀u(t) ∈ Lq
(
(0, T0);X

)
s.t. I · u(t) ∈W 1,q∗

(
(0, T0);X

∗
)

and I · u(0) = T̃ · w0 (1.8)

Our first main result provides the answer for question (b), under some coercivity and growth
conditions on Ψt and Λt (see an equivalent formulation in Theorem 3.1 and Proposition 3.1):

Theorem 1.1. Let {X,H,X∗} be an evolution triple with the corresponding inclusion linear op-
erators T : X → H, which we assume to be bounded, injective and having dense image in H,
T̃ : H → X∗ be defined by (1.7) and I := T̃ ◦ T : X → X∗. Next let λ ∈ {0, 1}, q ≥ 2,
p = q∗ := q/(q − 1) and w0 ∈ H. Furthermore, for every t ∈ [0, T0] let Ψt(x) : X → [0,+∞)
be a strictly convex function which is Gâteaux differentiable at every x ∈ X, satisfying Ψt(0) = 0
and the condition

(1/C0) ‖x‖qX − C0 ≤ Ψt(x) ≤ C0 ‖x‖qX + C0 ∀x ∈ X, ∀t ∈ [0, T0] , (1.9)

for some C0 > 0. We also assume that Ψt(x) is a Borel function of its variables (x, t). Next, for
every t ∈ [0, T0] let Λt(x) : X → X∗ be a function which is Gâteaux differentiable at every x ∈ X,
s.t. Λt(0) ∈ Lq∗

(
(0, T0);X

∗
)
and the derivative of Λt satisfies the growth condition

‖DΛt(x)‖L(X;X∗) ≤ g
(
‖T · x‖H

) (
‖x‖q−2

X + µ
q−2
q (t)

)
∀x ∈ X, ∀t ∈ [0, T0] , (1.10)

for some non-decreasing function g(s) : [0 +∞) → (0,+∞) and some nonnegative function µ(t) ∈
L1
(
(0, T0);R

)
. We also assume that Λt(x) is strongly Borel on the pair of variables (x, t) (see

Definition 2.2). Assume also that Ψt and Λt satisfy the following monotonicity condition

〈
h, λ

{
DΨt

(
λx+ h

)
−DΨt(λx)

}
+DΛt(x) · h

〉

X×X∗

≥ −ĝ
(
‖T · x‖H

)(
‖x‖qX + µ̂(t)

)
‖T · h‖2H

∀x, h ∈ X, ∀t ∈ [0, T0] , (1.11)

for some non-decreasing function ĝ(s) : [0 +∞) → (0,+∞) and some nonnegative function µ̂(t) ∈
L1
(
(0, T0);R

)
. Consider the set

Rq :=
{
u(t) ∈ Lq

(
(0, T0);X

)
: I · u(t) ∈ W 1,q∗

(
(0, T0);X

∗
)}
, (1.12)

and the minimization problem

inf
{
J(u) : u(t) ∈ Rq s.t I · u(0) = T̃ · w0

}
, (1.13)

where J(u) is defined by (1.8). Then for every u ∈ Rq such that I · u(0) = T̃ · w0 and for arbitrary
function h(t) ∈ Rq, such that I ·h(0) = 0, the finite limit lim

s→0

(
J(u+sh)−J(u)

)
/s exists. Moreover,

for every such u the following four statements are equivalent:
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(1) u is a critical point of (1.13), i.e., for any function h(t) ∈ Rq, such that I · h(0) = 0 we have

lim
s→0

J(u + sh)− J(u)

s
= 0 . (1.14)

(2) u is a minimizer to (1.13).

(3) J(u) = 0.

(4) u is a solution to

{
d
dt

{
I · u(t)

}
+ Λt

(
u(t)

)
+DΨt

(
λu(t)

)
= 0 in (0, T0),

I · u(0) = T̃ · w0.
(1.15)

Finally, there exists at most one function u ∈ Rq which satisfies (1.15).

Remark 1.1. Assume that, instead of (1.11), one requires that Ψt and Λt satisfy the following
inequality

〈
h, λ

{
DΨt

(
λx+ h

)
−DΨt(λx)

}
+DΛt(x) · h

〉

X×X∗

≥
∣∣f(h, t)

∣∣2

g̃(‖T · x‖H)
− g̃
(
‖T · x‖H

)(
‖x‖qX + µ̂(t)

)(2−r)/2∣∣f(h, t)
∣∣r ‖T · h‖(2−r)

H ∀x, h ∈ X, ∀t ∈ [0, T0],

(1.16)

for some non-decreasing function g̃(s) : [0 + ∞) → (0,+∞), some function µ̂(t) ∈ L1
(
(0, T0);R

)
,

some function f(x, t) : X × [0, T0] → R and some constant r ∈ (0, 2). Then (1.11) follows by the
trivial inequality (r/2) a2 +

(
(2− r)/2

)
b2 ≥ ar b2−r.

Our first result about the existence of minimizer for J(u) is the following Proposition (see Propo-
sition 3.2 for an equivalent formulation):

Proposition 1.1. Assume that {X,H,X∗}, T, T̃ , I, λ, q, p, Ψt and Λt satisfy all the conditions of
Theorem 1.1 together with the assumption λ = 1. Moreover, assume that Ψt and Λt satisfy the
following positivity condition

Ψt(x) +
〈
x,Λt(x)

〉

X×X∗

≥ 1

C̃
‖x‖qX − µ̄(t)

(
‖T · x‖2H + 1

)
∀x ∈ X, ∀t ∈ [0, T0], (1.17)

where C̃ > 0 is some constant and µ̄(t) ∈ L1
(
(0, T0);R

)
is some nonnegative function. Furthermore,

assume that
Λt(x) = At

(
S · x

)
+Θt(x) ∀x ∈ X, ∀ t ∈ [0, T0], (1.18)

where Z is a Banach space, S : X → Z is a compact operator and for every t ∈ [0, T0] At(z) : Z → X∗

is a function which is strongly Borel on the pair of variables (z, t) and Gâteaux differentiable at every
z ∈ Z, Θt(x) : X → X∗ is strongly Borel on the pair of variables (x, t) and Gâteaux differentiable
at every x ∈ X, Θt(0), At(0) ∈ Lq∗

(
(0, T0);X

∗
)
and the derivatives of At and Θt satisfy the growth

condition

‖DΘt(x)‖L(X;X∗) + ‖DAt(S · x)‖L(Z;X∗) ≤ g
(
‖T · x‖

) (
‖x‖q−2

X + µ
q−2
q (t)

)
∀x ∈ X, ∀t ∈ [0, T0]

(1.19)
for some nondecreasing function g(s) : [0,+∞) → (0 + ∞) and some nonnegative function µ(t) ∈
L1
(
(0, T0);R

)
. Next assume that for every sequence

{
xn(t)

}+∞

n=1
⊂ Lq

(
(0, T0);X

)
such that the

sequence
{
I · xn(t)

}
is bounded in W 1,q∗

(
(0, T0);X

∗
)
and xn(t)⇀ x(t) weakly in Lq

(
(0, T0);X

)
we

have

• Θt

(
xn(t)

)
⇀ Θt

(
x(t)

)
weakly in Lq∗

(
(0, T0);X

∗
)
,
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• limn→+∞

∫ T0

0

〈
xn(t),Θt

(
xn(t)

)〉

X×X∗

dt ≥
∫ T0

0

〈
x(t),Θt

(
x(t)

)〉

X×X∗

dt.

Finally, let w0 ∈ H be such that w0 = T · u0 for some u0 ∈ X, or more generally, w0 ∈ H be such
that Aw0 :=

{
u ∈ Rq : I · u(0) = T̃ · w0

}
6= ∅. Then there exists a minimizer to (1.13).

As a consequence of Theorem 1.1 and Proposition 1.1 we have the following Corollary.

Corollary 1.1. Assume that we are in the settings of Proposition 1.1. Then there exists a unique
solution u(t) ∈ Rq to

{
d
dt

{
I · u(t)

}
+ Λt

(
u(t)

)
+DΨt

(
u(t)

)
= 0 in (0, T0),

I · u(0) = T̃ · w0.
(1.20)

As an important particular case of Corollary 1.1 we have following statement:

Theorem 1.2. Let {X,H,X∗} be an evolution triple with the corresponding inclusion linear op-
erators T : X → H, which we assume to be bounded, injective and having dense image in H,
T̃ : H → X∗ be defined by (1.7) and I := T̃ ◦ T : X → X∗. Next let q ≥ 2. Furthermore, for every
t ∈ [0, T0] let Ψt(x) : X → [0,+∞) be a strictly convex function which is Gâteaux differentiable at
every x ∈ X, satisfies Ψt(0) = 0 and satisfies the growth condition

(1/C0) ‖x‖qX − C0 ≤ Ψt(x) ≤ C0 ‖x‖qX + C0 ∀x ∈ X, ∀t ∈ [0, T0] , (1.21)

and the following uniform convexity condition

〈
h,DΨt(x+ h)−DΨt(x)

〉

X×X∗

≥ 1

C0

(∥∥x
∥∥q−2

X
+ 1
)
· ‖h‖2X ∀x, h ∈ X, ∀t ∈ [0, T0], (1.22)

for some C0 > 0. We also assume that Ψt(x) is Borel on the pair of variables (x, t) Next let Z be a
Banach space, S : X → Z be a compact operator and for every t ∈ [0, T0] let Ft(z) : Z → X∗ be a
function, such that Ft is strongly Borel on the pair of variables (z, t) and Gâteaux differentiable at
every z ∈ Z, Ft(0) ∈ Lq∗

(
(0, T0);X

∗
)
and the derivatives of Ft satisfies the growth conditions

∥∥DFt(S · x)
∥∥
L(Z;X∗)

≤ g
(
‖T · x‖

) (
‖x‖q−2

X + 1
)

∀x ∈ X, ∀t ∈ [0, T0] , (1.23)

for some non-decreasing function g(s) : [0 + ∞) → (0,+∞). Moreover, assume that Ψt and Ft

satisfy the following positivity condition:

Ψt(x)+
〈
x, Ft(S ·x)

〉

X×X∗

≥ 1

C̄
‖x‖qX − C̄‖S ·x‖2Z − µ̄(t)

(
‖T ·x‖2H +1

)
∀x ∈ X, ∀t ∈ [0, T0],

(1.24)

where C̄ > 0 is some constant and µ̄(t) ∈ L1
(
(0, T0);R

)
is a nonnegative function. Furthermore,

let w0 ∈ H be such that w0 = T · u0 for some u0 ∈ X, or more generally, w0 ∈ H be such that
Aw0 :=

{
u ∈ Rq : I · u(0) = T̃ · w0

}
6= ∅. Then there exists a unique solution u(t) ∈ Rq to the

following equation

{
d
dt

{
I · u(t)

}
+ Ft

(
S · u(t)

)
+DΨt

(
u(t)

)
= 0 for a.e. t ∈ (0, T0) ,

I · u(0) = T̃ · w0 .
(1.25)

As a consequence, we have the following easily formulated Corollary:

Corollary 1.2. Let X be a reflexive Banach space and X∗ be the space dual to X. Next let I : X →
X∗ be a self-adjoint and strictly positive bounded linear operator. Furthermore, for every t ∈ [0, T0]
let Ψt(x) : X → [0,+∞) be a convex function which is Gâteaux differentiable at every x ∈ X,
satisfies Ψt(0) = 0 and satisfies the growth condition

(1/C0) ‖x‖2X − C0 ≤ Ψt(x) ≤ C0 ‖x‖2X + C0 ∀x ∈ X, ∀t ∈ [0, T0] , (1.26)
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and the uniform convexity condition

〈
h,DΨt(x+ h)−DΨt(x)

〉

X×X∗

≥ 1

C0
‖h‖2X ∀x, h ∈ X, ∀t ∈ [0, T0], (1.27)

for some C0 > 0. We also assume that Ψt(x) is Borel on the pair of variables (x, t) Next let Z be a
Banach space, S : X → Z be a compact operator and for every t ∈ [0, T0] let Ft(z) : Z → X∗ be a
function, such that Ft is strongly Borel on the pair of variables (z, t) and Gâteaux differentiable at
every z ∈ Z, Ft(0) ∈ L2

(
(0, T0);X

∗
)
and the derivative of Ft satisfies the Lipschitz’s condition

∥∥DFt(z)
∥∥
L(Z;X∗)

≤ C ∀z ∈ Z, ∀t ∈ [0, T0] , (1.28)

for some constant C > 0. Then for every u0 ∈ X there exists a unique u(t) ∈ L2
(
(0, T0);X

)
such

that I · u(t) ∈W 1,2
(
(0, T0);X

∗
)
and u(t) is a solution to

{
d
dt

{
I · u(t)

}
+ Ft

(
S · u(t)

)
+DΨt

(
u(t)

)
= 0 for a.e. t ∈ (0, T0) ,

I · u(0) = I · u0 .
(1.29)

In [15], using Theorem 1.2 as a basis, by the appropriate approximation, we obtain further
existence Theorems, under much weaker assumption on coercivity and compactness. Moreover,
applying these general Theorems, we provide with the existence results for various classes of time
dependent partial differential equations including parabolic, hyperbolic, Shrödinger and Navier-
Stokes systems.

In order to demonstrate the basic idea of the proof of the key Theorem 1.1 consider the simple
example of the scalar parabolic equation of the following form:





∂tu+ divx F (u)−∆xu = 0 ∀x ∈ Ω ⊂⊂ R
N , ∀t ∈ (0, T0)

u(x, t) = 0 ∀x ∈ ∂Ω, ∀t ∈ (0, T0)

u(x, 0) = v0(x) ∀x ∈ Ω,

(1.30)

where we assume F : R → R
N to be smooth and globally Lipschitz function. In this case we take

X := W 1,2
0 (Ω), H := L2(Ω) and T to be a trivial embedding. Then X∗ = W−1,2(Ω) and the

energy-functional takes the form

Ē(u) :=
1

2

∫ T0

0

∫

Ω

(
|∇xu|2+

∣∣∣∣∇x

{
∆−1

x

(
∂tu+divx F (u)

)}∣∣∣∣
2
)
dxdt+

1

2

∫

Ω

(∣∣u(x, T0)
∣∣2−
∣∣u(x, 0)

∣∣2
)
dx,

(1.31)
where ∆−1f is the solution of {

∆y = f x ∈ Ω ,

y = 0 ∀x ∈ ∂Ω .

Let us investigate the Euler-Lagrange equation for (1.31). If u satisfies u(x, t) = 0 for every (x, t) ∈
∂Ω× (0, T0) and u(x, 0) = v0(x), then,

Ē(u) :=
1

2

∫ T0

0

∫

Ω

(∣∣∣∣∇x

{
u−∆−1

x

(
∂tu+ divx F (u)

)}∣∣∣∣
2
)
dxdt. (1.32)

Set Wu := u−∆−1
x

(
∂tu+divx F (u)

)
. Thus, for every minimizer u of the energy (1.32) and for every

smooth test function δ(x, t), satisfying δ(x, t) = 0 for every (x, t) ∈ ∂Ω× (0, T0) and δ(x, 0) ≡ 0, we

6



obtain

0 =
dĒ(u + sδ)

ds

∣∣∣
(s=0)

= lim
s→0

1

2s

∫ T0

0

∫

Ω

(
|∇xW(u+sδ)|2 − |∇xWu|2

)
=

− lim
s→0

1

2s

∫ T0

0

∫

Ω

(
∆xW(u+sδ) −∆xWu

)
·
(
W(u+sδ) +Wu

)
=

lim
s→0

1

2

∫ T0

0

∫

Ω

(
−∆xδ + ∂tδ + divx

(
F (u+ sδ)− F (u)

)
/s
)
·
(
W(u+sδ) +Wu

)
=

∫ T0

0

∫

Ω

(
∇Wu · ∇xδ +Wu · ∂tδ −

(
F ′(u) · ∇xWu

)
δ
)
.

Since δ was arbitrary (in particular δ(x, T0) is free) we deduce that ∆xWu+∂tWu+F
′(u)·∇xWu = 0,

Wu(x, T0) = 0 and Wu = 0 if x ∈ ∂Ω. Changing variables τ := T0 − t gives that Wu is a solution of
the following linear parabolic equation with the trivial initial and boundary conditions:






∂τWu − F ′(u) · ∇xWu = ∆xWu ∀(x, τ) ∈ Ω× (0, T0) ,

Wu(x, 0) = 0 ∀x ∈ Ω ,

Wu(x, τ) = 0 ∀(x, τ) ∈ ∂Ω× (0, T0) .

Therefore Wu = 0 and then ∆xu = ∂tu+ divx F (u), i.e., u is the solution of (1.30).
In section 4 we give one more example, applying our result to a general parabolic system.

2 Notations and preliminaries

Throughout the paper by linear space we mean a real linear space.

• For given normed space X we denote by X∗ the dual space (the space of continuous (bounded)
linear functionals from X to R).

• For given h ∈ X and x∗ ∈ X∗ we denote by
〈
h, x∗

〉
X×X∗

the value in R of the functional x∗

on the vector h.

• For given two normed linear spaces X and Y we denote by L(X ;Y ) the linear space of con-
tinuous (bounded) linear operators from X to Y .

• For given A ∈ L(X ;Y ) and h ∈ X we denote by A · h ∈ Y the value of the operator A at the
point h.

• We set ‖A‖L(X;Y ) = sup{‖A · h‖Y : h ∈ X, ‖h‖X ≤ 1}. Then it is well known that L(X ;Y )
will be a normed linear space. Moreover L(X ;Y ) will be a Banach space if Y is a Banach
space.

Definition 2.1. Let X and Y be two normed linear spaces. We say that a function F : X → Y is
Gâteaux differentiable at the point x ∈ X if there exists A ∈ L(X ;Y ) such that the following limit
exists in Y and satisfy,

lim
s→0

1

s

(
F (x + sh)− F (x)

)
= A · h ∀h ∈ X .

In this case we denote the operator A by DF (x) and the value A · h by DF (x) · h.

Definition 2.2. Let X and Y be two normed linear spaces and U ⊂ X be a Borel subset. We say
that the mapping F (x) : U → Y is strongly Borel if the following two conditions are satisfied.

• F is a Borel mapping i.e. for every Borel set W ⊂ Y , the set {x ∈ U : F (x) ∈ W} is also
Borel.
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• For every separable subspace X ′ ⊂ X , the set {y ∈ Y : y = F (x), x ∈ U ∩ X ′} is also
contained in some separable subspace of Y .

Definition 2.3. For a given Banach space X with the associated norm ‖ · ‖X and a real interval
(a, b) we denote by Lq(a, b;X) the linear space of (equivalence classes of) strongly measurable (i.e
equivalent to some strongly Borel mapping) functions f : (a, b) → X such that the functional

‖f‖Lq(a,b;X) :=





(∫ b

a
‖f(t)‖qXdt

)1/q
if 1 ≤ q <∞

es supt∈(a,b)‖f(t)‖X if q = ∞

is finite. It is known that this functional defines a norm with respect to which Lq(a, b;X) becomes
a Banach space. Moreover, if X is reflexive and 1 < q <∞ then Lq(a, b;X) will be a reflexive space
with the corresponding dual space Lq∗(a, b;X∗), where q∗ = q/(q−1). It is also well known that the
subspace of continuous functions C0([a, b];X) ⊂ Lq(a, b;X) is dense i.e. for every f(t) ∈ Lq(a, b;X)
there exists a sequence {fn(t)} ⊂ C0([a, b];X) such that fn(t) → f(t) in the strong topology of
Lq(a, b;X).

We will need the following simple well known fact:

Lemma 2.1. Let X be a Banach space, (a, b) be a bounded real interval and f(t) ∈ Lq(a, b;X) for
some 1 ≤ q < +∞. Then if we denote

f̄(t) :=

{
f(t) if t ∈ (a, b) ,

0 if t /∈ (a, b) ,
(2.1)

then

lim
h→0

∫

R

∥∥f̄(t+ h)− f̄(t)
∥∥q
X
dt = 0 , (2.2)

and

lim
h→0

∫

R

(
1

h

∫ h

−h

∥∥f̄(t+ τ)− f̄(t)
∥∥q
X
dτ

)
dt = 0 . (2.3)

Moreover, for every sequence εn → 0+ as n→ +∞, up to a subsequence, still denoted by εn we have

lim
n→+∞

1

εn

∫ εn

−εn

∥∥f̄(t+τ)−f̄(t)
∥∥q
X
dτ = lim

n→+∞

∫ 1

−1

∥∥f̄(t+εns)−f̄(t)
∥∥q
X
ds = 0 for a.e. t ∈ R . (2.4)

Definition 2.4. Let X be a reflexive Banach space and let (a, b) be a finite real interval. We say
that v(t) ∈ Lq(a, b;X) belongs to W 1,q(a, b;X) if there exists f(t) ∈ Lq(a, b;X) such that for every
δ(t) ∈ C1

(
(a, b);X∗

)
satisfying supp δ ⊂⊂ (a, b) we have

b∫

a

〈
f(t), δ(t)

〉
X×X∗

dt = −
b∫

a

〈
v(t),

dδ

dt
(t)
〉

X×X∗

dt .

In this case we denote f(t) by v′(t) or by dv
dt (t). It is well known that if v(t) ∈ W 1,1(a, b;X) then

v(t) is a bounded and continuous function on [a, b] (up to a redefining of v(t) on a subset of [a, b]
of Lebesgue measure zero), i.e. v(t) ∈ C0

(
[a, b];X

)
and for every δ(t) ∈ C1

(
[a, b];X∗

)
and every

subinterval [α, β] ⊂ [a, b] we have

β∫

α

{〈dv
dt

(t), δ(t)
〉

X×X∗

+
〈
v(t),

dδ

dt
(t)
〉

X×X∗

}
dt =

〈
v(β), δ(β)

〉
X×X∗

−
〈
v(α), δ(α)

〉
X×X∗

. (2.5)

We have the following obvious result:
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Lemma 2.2. Let X and Y be two reflexive Banach spaces, S ∈ L(X,Y ) be an injective operator
(i.e. it satisfies kerS = 0) and (a, b) be a finite real interval. Then if u(t) ∈ Lq(a, b;X) is such that
v(t) := S · u(t) ∈ W 1,q(a, b;Y ) and there exists f(t) ∈ Lq(a, b;X) such that dv

dt (t) = S · f(t) then

u(t) ∈ W 1,q(a, b;X) and du
dt (t) = f(t).

Definition 2.5. Let X be a Banach space. We say that a function Ψ(x) : X → R is convex (strictly
convex) if for every λ ∈ (0, 1) and for every x, y ∈ X s.t. x 6= y we have

Ψ
(
λx + (1− λ)y

)
≤
(
<
)

λΨ(x) + (1− λ)Ψ(y) .

It is well known that if Ψ(x) : X → R is a convex (strictly convex) function which is Gâteaux
differentiable at every x ∈ X then for every x, y ∈ X s.t. x 6= y we have

Ψ(y) ≥
(
>
)

Ψ(x) +
〈
y − x,DΨ(x)

〉

X×X∗

, (2.6)

and 〈
y − x,DΨ(y)−DΨ(x)

〉

X×X∗

≥
(
>
)

0 , (2.7)

(remember that DΨ(x) ∈ X∗). Furthermore, Ψ is weakly lower semicontinuous on X . Moreover, if
some function Ψ(x) : X → R is Gâteaux differentiable at every x ∈ X and satisfy either (2.6) or
(2.7) for every x, y ∈ X s.t. x 6= y, then Ψ(y) is convex (strictly convex).

Definition 2.6. Let X be a reflexive Banach space and let Ψ(x) : X → R be a convex function.
For every y ∈ X∗ set the Legendre transform of Ψ by

Ψ∗(y) := sup
{〈
z, y
〉
X×X∗

−Ψ(z) : z ∈ X
}
.

Lemma 2.3. Let X be a reflexive Banach space and let Ψ(x) : X → [0,+∞) be a strictly convex
function which is Gâteaux differentiable at every x ∈ X and satisfies Ψ(0) = 0 and

lim
‖x‖X→+∞

1

‖x‖X
Ψ(x) = +∞ . (2.8)

Then Ψ∗(y) is a strictly convex function from X∗ to [0,+∞) and satisfies Ψ∗(0) = 0. Furthermore,
Ψ∗(y) is Gâteaux differentiable at every y ∈ X∗. Moreover x ∈ X satisfies x = DΨ∗(y) (remember
that DΨ∗(y) ∈ X∗∗ = X) if and only if y ∈ X∗ satisfies y = DΨ(x) (remember that DΨ(x) ∈ X∗).
Finally, if in addition Ψ satisfies

(1/C0) ‖x‖qX − C0 ≤ Ψ(x) ≤ C0 ‖x‖qX + C0 ∀x ∈ X , (2.9)

for some q > 1 and C0 > 0, then

(1/C) ‖y‖q
∗

X∗ − C ≤ Ψ∗(y) ≤ C ‖y‖q
∗

X∗ + C ∀y ∈ X∗ , (2.10)

for some C > 0 depending only on C0 and q, where q∗ := q/(q − 1). Moreover, for some C̄0, C̄ > 0,
that depend only on C and q from (2.9), we have

‖DΨ(x)‖X∗ ≤ C̄0‖x‖q−1
X + C̄0 ∀x ∈ X , (2.11)

and
‖DΨ∗(y)‖X ≤ C̄‖y‖q

∗−1
X∗ + C̄ ∀y ∈ X∗ . (2.12)

Proof. First since Ψ(0) = 0 it is clear that for every y ∈ X∗ we have Ψ∗(y) ≥ 0. Next since for every
x ∈ X we have Ψ(x) ≥ 0 then Ψ∗(0) ≤ 0 and so Ψ∗(0) = 0. Next by the growth condition (2.8) we
deduce that Ψ∗(y) < +∞ for every y ∈ X∗. So Ψ∗(y) : X∗ → [0,+∞). Moreover, it easy follows
from the definition of Legendre transform, that Ψ∗(y) is a convex function on X∗.
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Next since Ψ is weakly lower semicontinuous on X and satisfies growth condition (2.8) then for
every y ∈ X∗ there exists zy ∈ X such that

Ψ(zy)−
〈
zy, y

〉
X×X∗

= inf
{
Ψ(z)− < z, y >X×X∗ : z ∈ X

}
, (2.13)

i.e.
Ψ∗(y) :=

〈
zy, y

〉
X×X∗

−Ψ(zy) . (2.14)

Moreover we have
DΨ(zy) = y , (2.15)

However, since Ψ is a strictly convex function, by (2.7) for every z ∈ X s.t. z 6= zy we must have
〈
z − zy, DΨ(z)−DΨ(zy)

〉
X×X∗

> 0 . (2.16)

Therefore, in particular for every y ∈ X∗ z = zy is a unique solution of the equation DΨ(z) = y and
〈
zy1 − zy2 , y1 − y2

〉
X×X∗

> 0 , (2.17)

for every y1, y2 ∈ X∗ s.t. y1 6= y2. Next let y0, h ∈ X∗. Then by the definition of Ψ∗ for every s ∈ R

we have
s
〈
zy0 , h

〉
X×X∗

≤ Ψ∗(y0 + sh)−Ψ∗(y0) ≤ s
〈
z(y0+sh), h

〉
X×X∗

. (2.18)

On the other hand by (2.13) we have Ψ(z(y0+sh)) ≤
〈
zy0+sh, y0+ sh

〉
X×X∗

. Therefore, using growth

condition (2.8) we deduce that there exists C̄ > 0 such that ‖zy0+sh‖X ≤ C̄ for every s ∈ (−1, 1).
Thus using the fact that X is reflexive we deduce that for any sequence {sn}+∞

n=1 ⊂ (−1, 1) such that
limn→+∞ sn = 0, up to a subsequence, we must have zy0+snh ⇀ z̃ weakly in X . However, by (2.13)
we have

Ψ
(
z(y0+snh)

)
−
〈
z(y0+snh), y0 + snh

〉
X×X∗

≤ Ψ(z)− < z, y0 + snh >X×X∗ ∀ z ∈ X . (2.19)

Then tending n→ +∞ in (2.19), using the fact that, up to a subsequence, zy0+snh ⇀ z̃ and that Ψ
is weakly lower semicontinuous function we deduce that

Ψ(z̃)− < z̃, y0 >X×X∗≤ Ψ(z)− < z, y0 >X×X∗ ∀ z ∈ X . (2.20)

So z̃ is a minimizer to (2.13) with y = y0 and therefore, DΨ(z̃) = y0. On the other hand z = zy0 is a
unique solution of the equation DΨ(z) = y0. Therefore, z̃ = zy0 . So by (2.18), up to a subsequence,
we have

1

sn

(
Ψ∗(y0 + snh)−Ψ∗(y0)

)
→
〈
zy0 , h

〉
X×X∗

. (2.21)

Since the sequence sn was chosen arbitrary we deduce that

lim
s→0

1

s

(
Ψ∗(y0 + sh)−Ψ∗(y0)

)
→
〈
zy0, h

〉
X×X∗

. (2.22)

Finally, y0, h ∈ X also were chosen arbitrary and therefore we deduce that Ψ∗(y) is Gâteaux differ-
entiable at every y ∈ X∗ and DΨ∗(y) = zy. Thus since z = zy is a unique solution of the equation
DΨ(z) = y we deduce that DΨ∗(y) = z if and only if DΨ(z) = y. Moreover by (2.17) we deduce
that 〈

DΨ∗(y1)−DΨ∗(y2), y1 − y2
〉
X×X∗

> 0 , (2.23)

for every y1, y2 ∈ X∗ such that y1 6= y2. So Ψ∗ is a strictly convex on X∗ function.
Next if we consider function ζ(y) : X∗ → R defined by

ζ(y) := sup
{
< z, y >X×X∗ −k‖z‖qX : z ∈ X

}
,

for some k > 0, then

ζ(y) = sup
{
t < z, y >X×X∗ −k|t|q : t ∈ R, z ∈ X, ‖z‖X = 1

}
=

sup
{
K| < z, y >X×X∗ |q∗ : z ∈ X, ‖z‖X = 1

}
= K‖y‖q

∗

X∗ ,
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for some K > 0 depending only on k and q. Thus using growth condition (2.9) and the definition of
Ψ∗ we easily deduce growth condition (2.10). So it remains to prove that growth condition (2.11)
follows from growth condition (2.9) and (2.12) follows from (2.10). Indeed since Ψ is convex, from
(2.6), for every x, h ∈ X we have

〈
h,DΨ(x)

〉
X×X∗

≤ Ψ(x+ h)−Ψ(x) . (2.24)

Therefore, for every x, h ∈ X such that ‖h‖X ≤ 1 and ‖x‖X ≥ 1 we have

〈
h,DΨ(x)

〉
X×X∗

≤ 1

‖x‖X

(
Ψ
(
x+ ‖x‖Xh

)
−Ψ(x)

)
. (2.25)

Thus using growth condition (2.9) we deduce that for every x, h ∈ X such that ‖h‖X ≤ 1 and
‖x‖X ≥ 1 we have 〈

h,DΨ(x)
〉
X×X∗

≤ C̃‖x‖q−1
X , (2.26)

where C̃ > 0 is a constant, depending on C0 and q only, and so

‖DΨ(x)‖X∗ ≤ C̃‖x‖q−1
X , (2.27)

for every x which satisfy ‖x‖X ≥ 1. However, by (2.24) and (2.9) we have

〈
h,DΨ(x)

〉
X×X∗

≤ Ĉ , (2.28)

for every x, h ∈ X such that ‖x‖X ≤ 1 and ‖h‖X ≤ 1, where Ĉ > 0 is a constant depending on C0

and q only. So ‖DΨ(x)‖X∗ ≤ Ĉ for every x which satisfy ‖x‖X ≤ 1. This together with (2.27) gives
the desired result (2.11). Finally, Ψ∗ is a convex on X∗ and satisfy (2.10). Therefore, (2.12) follows
exactly by the same way.

Definition 2.7. Let Z be a Banach space and Z∗ be a corresponding dual space. We say that the
mapping Λ(z) : Z → Z∗ is monotone (strictly monotone) if we have

〈
y − z,Λ(y)− Λ(z)

〉

Z×Z∗

≥ (>) 0 ∀ y 6= z ∈ Z . (2.29)

Definition 2.8. Let Z be a Banach space and Z∗ be a corresponding dual space. We say that the
mapping Λ(z) : Z → Z∗ is pseudo-monotone if for every sequence {zn}+∞

n=1 ⊂ Z, satisfying

zn ⇀ z weakly in Z and lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

≤ 0 (2.30)

we have
lim

n→+∞

〈
zn − y,Λ(zn)

〉

Z×Z∗

≥
〈
z − y,Λ(z)

〉

Z×Z∗

∀y ∈ Z . (2.31)

Lemma 2.4. Let Z be a Banach space and Z∗ be a corresponding dual space. Then the mapping
Λ(z) : Z → Z∗ is pseudo-monotone if and only if it satisfies the following conditions:

(i) For every sequence {zn}+∞
n=1 ⊂ Z, such that zn ⇀ z weakly in Z we have

lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

≥ 0 . (2.32)

(ii) If for some sequence {zn}+∞
n=1 ⊂ Z, such that zn ⇀ z weakly in Z we have

lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

= 0 , (2.33)

then Λ(zn)⇀ Λ(z) weakly∗ in Z∗.

11



Proof. Assume that the mapping Λ(z) : Z → Z∗ is pseudo-monotone. Choose arbitrary sequence
zn ⇀ z weakly in Z and denote

K = lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

.

Then, up to a subsequence, still denoted by zn we have

K = lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

.

Thus if we assume that K ≤ 0, by (2.31) with y = z we deduce K ≥ 0. Therefore, since the sequence
zn ⇀ z was chosen arbitrary we deduce that for every sequence {zn}+∞

n=1 ⊂ Z, such that zn ⇀ z
weakly in Z we have (2.32). Next assume that for some sequence {zn}+∞

n=1 ⊂ Z, such that zn ⇀ z
weakly in Z we have (2.33). Then, by (2.31) for this sequence we must have

lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

= 0 and lim
n→+∞

〈
zn − y,Λ(zn)

〉

X×X∗

≥
〈
z− y,Λ(z)

〉

Z×Z∗

∀y ∈ Z .

(2.34)
Therefore, plugging the first equality in (2.34) into the second inequality we obtain

lim
n→+∞

〈
z − y,Λ(zn)

〉

Z×Z∗

≥
〈
z − y,Λ(z)

〉

Z×Z∗

∀y ∈ Z . (2.35)

We can rewrite (2.35) as

lim
n→+∞

〈
h,Λ(zn)

〉
Z×Z∗

≥
〈
h,Λ(z)

〉
Z×Z∗

∀h ∈ Z . (2.36)

Thus, interchanging between h and −h in (2.36) we obtain

lim
n→+∞

〈
h,Λ(zn)

〉
Z×Z∗

≤
〈
h,Λ(z)

〉
Z×Z∗

∀h ∈ Z . (2.37)

So, by plugging (2.36) and (2.37) we finally deduce

lim
n→+∞

〈
h,Λ(zn)

〉
Z×Z∗

=
〈
h,Λ(z)

〉
Z×Z∗

∀h ∈ Z . (2.38)

I.e. Λ(zn)⇀ Λ(z) weakly∗ in Z∗.
Next assume that the mapping Λ(z) : Z → Z∗ satisfies the conditions (i) and (ii). Consider the

sequence {zn}+∞
n=1 ⊂ Z, satisfying

zn ⇀ z weakly in Z and lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

≤ 0

Then by condition (i) we must have

lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

= 0 . (2.39)

Thus by condition (ii) we must have

lim
n→+∞

〈
z − y,Λ(zn)

〉

Z×Z∗

=
〈
z − y,Λ(z)

〉

Z×Z∗

∀y ∈ Z . (2.40)

Thus by (2.39) and (2.40) we finally deduce

lim
n→+∞

〈
zn − y,Λ(zn)

〉

Z×Z∗

= lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

+ lim
n→+∞

〈
z − y,Λ(zn)

〉

Z×Z∗

= 0 +
〈
z − y,Λ(z)

〉

Z×Z∗

∀y ∈ Z . (2.41)

Thus, the mapping Λ(z) : Z → Z∗ is pseudo-monotone.
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Lemma 2.5. Let Z be a Banach space and Z∗ be a corresponding dual space. Assume that the
mapping Λ(z) : Z → Z∗ is monotone. Moreover assume that Λ(z) : Z → Z∗ is continuous for every
z ∈ Z or more generally the function ζz,h(t) : R → R, defined by

ζz,h(t) :=
〈
h,Λ

(
z − th

)〉

Z×Z∗

∀z, h ∈ Z , ∀t ∈ R , (2.42)

is continuous on t for every z, h ∈ Z. Then the mapping Λ(z) is pseudo-monotone.

Proof. Assume that the mapping Λ(z) : Z → Z∗ is monotone. I.e.

〈
y − z,Λ(y)− Λ(z)

〉

Z×Z∗

≥ 0 ∀ y, z ∈ Z . (2.43)

Then in particular for every sequence {zn}+∞
n=1 ⊂ Z, such that zn ⇀ z weakly in Z, we obtain

lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

≥ lim
n→+∞

〈
zn − z,Λ(z)

〉

Z×Z∗

= 0 . (2.44)

So the condition (i) of Lemma 2.4 is satisfied. Next assume that the sequence {zn}+∞
n=1 ⊂ Z satisfies

zn ⇀ z weakly in Z and lim
n→+∞

〈
zn − z,Λ(zn)

〉

Z×Z∗

= 0 . (2.45)

We will prove now that we must have Λ(zn)⇀ Λ(z) weakly∗ in Z∗. Indeed, by (2.43) we obtain

lim
n→+∞

〈
zn − y,Λ(zn)− Λ(y)

〉

Z×Z∗

≥ 0 ∀ y ∈ Z . (2.46)

Thus plugging (2.45) into (2.46) we deduce

lim
n→+∞

〈
z − y,Λ(zn)

〉

Z×Z∗

= lim
n→+∞

〈
zn − y,Λ(zn)

〉

Z×Z∗

≥

lim
n→+∞

〈
zn − y,Λ(y)

〉

Z×Z∗

=
〈
z − y,Λ(y)

〉

Z×Z∗

∀ y ∈ Z . (2.47)

Then choosing y := z − th in (2.47) for arbitrary h ∈ Z and t > 0 we obtain

lim
n→+∞

〈
h,Λ(zn)

〉

Z×Z∗

≥
〈
h,Λ(z − th)

〉

Z×Z∗

∀h ∈ Z , ∀t > 0 . (2.48)

Therefore, tending t → 0+ in (2.48) and using the continuity of the function in the r.h.s. of (2.48)
we infer

lim
n→+∞

〈
h,Λ(zn)

〉
Z×Z∗

≥
〈
h,Λ(z)

〉
Z×Z∗

∀h ∈ Z . (2.49)

Thus, as before, interchanging between h and −h in (2.49) we obtain

lim
n→+∞

〈
h,Λ(zn)

〉
Z×Z∗

≤
〈
h,Λ(z)

〉
Z×Z∗

∀h ∈ Z . (2.50)

So, by plugging (2.49) and (2.50) we finally deduce

lim
n→+∞

〈
h,Λ(zn)

〉
Z×Z∗

=
〈
h,Λ(z)

〉
Z×Z∗

∀h ∈ Z . (2.51)

I.e. Λ(zn)⇀ Λ(z) weakly∗ in Z∗. So the condition (ii) of Lemma 2.4 is satisfied. Therefore, by this
Lemma the mapping Λ(z) is pseudo-monotone.

Next we have the following well known Lemma:
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Lemma 2.6. Let Y and Z be two reflexive Banach spaces. Furthermore, let S ∈ L(Y ;Z) be an
injective operator (i.e. it satisfies kerS = {0}) and let S∗ ∈ L(Z∗;Y ∗) be the corresponding adjoint
operator, which satisfies

〈
y, S∗ · z∗

〉
Y×Y ∗

:=
〈
S · y, z∗

〉
Z×Z∗

for every z∗ ∈ Z∗ and y ∈ Y . (2.52)

Next assume that a, b ∈ R s.t. a < b. Let w(t) ∈ L∞(a, b;Y ) be such that the function v : [a, b] → Z
defined by v(t) := S ·

(
w(t)

)
belongs to W 1,q(a, b;Z) for some q ≥ 1. Then we can redefine w on a

subset of [a, b] of Lebesgue measure zero, so that w(t) will be Y -weakly continuous in t on [a, b] ( i.e.
w ∈ C0

w(a, b;Y ) ). Moreover, for every a ≤ α < β ≤ b and for every δ(t) ∈ C1
(
[a, b];Z∗

)
we will

have

β∫

α

{〈dv
dt

(t), δ(t)
〉

Z×Z∗

+
〈
v(t),

dδ

dt
(t)
〉

Z×Z∗

}
dt =

〈
w(β), S∗ · δ(β)

〉
Y×Y ∗

−
〈
w(α), S∗ · δ(α)

〉
Y×Y ∗

.

(2.53)

Definition 2.9. Let X be a reflexive Banach space and X∗ the corresponding dual space. Further-
more let H be a Hilbert space and T ∈ L(X,H) be an injective (i.e. it satisfies kerT = {0}) inclusion
operator such that its image is dense on H . Then we call the triple {X,H,X∗} an evolution triple
with the corresponding inclusion operator T . Throughout this paper we assume the space H∗ be
equal to H (remember that H is a Hilbert space) but in general we don’t associate X∗ with X even
in the case where X is a Hilbert space (and thus X∗ will be isomorphic to X). Furthermore, we

define the bounded linear operator T̃ ∈ L(H ;X∗) by the formula

〈
x, T̃ · y

〉
X×X∗

:=
〈
T · x, y

〉
H×H

for every y ∈ H and x ∈ X . (2.54)

In particular ‖T̃‖L(H;X∗) = ‖T ‖L(X;H) and since we assumed that the image of T is dense in H we

deduce that ker T̃ = {0} and so T̃ is an injective operator. So T̃ is an inclusion of H to X∗ and the

operator I := T̃ ◦ T is an injective inclusion of X to X∗. Furthermore, clearly

〈
x, I · z

〉
X×X∗

=
〈
T · x, T · z

〉
H×H

=
〈
z, I · x

〉
X×X∗

for every x, z ∈ X . (2.55)

So I ∈ L(X,X∗) is self-adjoint operator. Moreover, I is strictly positive, since

〈
x, I · x

〉
X×X∗

= ‖T · x‖2H > 0 ∀x 6= 0 ∈ X . (2.56)

Lemma 2.7. Let X be a reflexive Banach space and X∗ the corresponding dual space. Furthermore,
let I ∈ L(X,X∗) be a self-adjoint and strictly positive operator. i.e.

〈
x, I · z

〉
X×X∗

=
〈
z, I · x

〉
X×X∗

for every x, z ∈ X , (2.57)

and 〈
x, I · x

〉
X×X∗

> 0 ∀x 6= 0 ∈ X . (2.58)

Then there exists a Hilbert space H and an injective operator T ∈ L(X,H) (i.e. kerT = {0}), whose
image is dense in H, and such that if we consider the operator T̃ ∈ L(H ;X∗), defined by the formula
(2.54), then we will have

(T̃ ◦ T ) · x = I · x ∀x ∈ X . (2.59)

I.e. {X,H,X∗} is an evolution triple with the corresponding inclusion operator T ∈ L(X ;H), as it

was defined in Definition 2.9, together with the corresponding operator T̃ ∈ L(H ;X∗), defined as in

(2.54), and I ≡ T̃ ◦ T .

Proof. Since I is a self-adjoint and strictly positive operator, the identity

〈〈
x, z
〉〉

:=
〈
x, I · z

〉
X×X∗

=
〈
z, I · x

〉
X×X∗

for every x, z ∈ X , (2.60)
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defines a scalar product in X and the corresponding Euclidian norm
∣∣∣∣x
∣∣∣∣ := √

<< x, x >>. Denote
the closure of the space X with respect to this Euclidian norm by H and the trivial embedding of X
into H by T . Thus H will be a Hilbert space and T ∈ L(X,H) will be an injective bounded linear
operator whose image is dense in H . Moreover,

〈
T · x, T · z

〉
H×H

=
〈〈
x, z
〉〉

=
〈
x, I · z

〉
X×X∗

for every x, z ∈ X . (2.61)

Thus if we consider the operator T̃ ∈ L(H ;X∗), defined as in (2.54), by the formula

〈
x, T̃ · y

〉
X×X∗

:=
〈
T · x, y

〉
H×H

for every y ∈ H and x ∈ X , (2.62)

then plugging (2.62) into (2.61) we deduce

〈
x, (T̃ ◦ T ) · z

〉
X×X∗

=
〈
T · x, T · z

〉
H×H

=
〈
x, I · z

〉
X×X∗

for every x, z ∈ X . (2.63)

I.e. T̃ ◦ T ≡ I.

Next as a particular case of Lemma 2.6 we have the following Corollary.

Corollary 2.1. Let {X,H,X∗} be an evolution triple with the corresponding inclusion operator

T ∈ L(X ;H), as it was defined in Definition 2.9, together with the corresponding operator T̃ ∈
L(H ;X∗), defined as in (2.54), and let a, b ∈ R be s.t. a < b. Let w(t) ∈ L∞(a, b;H) be such that

the function v : [a, b] → X∗ defined by v(t) := T̃ ·
(
w(t)

)
belongs to W 1,q(a, b;X∗) for some q ≥ 1.

Then we can redefine w on a subset of [a, b] of Lebesgue measure zero, so that w(t) will be H-weakly
continuous in t on [a, b] ( i.e. w ∈ C0

w(a, b;H) ). Moreover, for every a ≤ α < β ≤ b and for every
δ(t) ∈ C1

(
[a, b];X

)
we will have

β∫

α

{〈
δ(t),

dv

dt
(t)
〉

X×X∗

+
〈dδ
dt

(t), v(t)
〉

X×X∗

}
dt =

〈
T · δ(β), w(β)

〉
H×H

−
〈
T · δ(α), w(α)

〉
H×H

.

(2.64)

The following result is well known in the study of evolutional equations:

Lemma 2.8. Let {X,H,X∗} be an evolution triple with the corresponding inclusion operator T ∈
L(X ;H), as it was defined in Definition 2.9, together with the corresponding operator T̃ ∈ L(H ;X∗),
defined as in (2.54), and let a, b ∈ R be s.t. a < b. Let u(t) ∈ Lq(a, b;X) for some q > 1 such
that the function v(t) : [a, b] → X∗ defined by v(t) := I ·

(
u(t)

)
belongs to W 1,q∗(a, b;X∗) for

q∗ := q/(q − 1), where we denote I := T̃ ◦ T : X → X∗. Then the function w(t) : [a, b] → H defined
by w(t) := T ·

(
u(t)

)
belongs to L∞(a, b;H) and for every subinterval [α, β] ⊂ [a, b] we have

∫ β

α

〈
u(t),

dv

dt
(t)
〉

X×X∗

dt =
1

2

(
‖w(β)‖2H − ‖w(α)‖2H

)
, (2.65)

up to a redefinition of w(t) on a subset of [a, b] of Lebesgue measure zero, such that w is H-weakly
continuous, as it was stated in Corollary 2.1.

We will need in the sequel the following compactness results.

Lemma 2.9. Let X, Y Z be three Banach spaces, such that X is a reflexive space. Furthermore, let
T ∈ L(X ;Y ) and S ∈ L(X ;Z) be bounded linear operators. Moreover assume that S is an injective
inclusion (i.e. it satisfies kerS = {0}) and T is a compact operator. Assume that a, b ∈ R such that
a < b, 1 ≤ q < +∞ and {un(t)} ⊂ Lq(a, b;X) is a bounded in Lq(a, b;X) sequence of functions,
such that the functions vn(t) : (a, b) → Z, defined by vn(t) := S ·

(
un(t)

)
, belongs to L∞(a, b;Z), the

sequence {vn(t)} is bounded in L∞(a, b;Z) and for a.e. t ∈ (a, b) we have

vn(t)⇀ v(t) weakly in Z as n→ +∞ . (2.66)

Then, {
T ·
(
un(t)

)}
converges strongly in Lq(a, b;Y ) . (2.67)
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Proof. First of all we would like to observe that without loss of generality we may assume that the
spaces X , Y and Z are separable. Indeed, in the general case since un(t) ∈ Lq(a, b;X) then un
is strictly measurable. Thus in particular un is separately valued, i.e. for every n there exists a
separable subspace Xn ⊂ X such that un(t) ∈ Xn for a.e. t ∈ (a, b). Define X̄ be the closure
in X of the linear span of

⋃+∞
n=1Xn. Then X̄ is a separable subspace of X by itself and by the

construction for a.e. t ∈ (a, b) for every n we have un(t) ∈ X̄. Then we also can define Ȳ and Z̄ as
the closures of the images of the subspace X̄ under the transformations T and S respectively. So Ȳ
and Z̄ are separable subspaces of Y and Z respectively. The new spaces X̄, Ȳ and Z̄ together with
the operators T xX̄ and SxX̄ and the functions un(t) ∈ Lq(a, b; X̄) satisfy all the conditions of the
present lemma.

Therefore, from now we assume the spaces X , Y and Z to be separable. Thus by Lemma A.3
from the Appendix there exists a separable Hilbert space U and an operator L ∈ L(Z;U) such that
L is injective (i.e. kerL = {0}) and compact. Thus since L is a compact operator, by (2.66), for
a.e. t ∈ (a, b) we have

L · vn(t) → L · v(t) strongly in U as n→ +∞ . (2.68)

Moreover, the sequence {L · vn(t)} is bounded in L∞(a, b;U). Therefore, by the Dominated Conver-
gence Theorem we deduce that

(
L ◦ S

)
·
(
un(t)

)
= L ·

(
vn(t)

)
→ L ·

(
v(t)

)
strongly in Lq(a, b;U) as n→ +∞ . (2.69)

Next since S and L are injective inclusions, we deduce that L◦S ∈ L(X,U) is an injective inclusion.
Therefore, using Lemma A.1 from the Appendix we deduce that for every ε > 0 there exists cε > 0
such that for all n,m ∈ N we must have

∥∥∥T ·un+m(t)−T ·un(t)
∥∥∥
Y
≤ ε
∥∥∥un+m(t)−un(t)

∥∥∥
X
+cε

∥∥∥(L◦S)·un+m(t)−(L◦S)·un(t)
∥∥∥
U

∀t ∈ (a, b) .

(2.70)

Therefore, for every ε > 0, for all n,m ∈ N we obtain

∥∥∥T ·
(
un+m(t)

)
− T ·

(
un(t)

)∥∥∥
Lq(a,b;Y )

≤ ε
∥∥∥un+m(t)− un(t)

∥∥∥
Lq(a,b;X)

+ cε

∥∥∥L ·
(
vn+m(t)

)
− L ·

(
vn(t)

)∥∥∥
Lq(a,b;U)

. (2.71)

However, since the sequence {un} is bounded in Lq(a, b;X), using (2.71) we deduce that there exists
a constant C0 > 0 independent on ε such that

∥∥∥T ·
(
un+m(t)

)
− T ·

(
un(t)

)∥∥∥
Lq(a,b;Y )

≤ C0ε + cε

∥∥∥L ·
(
vn+m(t)

)
− L ·

(
vn(t)

)∥∥∥
Lq(a,b;U)

. (2.72)

On the other hand, by (2.69), there exists n0 = n0(ε) ∈ N such that for every n > n0 and every
m ∈ N we have ∥∥∥L ·

(
vn+m(t)

)
− L ·

(
vn(t)

)∥∥∥
Lq(a,b;U)

≤ ε

cε
. (2.73)

Thus, plugging (2.73) into (2.72), we obtain that for every n > n0 and every m ∈ N we must have
∥∥∥T ·

(
un+m(t)

)
− T ·

(
un(t)

)∥∥∥
Lq(a,b;Y )

≤ (C0 + 1)ε . (2.74)

Therefore, since ε > 0 in (2.74) is arbitrary and since Lq(a, b;Y ) is a Banach space we finally deduce
(2.67).

Lemma 2.10. Let Z be a reflexive Banach space and let
{
vn(t)

}+∞

n=1
⊂W 1,1(a, b;Z) be a sequence

of functions, bounded in W 1,1(a, b;Z). Then,
{
vn(t)

}+∞

n=1
is bounded in L∞(a, b;Z) and, up to a

subsequence, we have

vn(t)⇀ v(t) weakly in Z as n→ +∞ , for a.e t ∈ (a, b) . (2.75)
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Proof. As before without loss of generality we may assume that the space Z is separable. Thus
since Z is a reflexive we deduce that the space Z∗ is also separable. Next since W 1,1(a, b;Z) is
continuously embedded in L∞(a, b;Z), there exists a constant C > 0 such that

∥∥vn(t)
∥∥
Z
≤ C ∀t ∈ R0 ⊂ (a, b) , (2.76)

where L1
(
(a, b) \ R0

)
= 0. On the other hand, since Z∗ is separable, there exists a sequence

{σj}+∞
j=1 ⊂ Z∗ which is dense in Z∗. For every j, n ∈ N and every t ∈ (a, b) set

h(j)n (t) :=
〈
vn(t), σj

〉
Z×Z∗

∈W 1,1(a, b;R) . (2.77)

Then for every fixed j the sequence {h(j)n (t)}+∞
n=1 is bounded in W 1,1(a, b;R). Thus since the em-

bedding of W 1,1(a, b;R) into L1(a, b;R) is compact and since every L1-convergent sequence has a

subsequence which converges almost everywhere, there exists an increasing sequence {n(1)
k }+∞

k=1 ⊂ N

and a set R1 ⊂ R0 such that L1
(
(a, b) \R1

)
= 0 and limk→+∞ h

(1)

n
(1)
k

(t) = h̄(1)(t) for every t ∈ R1.

In the same way there exists a further subsequence {n(2)
k }+∞

k=1 ⊂ {n(1)
k }+∞

k=1 and a set R2 ⊂ R1

such that L1
(
(a, b) \ R2

)
= 0 and limk→+∞ h

(2)

n
(2)
k

(t) = h̄(2)(t) for every t ∈ R2. Continuing this

process we obtain that for every m ∈ N there exists a subsequence {n(m+1)
k }+∞

k=1 ⊂ {n(m)
k }+∞

k=1 and

a set Rm+1 ⊂ Rm such that L1
(
(a, b) \Rm+1

)
= 0 and limk→+∞ h

(m+1)

n
(m+1)
k

(t) = h̄(m+1)(t) for every

t ∈ Rm+1. Thus taking the diagonal subsequence we obtain that, up to a subsequence, still denoted
by vn(t) we have

lim
n→+∞

〈
vn(t), σj

〉
Z×Z∗

= h̄(j)(t) ∀t ∈ R̄, ∀j ∈ N ,

where R̄ := ∩+∞
j=1Rj . Moreover, clearly we have L1

(
(a, b) \ R̄

)
= 0. Therefore by the fact that

{σj}+∞
j=1 ⊂ Z∗ is dense in Z∗ and by (2.76) we obtain that

vn(t)⇀ v(t) weakly in Z as n→ +∞ , ∀t ∈ R̄ ,

i.e. almost everywhere in (a, b).

As a direct consequence of Lemma 2.9 and Lemma 2.10 we have the following Lemma.

Lemma 2.11. Let X, Y and Z be three Banach spaces, such that X and Z are reflexive. Fur-
thermore, let T ∈ L(X ;Y ) and S ∈ L(X ;Z) be bounded linear operators. Moreover assume that S
is an injective inclusion (i.e. it satisfies kerS = {0}) and T is a compact operator. Assume that
a, b ∈ R such that a < b, 1 ≤ q < +∞ and {un(t)} ⊂ Lq(a, b;X) is a bounded in Lq(a, b;X) sequence
of functions, such that the functions vn(t) : (a, b) → Z, defined by vn(t) := S ·

(
un(t)

)
, belongs to

W 1,1(a, b;Z) and the sequence
{
dvn
dt (t)

}
is bounded in L1(a, b;Z). Then, up to a subsequence,

{
T ·
(
un(t)

)}
converges strongly in Lq(a, b;Y ) . (2.78)

3 The properties of the Euler-Lagrange equations

Definition 3.1. Let {X,H,X∗} be an evolution triple with the corresponding inclusion operator

T ∈ L(X ;H), as it was defined in Definition 2.9, together with the corresponding operator T̃ ∈
L(H ;X∗), defined as in (2.54), and let a, b ∈ R be s.t. a < b. Let u(t) ∈ Lq(a, b;X) for some q > 1
be such, that the function v(t) : [a, b] → X∗ defined by v(t) := I ·

(
u(t)

)
belongs to W 1,q∗(a, b;X∗)

for q∗ := q/(q − 1), where I := T̃ ◦ T : X → X∗. Denote the set of all such functions u by
Rq(a, b). Note that by Lemma 2.8, for every u(t) ∈ Rq(a, b) the function w(t) : [a, b] → H defined
by w(t) := T ·

(
u(t)

)
belongs to L∞(a, b;H) and, up to a redefinition of w(t) on a subset of [a, b] of

Lebesgue measure zero, w is H-weakly continuous, as it was stated in Corollary 2.1.
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Definition 3.2. Let {X,H,X∗} be an evolution triple with the corresponding inclusion operator

T ∈ L(X ;H), as it was defined in Definition 2.9, together with the corresponding operator T̃ ∈
L(H ;X∗), defined as in (2.54), and let λ ∈ {0, 1} and a, b, q ∈ R be s.t. a < b and q ≥ 2.
Furthermore, for every t ∈ [a, b] let Ψt(x) : X → [0,+∞) be a strictly convex function which is
Gâteaux differentiable at every x ∈ X , satisfies Ψt(0) = 0 and satisfies the growth condition

(1/C0) ‖x‖qX − C0 ≤ Ψt(x) ≤ C0 ‖x‖qX + C0 ∀x ∈ X, ∀t ∈ [a, b] , (3.1)

for some C0 > 0. We also assume that Ψt(x) is Borel on the pair of variables (x, t) (see Definition
2.2). For every t ∈ [a, b] denote by Ψ∗

t the Legendre transform of Ψt, defined by

Ψ∗
t (y) := sup

{
< z, y >X×X∗ −Ψt(z) : z ∈ X

}
∀y ∈ X∗ .

Next for every t ∈ [a, b] let Λt(x) : X → X∗ be a function which is Gâteaux differentiable at every
x ∈ X , Λt(0) ∈ Lq∗(a, b;X∗) and the derivative of Λt satisfies the growth condition

‖DΛt(x)‖L(X;X∗) ≤ g
(
‖T · x‖H

) (
‖x‖q−2

X + µ
q−2
q (t)

)
∀x ∈ X, ∀t ∈ [a, b] , (3.2)

for some non-decreasing function g(s) : [0 +∞) → (0,+∞) and some nonnegative function µ(t) ∈
L1(a, b;R). We also assume that Λt(x) is strongly Borel on the pair of variables (x, t) (see Definition
2.2). Assume also that Ψt and Λt satisfy the following monotonicity condition

〈
h, λ

{
DΨt

(
λx+ h

)
−DΨt(λx)

}
+DΛt(x) · h

〉

X×X∗

≥ −ĝ
(
‖T · x‖H

)(
‖x‖qX + µ̂(t)

)
‖T · h‖2H

∀x, h ∈ X, ∀t ∈ [a, b] , (3.3)

for some non-decreasing function ĝ(s) : [0 +∞) → (0,+∞) and some nonnegative function µ̂(t) ∈
L1(a, b;R). Define the functional J(u) : Rq(a, b) → R (where Rq(a, b) was defined in Definition 3.1)
by

J(u) :=

b∫

a

{
Ψt

(
λu(t)

)
+Ψ∗

t

(
− dv

dt
(t)−Λt

(
u(t)

))
+λ
〈
u(t),Λt

(
u(t)

)〉

X×X∗

}
dt+

λ

2

(
‖w(b)‖2H−‖w(a)‖2H

)
,

(3.4)

where w(t) := T ·
(
u(t)

)
, v(t) := I ·

(
u(t)

)
= T̃ ·

(
w(t)

)
with I := T̃ ◦T : X → X∗ and we assume that

w(t) is H-weakly continuous on [a, b], as it was stated in Corollary 2.1. Finally, for every w0 ∈ H
consider the minimization problem

inf
{
J(u) : u ∈ Rq(a, b), w(a) = w0

}
. (3.5)

Remark 3.1. Note that by Lemma 2.3, for every t ∈ [a, b] Ψ∗
t (y) is a strictly convex function from

X∗ to [0,+∞), satisfies Ψ∗
t (0) = 0 and

(1/C) ‖y‖q
∗

X∗ − C ≤ Ψ∗
t (y) ≤ C ‖y‖q

∗

X∗ + C ∀y ∈ X∗ ∀t ∈ [a, b] , (3.6)

for some C > 0 where q∗ := q/(q − 1). Moreover, Ψ∗
t (y) is Gâteaux differentiable at every y ∈ X∗,

and x ∈ X satisfies x = DΨ∗
t (y) if and only if y ∈ X∗ satisfies y = DΨt(x). Note also that Ψ∗

t (y) is
a Borel mapping on the pair of variables (y, t). Finally, note that since by Lemma 2.8 we have

∫ b

a

〈
u(t),

dv

dt
(t)
〉

X×X∗

dt =
1

2

(
‖w(b)‖2H − ‖w(a)‖2H

)
,

we can rewrite the definition of J in (3.4) by

J(u) :=

b∫

a

{
Ψt

(
λu(t)

)
+Ψ∗

t

(
− dv

dt
(t)− Λt

(
u(t)

))
+ λ
〈
u(t),

dv

dt
(t) + Λt

(
u(t)

)〉

X×X∗

}
dt . (3.7)

18



Then by the definition of the Legendre transform we deduce that J(u) ≥ 0 for every u ∈ Rq(a, b)
and J(u) = 0 if and only if u(t) is a solution of

dv

dt
(t) + Λt

(
u(t)

)
+DΨt

(
λu(t)

)
= 0 for a.e. t ∈ (a, b) . (3.8)

Remark 3.2. Assume that, instead of (3.3), one requires that Ψt and Λt satisfy the following in-
equality

〈
h, λ

{
DΨt

(
λx+ h

)
−DΨt(λx)

}
+DΛt(x) · h

〉

X×X∗

≥
∣∣f(h, t)

∣∣2

g̃(‖T · x‖H)
− g̃
(
‖T · x‖H

)(
‖x‖qX + µ̂(t)

)(2−r)/2∣∣f(h, t)
∣∣r ‖T · h‖(2−r)

H ∀x, h ∈ X, ∀t ∈ [a, b],

(3.9)

for some non-decreasing function g̃(s) : [0 + ∞) → (0,+∞), some nonnegative function µ̂(t) ∈
L1(a, b;R), some function f(x, t) : X × [a, b] → R and some constant r ∈ (0, 2). Then, (3.3) follows
by the trivial inequality (r/2) a2 +

(
(2 − r)/2

)
b2 ≥ ar b2−r, valid for every two nonnegative real

numbers a and b.

Lemma 3.1. Let {X,H,X∗} be an evolution triple with the corresponding inclusion operator T ∈
L(X ;H), as it was defined in Definition 2.9, together with the corresponding operator T̃ ∈ L(H ;X∗),
defined as in (2.54). Furthermore, Let a, b, q, λ be such that a < b, q ≥ 2 and λ ∈ {0, 1}. Assume
that Ψt and Λt satisfy all the conditions of Definition 3.2. Furthermore, let Rq(a, b) and J be as in
Definitions 3.1 and 3.2 respectively. Then for every u ∈ Rq(a, b) we have J(u) < +∞. Moreover,
for every u, h ∈ Rq(a, b) and every s ∈ R we have (u+ sh) ∈ Rq(a, b) and

lim
s→0

1

s

(
J(u + sh)− J(u)

)
=

b∫

a

{〈
h(t), λ

{
DΨt

(
λu(t)

)
−Hu(t)

}〉

X×X∗

+

〈{
λu(t)−DΨ∗

t

(
Hu(t)

)}
,
{dσ
dt

(t) +DΛt

(
u(t)

)
·
(
h(t)

)}〉

X×X∗

}
dt , (3.10)

where σ(t) := I · (h(t)) with I := T̃ ◦ T : X → X∗ and we denote

Hu(t) := −dv
dt

(t)− Λt

(
u(t)

)
∈ X∗ ∀t ∈ (a, b) . (3.11)

Proof. First of all by (3.2) it is easy to deduce that

∥∥Λt(x)
∥∥
X∗

≤ 2g
(
‖T · x‖H

) (
‖x‖q−1

X + µ
q−1
q (t)

)
+
∥∥Λt(0)

∥∥
X∗

∀x ∈ X, ∀t ∈ [a, b] , (3.12)

for some nondecreasing function g(s) : [0,+∞) → (0 + ∞) and some nonnegative function µ(t) ∈
L1(a, b;R). Therefore, using (3.6), for every u ∈ Rq(a, b) we obtain

Ψ∗
t

(
− dv

dt
(t)− Λt

(
u(t)

))
≤

L

{∥∥∥
dv

dt
(t)
∥∥∥
q∗

X∗

+
(
g
(
‖w(t)‖H

))q∗(
‖u(t)‖qX + µ(t) + ‖Λt(0)‖q

∗

X∗

)
+ 1

}
∀t ∈ [a, b], (3.13)

for some constant L > 0. Since w(t) ∈ L∞(a, b;H), using above inequality and (3.1) gives that
J(u) < +∞.

Next clearly for every u, h ∈ Rq(a, b) and every s ∈ R we have (u + sh) ∈ Rq(a, b) i.e. Rq(a, b)
is a linear space. Furthermore, observe that

∥∥T · u(t) + s T · h(t)
∥∥
H

≤M ∀s ∈ [−1, 1], ∀t ∈ (a, b) , (3.14)
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with M > 0 independent on t and s. We claim that for a.e. t ∈ [a, b],

DΨ∗
t

(
H(u+sh)(t)

)
⇀ DΨ∗

t

(
Hu(t)

)
weakly in X as s→ 0 . (3.15)

Indeed by (2.11) and (2.12) in Lemma 2.3, for some C̄0, C̄ > 0 we have

‖DΨt(x)‖X∗ ≤ C̄0‖x‖q−1 + C̄0 ∀x ∈ X, ∀t ∈ [a, b] , (3.16)

and
‖DΨ∗

t (y)‖X ≤ C̄‖y‖q∗−1 + C̄ ∀y ∈ X∗, ∀t ∈ [a, b] . (3.17)

However, since every bounded sequence of elements of a reflexive Banach space has a subsequence
which converges weakly, by (3.13), (3.6) and (3.17), for a.e. fixed t and for every sequence of real
numbers sn → 0, up to a subsequence, we have

DΨ∗
t

(
H(u+snh)(t)

)
⇀ x0 weakly in X as sn → 0 . (3.18)

On the other hand, since Ψ∗
t is a convex function, by (2.6) we have

Ψ∗
t (y) ≥ Ψ∗

t

(
H(u+snh)(t)

)
+

〈
DΨ∗

t

(
H(u+snh)(t)

)
, y −H(u+snh)(t)

〉

X×X∗

∀y ∈ X∗ . (3.19)

Thus letting sn → 0 in (3.19) and using (3.18) we deduce,

Ψ∗
t (y) ≥ Ψ∗

t

(
Hu(t)

)
+
〈
x0, y −Hu(t)

〉
X×X∗

∀y ∈ X∗ . (3.20)

Therefore,

Ψ∗
t

(
Hu(t)

)
−
〈
x0, Hu(t)

〉
X×X∗

= inf
{
Ψ∗

t (y)−
〈
x0, y

〉
X×X∗

: y ∈ X∗
}
. (3.21)

So Ψ∗
t

(
Hu(t)

)
is a minimizer to the problem in the r.h.s. of (3.21) and thus satisfies the corresponding

Euler-Lagrange equation DΨ∗
t

(
Hu(t)

)
= x0. Therefore, using (3.18), since sn → 0 was arbitrary

sequence we deduce (3.15).
Next clearly for a.e. fixed t ∈ [a, b] we have

lim
s→0

1

s

{
Ψt

(
λ
(
u(t) + sh(t)

))
−Ψt

(
λu(t)

)}
=
〈
h(t), λDΨt

(
λu(t)

)〉

X×X∗

, (3.22)

and

lim
s→0

1

s

(
H(u+sh)(t)−Hu(t)

)
= −

{dσ
dt

(t) +DΛt

(
u(t)

)
·
(
h(t)

)}
, (3.23)

where the last limit is taken in the X∗-strong topology. Then in particular

lim
s→0

1

s

{〈
u(t) + sh(t), H(u+sh)(t)

〉

X×X∗

−
〈
u(t), Hu(t)

〉

X×X∗

}

=
〈
h(t), Hu(t)

〉

X×X∗

−
〈
u(t),

{dσ
dt

(t) +DΛt

(
u(t)

)
·
(
h(t)

)}〉

X×X∗

. (3.24)

Next since Ψ∗
t is a convex functions, as before, we have

Ψ∗
t

(
H(u+sh)(t)

)
−Ψ∗

t

(
Hu(t)

)
≤
〈
DΨ∗

t

(
H(u+sh)(t)

)
, H(u+sh)(t)−Hu(t)

〉

X×X∗

∀y ∈ X∗ ,

Ψ∗
t

(
H(u+sh)(t)

)
−Ψ∗

t

(
Hu(t)

)
≥
〈
DΨ∗

t

(
Hu(t)

)
, H(u+sh)(t)−Hu(t)

〉

X×X∗

∀y ∈ X∗ .

(3.25)

Therefore, by (3.25), (3.23) and (3.15) we deduce

lim
s→0

1

s

{
Ψ∗

t

(
H(u+sh)(t)

)
−Ψ∗

t

(
Hu(t)

)}
= −

〈
DΨ∗

t

(
Hu(t)

)
,
{dσ
dt

(t)+DΛt

(
u(t)

)
·
(
h(t)

)}〉

X×X∗

.

(3.26)
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On the other hand, using (3.16), by (3.22) and the Lagrange Theorem from the elementary Calculus
we deduce that for every t ∈ [a, b] and every s ∈ [−1, 1], there exists τ in the interval with the
endpoints 0 and s, such that

∣∣∣∣
1

s

{
Ψt

(
λ
(
u(t) + sh(t)

))
−Ψt

(
λu(t)

)}∣∣∣∣ ≤

‖h(t)‖X ·
∥∥∥∥λDΨt

(
λ
(
u(t) + τh(t)

))∥∥∥∥
X∗

≤ C
(
‖h(t)‖qX + ‖u(t)‖qX + 1

)
, (3.27)

for some constant C > 0 independent on t and s. Similarly, using (3.2), (3.12) and (3.14), from
(3.24) we deduce

∣∣∣∣
1

s

{〈
u(t) + sh(t), H(u+sh)(t)

〉

X×X∗

−
〈
u(t), Hu(t)

〉

X×X∗

}∣∣∣∣ ≤

‖h(t)‖X ·
∥∥Hu+τh(t)

∥∥
X∗

+
∥∥u(t) + τh(t)

∥∥
X
·
∥∥∥∥
dσ

dt
(t) +DΛt

(
u(t) + τh(t)

)
·
(
h(t)

)∥∥∥∥
X∗

≤

C̄
(
‖u(t)‖X + ‖h(t)‖X

)
·
(∥∥u(t)

∥∥q−1

X
+
∥∥h(t)

∥∥q−1

X
+
∥∥∥
dv

dt
(t)
∥∥∥
X∗

+
∥∥∥
dσ

dt
(t)
∥∥∥
X∗

+
∥∥Λt(0)

∥∥
X∗

+µ
q−1
q (t)

)

≤ C0

(∥∥u(t)
∥∥q
X
+
∥∥h(t)

∥∥q
X
+
∥∥∥
dv

dt
(t)
∥∥∥
q∗

X∗

+
∥∥∥
dσ

dt
(t)
∥∥∥
q∗

X∗

+
∥∥Λt(0)

∥∥q∗
X∗

+ µ(t)

)
, (3.28)

where the constants C̄, C0 > 0 are independent on t and s. Finally, in the same way, using (3.17),
(3.2), (3.13) and the fact that Λt(0) ∈ Lq∗(a, b;X∗), from (3.26) we infer

∣∣∣∣
1

s

{
Ψ∗

t

(
H(u+sh)(t)

)
−Ψ∗

t

(
Hu(t)

)}∣∣∣∣ ≤
∥∥DΨ∗

t

(
Hu+τh(t)

)∥∥
X
·
∥∥∥
dσ

dt
(t)+DΛt

(
u(t)+τh(t)

)
·
(
h(t)

)∥∥∥
X∗

≤

C

(∥∥u(t)
∥∥q−1

X
+
∥∥h(t)

∥∥q−1

X
+
∥∥∥
dv

dt
(t)
∥∥∥
X∗

+
∥∥∥
dσ

dt
(t)
∥∥∥
X∗

+
∥∥Λt(0)

∥∥
X
+ µ

q−1
q (t) + 1

)q∗−1

×
(∥∥u(t)

∥∥q−1

X
+
∥∥h(t)

∥∥q−1

X
+
∥∥∥
dσ

dt
(t)
∥∥∥
X∗

+ µ
q−1
q (t)

)

≤ C1

(∥∥u(t)
∥∥q
X
+
∥∥h(t)

∥∥q
X
+
∥∥∥
dv

dt
(t)
∥∥∥
q∗

X∗

+
∥∥∥
dσ

dt
(t)
∥∥∥
q∗

X∗

+ µ̃(t)

)
, (3.29)

where again the constant C1 > 0 is independent on t and s and µ̃(t) ∈ L1(a, b;R). However, by
the definition of Rq(a, b) we have u, h ∈ Lq(a, b;X) and dv

dt ,
dσ
dt ∈ Lq∗(a, b;X∗). Therefore, using the

Dominated Convergence Theorem, by (3.7), (3.22) and (3.27), (3.24) and (3.28), (3.26) and (3.29),
we deduce (3.10).

Theorem 3.1. Let {X,H,X∗} be an evolution triple with the corresponding inclusion operator T ∈
L(X ;H), as it was defined in Definition 2.9, together with the corresponding operator T̃ ∈ L(H ;X∗),
defined as in (2.54). Furthermore, let a, b, q, λ ∈ R be such that a < b, q ≥ 2 and λ ∈ {0, 1}. Assume
that Ψt and Λt satisfy all the conditions of Definition 3.2. Furthermore let w0 ∈ H and Rq(a, b)
and J be as in Definitions 3.1 and 3.2 respectively. Consider the minimization problem

inf{J(u) : u ∈ Rq(a, b), w(a) = w0} , (3.30)

where w(t) := T ·
(
u(t)

)
. Then for u ∈ Rq(a, b) such that w(a) = w0 the following four statements

are equivalent:

(a) u is a minimizer to (3.30).

(b) u is a critical point of (3.30) i.e. for an arbitrary function h(t) ∈ Rq(a, b), such that T ·h(a) = 0
we have

lim
s→0

J(u + sh)− J(u)

s
= 0 . (3.31)
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(c) u is a solution to

dv

dt
(t) + Λt

(
u(t)

)
+DΨt

(
λu(t)

)
= 0 for a.e. t ∈ (a, b) , (3.32)

where v(t) := I ·
(
u(t)

)
= T̃ ·

(
w(t)

)
with I := T̃ ◦ T : X → X∗.

(d) J(u) = 0.

Proof. Assume that u is a minimizer to (3.30). Let h(t) ∈ Rq(a, b) be an arbitrary function, such
that T · h(a) = 0. Here we assume that T · (h(t)) is H-weakly continuous on [a, b]. Then for every
s ∈ R {u(t) + sh(t)} ∈ Rq(a, b) and T ·

(
u(a) + sh(a)

)
= w0. Therefore, since u is a minimizer we

deduce that fh(s) := J(u+sh) ≥ J(u) = fh(0) for every s ∈ R. Thus by the elementary Calculus we
must have f ′

h(0) = 0 (remember that, by Lemma 3.1, fh is a differentiable function). So we obtain
(3.31).

Next assume that for some u ∈ Rq(a, b) such that w(a) = w0 we have (3.31) i.e.

lim
s→0

J(u+ sh)− J(u)

s
= 0 . (3.33)

for every h(t) ∈ Rq(a, b), such that T · h(a) = 0. Then, by (3.10) in Lemma 3.1, for every h(t) ∈
Rq(a, b), such that T · h(a) = 0 we must have

b∫

a

{〈
h(t), λ

{
DΨt

(
λu(t)

)
−Hu(t)

}〉

X×X∗

+

〈{
λu(t)−DΨ∗

t

(
Hu(t)

)}
,
{dσ
dt

(t) +DΛt

(
u(t)

)
·
(
h(t)

)}〉

X×X∗

}
dt = 0 , (3.34)

where σ(t) := I · (h(t)) with I := T̃ ◦ T : X → X∗ and we, as before, denote

Hu(t) := −dv
dt

(t)− Λt

(
u(t)

)
∈ X∗ ∀t ∈ (a, b) . (3.35)

Next as in (3.16) we have

‖DΨt(x)‖X∗ ≤ C̄0‖x‖q−1 + C̄0 ∀x ∈ X, ∀t ∈ [a, b] , (3.36)

and as in (3.17) we have

‖DΨ∗
t (y)‖X ≤ C̄‖y‖q∗−1 + C̄ ∀y ∈ X∗, ∀t ∈ [a, b] , (3.37)

and since we have
∫ b

a
Ψ∗

t

(
Hu(t)

)
dt < +∞, by (3.6) we obtain Hu(t) ∈ Lq∗(a, b;X∗). Therefore, if

we set
Wu(t) := λu(t)−DΨ∗

t

(
Hu(t)

)
∀t ∈ [a, b] , (3.38)

then, since u(t) ∈ Lq(a, b;X), we deduce

Wu(t) ∈ Lq(a, b;X) . (3.39)

On the other hand, by Remark 3.1, x ∈ X satisfies x = DΨ∗
t (y) if and only if y ∈ X∗ satisfies

y = DΨt(x). Therefore, by (3.34) we have

b∫

a

(〈
λh(t),

{
DΨt

(
DΨ∗

t

(
Hu(t)

)
+Wu(t)

)
−DΨt

(
DΨ∗

t

(
Hu(t)

))}〉

X×X∗

+

〈
Wu(t), DΛt

(
u(t)

)
·
(
h(t)

)〉

X×X∗

+

〈
Wu(t),

dσ

dt
(t)

〉

X×X∗

)
dt = 0 . (3.40)
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Next for every t ∈ [a, b] let
(
DΛt

(
u(t)

))∗ ∈ L(X,X∗) be the adjoint to DΛt

(
u(t)

)
∈ L(X,X∗)

operator defined by

〈
x2,
(
DΛt

(
u(t)

))∗ · x1
〉

X×X∗

:=

〈
x1, DΛt

(
u(t)

)
· x2
〉

X×X∗

∀x1, x2 ∈ X . (3.41)

Define the strictly measurable function Pu(t) : (a, b) → X∗ by

Pu(t) := λ

{
DΨt

(
DΨ∗

t

(
Hu(t)

)
+Wu(t)

)
−DΨt

(
DΨ∗

t

(
Hu(t)

))}
+
(
DΛt

(
u(t)

))∗
·
(
Wu(t)

)
. (3.42)

Then, since by (3.41) we have

〈
x, Pu(t)

〉

X×X∗

=

〈
λx,

{
DΨt

(
DΨ∗

t

(
Hu(t)

)
+Wu(t)

)
−DΨt

(
DΨ∗

t

(
Hu(t)

))}〉

X×X∗

+

〈
Wu(t), DΛt

(
u(t)

)
· x
〉

X×X∗

∀x ∈ X , (3.43)

we deduce from (3.40),

b∫

a

〈
h(t), Pu(t)

〉

X×X∗

dt+

b∫

a

〈
Wu(t),

dσ

dt
(t)

〉

X×X∗

dt = 0 . (3.44)

On the other hand, using the fact T ·u(t) ∈ L∞(a, b;H), by (3.43), (3.36), (3.37) and (3.2) we deduce

∥∥Pu(t)
∥∥
X∗

≤ C
{∥∥Hu(t)

∥∥
X∗

+
∥∥Wu(t)

∥∥q−1

X
+
∥∥u(t)

∥∥q−1

X
+ µ

q−1
q (t)

}
,

where the constant C > 0 doesn’t depend on t and µ(t) ∈ L1(a, b;R). Thus since Hu(t) ∈
Lq∗(a, b;X∗), u(t) ∈ Lq(a, b;X) and Wu(t) ∈ Lq(a, b;X) we infer

Pu(t) ∈ Lq∗(a, b;X∗) . (3.45)

Next remember that we established (3.44) for every h(t) ∈ Rq(a, b), such that T · h(a) = 0. In
particular (3.44) holds for h(t) = δ(t) where δ(t) ∈ C1

(
(a, b);X

)
satisfying supp δ ⊂⊂ (a, b). For

such δ(t) we have

b∫

a

〈
δ(t), Pu(t)

〉

X×X∗

dt = −
b∫

a

〈
Wu(t), I ·

(dδ
dt

(t)
)〉

X×X∗

dt = −
b∫

a

〈
dδ

dt
(t), I ·

(
Wu(t)

)〉

X×X∗

dt .

(3.46)
Thus, by (3.46), (3.45) and by Definition 2.4, I ·

(
Wu(t)

)
belongs to W 1,q∗(a, b;X∗) and

d(I ·Wu)

dt
(t) = Pu(t) . (3.47)

Thus since Wu(t) ∈ Lq(a, b;X) and Pu(t) ∈ Lq∗(a, b;X∗) we have Wu ∈ Rq(a, b). Then by Lemma
2.8, the function Lu(t) : [a, b] → H defined by Lu(t) := T ·

(
Wu(t)

)
belongs to L∞(a, b;H) and, up

to a redefinition of Lu(t) on a subset of [a, b] of Lebesgue measure zero, Lu is H-weakly continuous,
as it was stated in Corollary 2.1. Moreover, by the same Corollary for every a ≤ α < β ≤ b and for
every δ(t) ∈ C1

(
[a, b];X

)
we will have

β∫

α

{〈
δ(t), Pu(t)

〉

X×X∗

+
〈dδ
dt

(t), I·
(
Wu(t)

)〉

X×X∗

}
dt =

〈
T ·δ(β), Lu(β)

〉
H×H

−
〈
T ·δ(α), Lu(α)

〉
H×H

.

(3.48)
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Thus in particular for every h0(t) ∈ C1
(
[a, b];X

)
such that h0(a) = 0 we have

b∫

a

〈
h0(t), Pu(t)

〉

X×X∗

dt = −
b∫

a

〈dh0
dt

(t), I ·
(
Wu(t)

)〉

X×X∗

dt+
〈
T · h0(b), Lu(b)

〉
H×H

. (3.49)

However, inserting h := h0 into (3.44) gives

b∫

a

〈
h0(t), Pu(t)

〉

X×X∗

dt = −
b∫

a

〈
Wu(t),

d(I · h0)
dt

(t)

〉

X×X∗

dt = −
b∫

a

〈
dh0
dt

(t), I·
(
Wu(t)

)〉

X×X∗

dt .

(3.50)
Comparing (3.49) with (3.50) we obtain

〈
T · h0(b), Lu(b)

〉
H×H

= 0 . (3.51)

In particular we can test (3.51) with h0(t) := (t− a)x for arbitrary x ∈ X . Then we obtain

〈
Tx, Lu(b)

〉
H×H

= 0 ∀x ∈ X , (3.52)

and since T has dense image in H we finally get

Lu(b) = 0 . (3.53)

Thus, since Lu(t) := T ·
(
Wu(t)

)
, using (3.47), (3.53) and the fact that Wu ∈ Rq(a, b), by Lemma

2.8 we deduce ∫ b

α

〈
Wu(t), Pu(t)

〉

X×X∗

dt = −1

2
‖Lu(α)‖2H ∀α ∈ [a, b] . (3.54)

Then plugging (3.43) into (3.54), by (3.38) we infer

− 1

2

∥∥∥T ·
(
Wu(α)

)∥∥∥
2

H
=

b∫

α

(〈
Wu(t), λ

{
DΨt

(
DΨ∗

t

(
Hu(t)

)
+Wu(t)

)
−DΨt

(
DΨ∗

t

(
Hu(t)

))}
+DΛt

(
u(t)

)
·
(
Wu(t)

)〉

X×X∗

)
dt

=

b∫

α

(〈
Wu(t), λ

{
DΨt

(
λu(t)

)
−DΨt

(
λu(t)−Wu(t)

)}
+DΛt

(
u(t)

)
·
(
Wu(t)

)〉

X×X∗

)
dt ∀α ∈ [a, b] .

(3.55)

Next, by the condition (3.3) in the Definition 3.2 we have

〈
h, λ

{
DΨt

(
λx
)
−DΨt(λx − h)

}
+DΛt(x) · h

〉

X×X∗

≥ −ĝ
(
‖T · x‖H

)(
‖x‖qX + µ̂(t)

)
‖T · h‖2H

∀x, h ∈ X, ∀t ∈ [a, b] , (3.56)

for some non-decreasing function ĝ(s) : [0 +∞) → (0,+∞) and some nonnegative function µ̂(t) ∈
L1(a, b;R). Therefore, using (3.55), we deduce

1

2

∥∥∥T ·
(
Wu(α)

)∥∥∥
2

H
≤
∫ b

α

ĝ
(∥∥T ·

(
u(t)

)∥∥
H

)(∥∥u(t)
∥∥q
X
+ µ̂(t)

)∥∥∥T ·
(
Wu(t)

)∥∥∥
2

H
dt ∀α ∈ [a, b] . (3.57)

In particular, since T · u ∈ L∞(a, b;H) we clearly obtain

1

2

∥∥∥T ·
(
Wu(t)

)∥∥∥
2

H
≤ K

∫ b

t

(∥∥u(s)
∥∥q
X
+ µ̂(s)

)∥∥∥T ·
(
Wu(s)

)∥∥∥
2

H
ds ∀t ∈ [a, b] , (3.58)
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for some K > 0 independent on t. Next define the functions g(t) :=
(∥∥u(t)

∥∥q
X
+ µ̂(t)

)
and h(t) :=

g(t)
∥∥∥T ·

(
Wu(t)

)∥∥∥
2

H
. Then since u(t) ∈ Lq(a, b;X) and T ·

(
Wu(t)

)
∈ L∞(a, b;H) we clearly have

g(t), h(t) ∈ L1(a, b;R). Moreover, by (3.58), we infer

h(t) ≤ 2Kg(t)

∫ b

t

h(s) ds for a.e. t ∈ [a, b] . (3.59)

On the other hand, the function γ(t) := e−2K
∫

b

t
g(s)ds ·

∫ b

t h(s) ds ∈ W 1,1(a, b;R) and by (3.59), we
obtain

d

dt

(
e−2K

∫
b

t
g(s)ds ·

∫ b

t

h(s) ds

)
≥ 0 for a.e. t ∈ [a, b] .

Therefore,

e−2K
∫

b

a
g(s)ds ·

∫ b

a

h(s) ds ≤ e−2K
∫

b

b
g(s)ds ·

∫ b

b

h(s) ds = 0 .

Therefore, since h(t) ≥ 0 we obtain h(t) = 0 for a.e. t ∈ [a, b]. Thus
∥∥T ·

(
Wu(t)

)∥∥2
H

= 0 for a.e. t ∈
[a, b]. Therefore, since T is injective, by the definition of Wu in (3.38) we have λu(t) = DΨ∗

t

(
Hu(t)

)

for a.e. t ∈ [a, b]. I.e.

DΨt

(
λu(t)

)
= Hu(t) = −dv

dt
(t)− Λt

(
u(t)

)
for a.e. t ∈ [a, b] , (3.60)

So u is a solution to (3.32).
Finally, if u is a solution to (3.32) then by Remark 3.1 we have J(u) = 0. Moreover, by Remark

3.1 we always have J(·) ≥ 0. Thus if we have J(u) = 0 then trivially u is a minimizer to (3.30).

The following proposition provides uniqueness of the solution.

Proposition 3.1. Let {X,H,X∗} be an evolution triple with the corresponding inclusion operator

T ∈ L(X ;H), as it was defined in Definition 2.9, together with the corresponding operator T̃ ∈
L(H ;X∗), defined as in (2.54). Furthermore, let a, b, q ∈ R be such that a < b, q ≥ 2 and λ ∈ {0, 1}.
Assume that Ψt and Λt satisfy all the conditions of Definition 3.2. Then for every w0 ∈ H there
exists at most one function u(t) ∈ Lq(a, b;X), such that w(t) := T ·

(
u(t)

)
∈ L∞(a, b;H), v(t) :=

T̃ ·
(
w(t)

)
= T̃ ◦ T

(
u(t)

)
∈W 1,q∗(a, b;X∗) ,where q∗ := q/(q − 1), and u(t) is a solution to

{
dv
dt (t) + Λt

(
u(t)

)
+DΨt

(
λu(t)

)
= 0 for a.e. t ∈ (a, b) ,

w(a) = w0 .
(3.61)

Proof. Let w0 ∈ H and let û(t), ũ(t) ∈ Lq(a, b;X) be such that ŵ(t) := T ·
(
û(t)

)
∈ L∞(a, b;H),

w̃(t) := T ·
(
ũ(t)

)
∈ L∞(a, b;H), v̂(t) := T̃ ·

(
ŵ(t)

)
= T̃◦T

(
û(t)

)
∈W 1,q∗(a, b;X∗), ṽ(t) := T̃ ·

(
w̃(t)

)
=

T̃ ◦ T
(
ũ(t)

)
∈ W 1,q∗(a, b;X∗), where q∗ := q/(q − 1), and û(t), ũ(t) are both solutions to (3.61).

Then the function u(t) :=
(
û(t) − ũ(t)

)
∈ Lq(a, b;X) is such that w(t) := T ·

(
u(t)

)
∈ L∞(a, b;H),

v(t) := T̃ ·
(
w(t)

)
= T̃ ◦ T

(
u(t)

)
∈ W 1,q∗(a, b;X∗), w(a) = 0 and by (3.61), and the facts that

λ ∈ {0, 1} and Ψt(0) = 0, we obtain

dv

dt
(t) +

{
Λt

(
û(t)

)
−Λt

(
ũ(t)

)}
+
{
DΨt

(
λû(t)

)
−DΨt

(
λũ(t)

)}
= 0 for a.e. t ∈ (a, b) . (3.62)

Thus plugging (3.3) into (3.62) we deduce

τ∫

a

{〈
u(t),

dv

dt
(t)

〉

X×X∗

− γ̄(t)‖w(t)‖2H

}
dt ≤ 0 for every τ ∈ [a, b] , (3.63)
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where γ̄(t) ∈ L1
(
a, b; [0,+∞)

)
. On the other hand, since w(a) = 0, by Lemma 2.8 we have

∫ τ

a

〈
u(t),

dv

dt
(t)
〉

X×X∗

dt =
1

2

∥∥w(τ)
∥∥2
H

for every τ ∈ [a, b] .

Thus, inserting it into (3.63), we deduce

∥∥w(τ)
∥∥2
H

≤ C

∫ τ

a

γ̄(t)
∥∥w(t)

∥∥2
H
dt for every τ ∈ [a, b] . (3.64)

Therefore, exactly as before in the end of the proof of Theorem 3.1, by (3.64) we deduce w(t) = 0
for a.e. t ∈ [a, b] and since T is an injective operator we have û(t) = ũ(t) for a.e. t ∈ [a, b]. This
completes the proof.

Definition 3.3. Let {X,H,X∗} be an evolution triple with the corresponding inclusion operator

T ∈ L(X ;H), as it was defined in Definition 2.9, together with the corresponding operator T̃ ∈
L(H ;X∗), defined as in (2.54). Furthermore, let a, b, q ∈ R be s.t. a < b and q ≥ 2. Next assume
that Ψt and Λt satisfy all the conditions of Definition 3.2 together with the assumption λ = 1.
Moreover, assume that Ψt and Λt satisfy the following positivity condition:

Ψt(x) +
〈
x,Λt(x)

〉

X×X∗

≥ 1

C̄
‖x‖qX − µ̄(t)

(
‖T · x‖2H + 1

)
∀x ∈ X, ∀t ∈ [a, b], (3.65)

where C̄ > 0 is some constant and µ̄(t) ∈ L1(a, b;R) is a fixed nonnegative function. Furthermore,
assume that

Λt(x) = At

(
S · x

)
+Θt(x) ∀x ∈ X, ∀ t ∈ [a, b], (3.66)

where Z is a Banach space, S : X → Z is a compact operator, for every t ∈ [a, b] At(z) : Z → X∗

and Θt(x) : X → X∗ are functions, such that At is strongly Borel on the pair of variables (z, t)
and Gâteaux differentiable at every z ∈ Z, Θt is strongly Borel on the pair of variables (x, t) and
Gâteaux differentiable at every x ∈ X , Θt(0), At(0) ∈ Lq∗

(
a, b;X∗

)
and the derivatives of At and

Θt satisfy the growth conditions

‖DAt(S · x)‖L(Z;X∗) ≤ g
(
‖T · x‖

) (
‖x‖q−2

X + µ
q−2
q (t)

)
∀x ∈ X, ∀t ∈ [a, b] , (3.67)

‖DΘt(x)‖L(X;X∗) ≤ g
(
‖T · x‖

) (
‖x‖q−2

X + µ
q−2
q (t)

)
∀x ∈ X, ∀t ∈ [a, b] , (3.68)

for some nondecreasing function g(s) : [0,+∞) → (0 + ∞) and some nonnegative function µ(t) ∈
L1(a, b;R). Finally, assume that for every sequence

{
xn(t)

}+∞

n=1
⊂ Lq(a, b;X) such that the sequence{

(T̃ ◦ T ) · xn(t)
}
is bounded in W 1,q∗(a, b;X∗) and xn(t)⇀ x(t) weakly in Lq(a, b;X) we have

• Θt

(
xn(t)

)
⇀ Θt

(
x(t)

)
weakly in Lq∗(a, b;X∗),

• limn→+∞

∫ b

a

〈
xn(t),Θt

(
xn(t)

)〉

X×X∗

dt ≥
∫ b

a

〈
x(t),Θt

(
x(t)

)〉

X×X∗

dt.

Next, as in (3.4) with λ = 1, let J0(u) : Rq(a, b) → R (where Rq(a, b) was defined in Definition 3.1)
be defined by

J0(u) :=
1

2

(
‖w(b)‖2H − ‖w(a)‖2H

)
+

b∫

a

{
Ψt

(
u(t)

)
+Ψ∗

t

(
− dv

dt
(t)− Λt

(
u(t)

))
+
〈
u(t),Λt

(
u(t)

)〉

X×X∗

}
dt , (3.69)

where w(t) := T ·
(
u(t)

)
, v(t) := I ·

(
u(t)

)
= T̃ ·

(
w(t)

)
with I := T̃ ◦ T : X → X∗ and we assume

that w(t) is H-weakly continuous on [a, b], as it was stated in Corollary 2.1. Moreover, for every
w0 ∈ H consider the minimization problem

inf
{
J0(u) : u ∈ Rq(a, b), w(a) = w0

}
. (3.70)
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Remark 3.3. As before, we can rewrite the definition of J0 in (3.69) by

J0(u) :=

b∫

a

{
Ψt

(
u(t)

)
+Ψ∗

t

(
− dv

dt
(t)−Λt

(
u(t)

))
+

〈
u(t),

dv

dt
(t) + Λt

(
u(t)

)〉

X×X∗

}
dt . (3.71)

Proposition 3.2. Let J0(u) be as in Definition 3.3 and all the conditions of Definitions 3.3 are
satisfied. Moreover let w0 ∈ H be such that w0 = T ·u0 for some u0 ∈ X, or more generally, w0 ∈ H
be such that Aw0 :=

{
u ∈ Rq(a, b) : w(a) = w0

}
6= ∅. Then there exists a minimizer to (3.70). In

particular there exists a unique solution to
{

dv
dt (t) + Λt

(
u(t)

)
+DΨt

(
u(t)

)
= 0 for a.e. t ∈ (a, b) ,

w(a) = w0 ,
(3.72)

where w(t) := T ·
(
u(t)

)
, v(t) := I ·

(
u(t)

)
= T̃ ·

(
w(t)

)
with I := T̃ ◦ T : X → X∗ and we assume

that w(t) is H-weakly continuous on [a, b], as it was stated in Corollary 2.1.

Proof. First of all we would like to note that in the case, w0 = T · u0 for some u0 ∈ X , the set

Aw0 :=
{
u ∈ Rq(a, b) : w(a) = w0

}
=
{
u ∈ Rq(a, b) : T · u(a) = T · u0

}

is not empty. In particular the function u0(t) ≡ u0 belongs to Aw0 . Thus, in any case Aw0 6= ∅.
Next let

K := inf
θ∈Aw0

J0(θ) . (3.73)

Then K ≥ 0. Consider a minimizing sequence {un(t)} ⊂ Aw0 , i.e. a sequence such that

lim
n→∞

J0(un) = K . (3.74)

Set Υn(t) : (a, b) → R by

Υn(t) := Ψt

(
un(t)

)
+ Ψ∗

t

(
− dvn

dt
(t) − Λt

(
un(t)

))
+
〈
un(t),

dvn
dt

(t) + Λt

(
un(t)

)〉

X×X∗

, (3.75)

where wn(t) := T ·
(
un(t)

)
and vn(t) := T̃ ·

(
wn(t)

)
. Then by the definition of Legendre transform

we deduce that Υn(t) ≥ 0 for a.e. t ∈ (a, b). On the other hand, by (3.71) we obtain

∫ b

a

Υn(t)dt = J0(un) → K as n→ +∞ . (3.76)

Therefore, by (3.76) and the fact that Υn(t) ≥ 0 we deduce that there exists a constant C0 > 0 such
that for every n ∈ N and t ∈ [a, b] we have

∫ t

a

Υn(s)ds ≤ C0 . (3.77)

However, since by Lemma 2.8 we have

∫ t

a

〈
un(s),

dvn
dt

(s)
〉

X×X∗

ds =
1

2

(
‖wn(t)‖2H − ‖w0‖2H

)
,

plugging (3.75) into (3.77) and using (3.65) gives for every n ∈ N,

t∫

a

{
1

Ĉ

∥∥un(s)
∥∥q
X
+Ψ∗

s

(
− dvn

dt
(s)− Λs

(
un(s)

))
}
ds+

1

2
‖wn(t)‖2H

≤ 1

2
‖w0‖2H +

∫ t

a

µ̄(s)
(
‖wn(s)‖2H + 1

)
ds ∀t ∈ [a, b] , (3.78)
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where Ĉ is some positive constant. Therefore, in particular, for every n we have

1

Ĉ

∫ t

a

∥∥un(s)
∥∥q
X
ds+

1

2
‖wn(t)‖2H ≤

∫ t

a

µ̄(s)
∥∥wn(s)

∥∥2
H
ds+ C̃ ∀t ∈ [a, b] . (3.79)

where C̃ is a positive constant. In particular we deduce

‖wn(t)‖2H ≤ C2

∫ t

a

µ̄(s)‖wn(s)‖2Hds+ C2 ∀t ∈ [a, b] ∀n ∈ N , (3.80)

where C2 > 0 doesn’t depend on n and t. Then

d

dt

{
exp

(
−
∫ t

a

C2µ̄(s)ds

)
·
∫ t

a

µ̄(s)‖wn(s)‖2Hds
}

≤ C2µ̄(t) exp

(
−
∫ t

a

C2µ̄(s)ds

)

for a.e t ∈ [a, b] ∀n ∈ N , (3.81)

and thus

∫ t

a

µ̄(s)‖wn(s)‖2Hds ≤ C2 exp

(∫ t

a

C2µ̄(s)ds

)
·
∫ t

a

µ̄(τ) exp

(
−
∫ τ

a

C2µ̄(s)ds

)
dτ

≤ C2 exp

(
C2

∫ b

a

µ̄(s)ds

)
·
∫ b

a

µ̄(τ)dτ ∀t ∈ [a, b] ∀n ∈ N . (3.82)

Therefore, by (3.80) the sequence {wn(t)} is bounded in L∞(a, b;H). Moreover, returning to (3.79)
we deduce that the sequence {un} is bounded in Lq(a, b;X). On the other hand since, by (3.67) and
the fact that {wn(t)} is bounded in L∞(a, b;H) we have

∥∥At(S · un(t))
∥∥
X∗

≤ C
(
‖un(t)‖q−1

X + µ
q−1
q (t)

)
+
∥∥At(0)

∥∥
X∗
,

we deduce that
{
At(S · un(t))

}
is bounded in Lq∗(a, b;X∗). Moreover, by (3.68),

{
Θt

(
u(t)

)}
is

bounded in Lq∗(a, b;X∗). Therefore, by (3.78), using the growth conditions in (3.6) we infer that
the sequence

{
dvn
dt (t)

}
is bounded in Lq∗(a, b;X∗). So





{
un(t)

}
is bounded in Lq(a, b;X) ,{

dvn
dt (t)

}
is bounded in Lq∗(a, b;X∗) ,

{wn(t)} is bounded in L∞(a, b;H) .

(3.83)

On the other hand by Corollary 2.1 as in (2.64) for every a ≤ α < β ≤ b and for every δ(t) ∈
C1
(
[a, b];X

)
we have

β∫

α

{〈
δ(t),

dvn
dt

(t)
〉

X×X∗

+
〈dδ
dt

(t), vn(t)
〉

X×X∗

}
dt =

〈
T ·δ(β), wn(β)

〉
H×H

−
〈
T ·δ(α), wn(α)

〉
H×H

.

(3.84)
However, since S is a compact operator, by (3.83) and Lemma 2.11 we obtain that, up to a subse-
quence, 





un(t)⇀ u(t) weakly in Lq(a, b;X) ,
dvn
dt (t)⇀ ζ(t) weakly in Lq∗(a, b;X∗) ,

wn(t)⇀ w(t) weakly in Lq(a, b;H) ,

vn(t)⇀ v(t) weakly in Lq(a, b;X∗) ,

S · un(t) → S · u(t) strongly in Lq(a, b;Z) ,

(3.85)
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where w(t) := T ·
(
u(t)

)
and v(t) := T̃ ·

(
w(t)

)
. In particular, by (3.85) and (3.84) for every

a ≤ α < β ≤ b and for every δ(t) ∈ C1
(
[a, b];X

)
we have

β∫

α

{〈
δ(t), ζ(t)

〉
X×X∗

+
〈dδ
dt

(t), v(t)
〉

X×X∗

}
dt = lim

n→+∞

{〈
T ·δ(β), wn(β)

〉
H×H

−
〈
T ·δ(α), wn(α)

〉
H×H

}
.

(3.86)
Thus in particular for every δ(t) ∈ C1

c

(
(a, b);X

)
we have

b∫

a

{〈
δ(t), ζ(t)

〉
X×X∗

+
〈dδ
dt

(t), v(t)
〉

X×X∗

}
dt = 0 . (3.87)

Therefore, by the definition, v(t) ∈W 1,q∗(a, b;X∗) and

dv

dt
(t) = ζ(t) for a.e. t ∈ (a, b) . (3.88)

Then, as before by Corollary 2.1, w(t) is H-weakly continuous on [a, b] and for every a ≤ α < β ≤ b
and for every δ(t) ∈ C1

(
[a, b];X

)
we have

β∫

α

{〈
δ(t), ζ(t)

〉
X×X∗

+
〈dδ
dt

(t), v(t)
〉

X×X∗

}
dt =

〈
T ·δ(β), w(β)

〉
H×H

−
〈
T ·δ(α), w(α)

〉
H×H

. (3.89)

Plugging (3.89) into (3.86), for every a ≤ α < β ≤ b and for every δ(t) ∈ C1
(
[a, b];X

)
we obtain

lim
n→+∞

{〈
T ·δ(β), wn(β)

〉
H×H

−
〈
T ·δ(α), wn(α)

〉
H×H

}
=
〈
T ·δ(β), w(β)

〉
H×H

−
〈
T ·δ(α), w(α)

〉
H×H

.

(3.90)
In particular for every h ∈ X

lim
n→+∞

〈
T · h,wn(t)

〉
H×H

=
〈
T · h,w(t)

〉
H×H

∀t ∈ [a, b] . (3.91)

Therefore, since by (3.83), {wn} is bounded in L∞(a, b;H) and since the image of T is dense in H ,
using (3.91) we deduce

wn(t)⇀ w(t) weakly in H ∀t ∈ [a, b] . (3.92)

In particular, since wn(a) = w0 we obtain that w(a) = w0 and so u(t) belongs to Aw0 =
{
ψ ∈

Rq(a, b) : T · ψ(a) = w0

}
. On the other hand by (3.85), (3.83) and (3.67) we deduce that At

(
S ·

un(t)
)
→ At

(
S · u(t)

)
strongly in Lq∗(a, b;X∗). Moreover, by (3.85) and given properties of Θt, we

deduce that Θt

(
un(t)

)
⇀ Θt

(
u(t)

)
weakly in Lq∗(a, b;X∗) Therefore, by (3.85), (3.88) and the facts,

that we established above, we obtain






un(t)⇀ u(t) weakly in Lq(a, b;X) ,
dvn
dt (t)⇀

dv
dt (t) weakly in Lq∗(a, b;X∗) ,

Θt

(
un(t)

)
⇀ Θt

(
u(t)

)
weakly in Lq∗(a, b;X∗) ,

At

(
S · un(t)

)
→ At

(
S · u(t)

)
strongly in Lq∗(a, b;X∗) ,

wn(b)⇀ w(b) weakly in H ,

wn(a) = w(a) = w0 .

(3.93)
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On the other hand, by the definition of J0 in (3.69) and by (3.74) we obtain

K = lim
n→∞

J0(un) = lim
n→∞

(
1

2

(
‖wn(b)‖2H − ‖w0‖2H

)
+

b∫

a

{
Ψt

(
un(t)

)
+Ψ∗

t

(
− dvn

dt
(t)−Θt

(
un(t)

)
−At

(
S · un(t)

))
+

〈
un(t),Θt

(
un(t)

)〉

x×X∗

+
〈
un(t), At

(
S · un(t)

)〉

X×X∗

}
dt

)
. (3.94)

However, the functions Ψt and Ψ∗
t are convex and Gâteaux differentiable for every t. Moreover, they

satisfy the growth conditions (3.1), (3.6) and the corresponding conditions on their derivatives as

stated in (2.11) and (2.12) in Lemma 2.3. Thus P (x) :=
∫ b

a
Ψt(x(t))dt and Q(h) :=

∫ b

a
Ψ∗

t (h(t))dt

are convex and Gâteaux differentiable functions on Lq(a, b;X) and Lq∗(a, b;X∗) respectively and
therefore, P (x) and Q(h) are weakly lower semicontinuous functions on Lq(a, b;X) and Lq∗(a, b;X∗)
respectively. Moreover, by (3.85) and the given properties of Θt, we infer

lim
n→+∞

∫ b

a

〈
un(t),Θt

(
un(t)

)〉

X×X∗

dt ≥
∫ b

a

〈
u(t),Θt

(
u(t)

)〉

X×X∗

dt . (3.95)

Therefore, using (3.93), (3.94) and (3.95) we finally obtain

inf
θ∈Aw0

J0(θ) = K ≥ 1

2

(
‖w(b)‖2H−‖w0‖2H

)
+

b∫

a

{
Ψt

(
u(t)

)
+Ψ∗

t

(
− dv

dt
(t)−Θt

(
u(t)

)
−At

(
S ·u(t)

))

+
〈
u(t),Θt

(
u(t)

)〉

X×X∗

+
〈
u(t), At

(
S · u(t)

)〉

X×X∗

}
dt = J0(u) . (3.96)

Thus u is a minimizer to (3.70). Moreover, all the conditions of Theorem 3.1 are satisfied and thus u
must satisfy J0(u) = 0 and (3.72). Finally, by Proposition 3.1, the solution to (3.72) is unique.

As an important particular case of Proposition 3.2 we have following statement:

Theorem 3.2. Let {X,H,X∗} be an evolution triple with the corresponding inclusion operator T ∈
L(X ;H), as it was defined in Definition 2.9, together with the corresponding operator T̃ ∈ L(H ;X∗),
defined as in (2.54), and let a, b, q ∈ R be s.t. a < b and q ≥ 2. Furthermore, for every t ∈ [a, b] let
Ψt(x) : X → [0,+∞) be a strictly convex function which is Gâteaux differentiable at every x ∈ X,
satisfies Ψt(0) = 0 and satisfies the growth condition

(1/C0) ‖x‖qX − C0 ≤ Ψt(x) ≤ C0 ‖x‖qX + C0 ∀x ∈ X, ∀t ∈ [a, b] , (3.97)

and the following uniform convexity condition

〈
h,DΨt(x+ h)−DΨt(x)

〉

X×X∗

≥ 1

C0

(∥∥x
∥∥q−2

X
+ 1
)
· ‖h‖2X ∀x, h ∈ X ∀t ∈ [a, b], (3.98)

for some C0 > 0. We also assume that Ψt(x) is Borel on the pair of variables (x, t) (see Definition
2.2). Next let Z be a Banach space, S : X → Z be a compact operator and for every t ∈ [a, b]
let Ft(z) : Z → X∗ be a function, such that Ft is strongly Borel on the pair of variables (z, t) and
Gâteaux differentiable at every z ∈ Z, Ft(0) ∈ Lq∗

(
a, b;X∗

)
and the derivatives of Ft satisfies the

growth conditions

∥∥DFt(S · x)
∥∥
L(Z;X∗)

≤ g
(
‖T · x‖

) (
‖x‖q−2

X + 1
)

∀x ∈ X, ∀t ∈ [a, b] , (3.99)
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for some non-decreasing function g(s) : [0+∞) → (0,+∞) Moreover, assume that Ψt and Ft satisfy
the following positivity condition:

Ψt(x) +
〈
x, Ft(S · x)

〉

X×X∗

≥ 1

C̄
‖x‖qX − C̄‖S · x‖2Z − µ̄(t)

(
‖T · x‖2H + 1

)
∀x ∈ X, ∀t ∈ [a, b],

(3.100)

where C̄ > 0 is some constants and µ̄(t) ∈ L1(a, b;R) is a nonnegative function. Furthermore,
let w0 ∈ H be such that w0 = T · u0 for some u0 ∈ X, or more generally, w0 ∈ H be such that
Aw0 :=

{
u ∈ Rq(a, b) : w(a) = w0

}
6= ∅. Then there exists a unique u(t) ∈ Rq(a, b), which satisfies

{
dv
dt (t) + Ft

(
S · u(t)

)
+DΨt

(
u(t)

)
= 0 for a.e. t ∈ (a, b) ,

w(a) = w0 ,
(3.101)

where w(t) := T ·
(
u(t)

)
, v(t) := I ·

(
u(t)

)
= T̃ ·

(
w(t)

)
with I := T̃ ◦ T : X → X∗ and we assume

that w(t) is H-weakly continuous on [a, b], as it was stated in Corollary 2.1.

Proof. Using (3.98) and (3.99), we obtain:

〈
h,
{
DΨt(x+ h)−DΨt(x)

}
+DFt(S · x) · (S · h)

〉

X×X∗

≥

1

C0

(∥∥x
∥∥q−2

X
+ 1
)
· ‖h‖2X − g

(
‖T · x‖H

)
·
(∥∥x

∥∥q−2

X
+ 1
)
·
∥∥h
∥∥
X
·
∥∥S · h

∥∥
Z

∀x, h ∈ X ∀t ∈ [a, b] ,

(3.102)

On the other hand since S is a compact operator, by Lemma A.1 from the Appendix, there exists a
nondecreasing function ĝ(s) : [0,+∞) → (0,+∞) such that

∥∥S · h
∥∥
Z
≤ 1

2C0g
(
‖T · x‖H

)‖h‖X + ĝ
(
‖T · x‖H

)∥∥T · h
∥∥
H

∀x, h ∈ X.

Plugging it into (3.102) we deduce

〈
h,
{
DΨt(x+ h)−DΨt(x)

}
+DFt(S · x) · (S · h)

〉

X×X∗

≥ 1

2C0

(∥∥x
∥∥q−2

X
+ 1
)
· ‖h‖2X

− g
(
‖T · x‖H

)
ĝ
(
‖T · x‖H

)
·
(∥∥x

∥∥q−2

X
+ 1
)
· ‖h‖X ·

∥∥T · h
∥∥
H

≥ −C0g
2
(
‖T · x‖H

)
ĝ2
(
‖T · x‖H

)
·
(∥∥x

∥∥q−2

X
+ 1
)
·
∥∥T · h

∥∥2
H

∀x, h ∈ X ∀t ∈ [a, b]. (3.103)

Similarly, by Lemma A.1, there exists a constant K > 0 such that

∥∥S · x
∥∥2
Z
≤ 1

2C̄2
‖x‖2X +K

∥∥T · x
∥∥2
H

∀x ∈ X.

Plugging it into (3.100) we obtain

Ψt(x) +
〈
x,Λt(S · x)

〉

X×X∗

≥ 1

2C̄

(
2‖x‖qX − ‖x‖2X

)
−
(
µ̄(t) + C̄K

)(
‖T · x‖2H + 1

)

≥ 1

2C̄
‖x‖qX −

(
µ̄(t) + K̃

)(
‖T · x‖2H + 1

)
∀x ∈ X, ∀t ∈ [a, b], (3.104)

where K̃ > 0 is a constant. Thus the result follows by applying Proposition 3.2 with (3.103)
substituting (3.3) and (3.104) substituting (3.65).
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4 An example of the application to PDE

4.1 Notations in the present section

For a p× q matrix A with ij-th entry aij we denote by |A| =
(
Σp

i=1Σ
q
j=1a

2
ij

)1/2
the Frobenius norm

of A.
For two matrices A,B ∈ R

p×q with ij-th entries aij and bij respectively, we write A : B :=
p∑

i=1

q∑
j=1

aijbij .

Given a vector valued function f(x) =
(
f1(x), . . . , fk(x)

)
: Ω → R

k (Ω ⊂ R
N ) we denote by ∇xf

the k ×N matrix with ij-th entry ∂fi
∂xj

.

For a matrix valued function F (x) := {Fij(x)} : RN → R
k×N we denote by div F the R

k-valued

vector field defined by div F := (l1, . . . , lk) where li =
N∑
j=1

∂Fij

∂xj
.

4.2 A parabolic system in a divergent form

Let Φ(A, x, t) : Rk×N
A × R

N
x × Rt → R be a nonnegative measurable function. Moreover assume

that Φ(A, x, t) is C1 as a function of the first argument A when (x, t) are fixed, which satisfies
Φ(0, x, t) = 0 and it is uniformly convex by the first argument A i.e. there exists a constant C̃ > 0
such that, (

DAΦ
(
A1, x, t

)
−DAΦ

(
A2, x, t

))
:
(
A1 −A2

)
≥ C̃

∣∣A1 −A2

∣∣2

for every A1, A2 ∈ R
k×N , x ∈ R

N and t ∈ R, where

DAΦ(A, x, t) :=

{
∂Φ

∂Aij
(A, x, t)

}

1≤i≤k,1≤j≤N

∈ R
k×N .

Moreover, we assume that Φ satisfies the following growth condition

(1/C)|A|q − |g0(x)| ≤ Φ(A, x, t) ≤ C|A|q + |g0(x)| ∀A ∈ R
k×N , ∀x ∈ R

N , ∀t ∈ R , (4.1)

where C > 0 is some constant, g0(x) ∈ L1(RN ,R) and q ∈ [2,+∞). Finally, let Ξ(B, x, t) :
R

k
B × R

N
x × Rt → R

k×N and Θ(B, x, t) : R
k
B × R

N
x × Rt → R

k be two measurable functions.
Moreover, assume that Ξ(B, x, t) and Θ(B, x, t) are C1 as a functions of the first argument B when
(x, t) are fixed. We also assume that Ξ(B, x, t) and Θ(B, x, t) are globally Lipschitz by the first
argument B and satisfy

Ξ(0, x, t) ∈ Lq∗
(
R;L2(RN ,Rk×N )

)
, Θ(0, x, t) ∈ Lq∗

(
R;L2(RN ,Rk)

)
. (4.2)

Proposition 4.1. Let Φ,Ξ,Θ be as above and let Ω ⊂ R
N be a bounded open set, 2 ≤ q < +∞ and

T0 > 0. Then for every w0(x) ∈ W 1,q
0 (Ω,Rk) there exists unique u(x, t) ∈ Lq

(
0, T0;W

1,q
0 (Ω,Rk)

)
,

such that u(x, t) ∈ L∞
(
0, T0;L

2(Ω,Rk)
)
∩W 1,q∗

(
0, T0;W

−1,q∗(Ω,Rk)
)
, where q∗ := q/(q−1), u(x, t)

is L2(Ω,Rk)-weakly continuous on [0, T0], u(x, 0) = w0(x) and u(x, t) is a solution to

∂u

∂t
(x, t) = Θ

(
u(x, t), x, t

)
+divx

(
Ξ
(
u(x, t), x, t

))
+divx

(
DAΦ

(
∇xu(x, t), x, t

))
in Ω×(0, T0) ,

(4.3)

Proof. Let X :=W 1,q
0 (Ω,Rk) (a separable reflexive Banach space), H := L2(Ω,Rk) (a Hilbert space)

and T ∈ L(X ;H) be a usual embedding operator from W 1,q
0 (Ω,Rk) into L2(Ω,Rk). Then T is an

injective inclusion with dense image. Furthermore, X∗ = W−1,q∗(Ω,Rk) where q∗ = q/(q − 1) and

the corresponding operator T̃ ∈ L(H ;X∗), defined as in (2.54), is a usual inclusion of L2(Ω,Rk) into
W−1,q∗(Ω,Rk). Then {X,H,X∗} is an evolution triple with the corresponding inclusion operators
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T ∈ L(X ;H) and T̃ ∈ L(H ;X∗), as it was defined in Definition 2.9. Moreover, by the Theorem
about the compact embedding in Sobolev Spaces it is well known that T is a compact operator.

Next, for every t ∈ [0, T0] let Ψt(x) : X → [0,+∞) be defined by

Ψt(u) :=

∫

Ω

Φ
(
∇u(x), x, t

)
dx ∀u ∈ W 1,q

0 (Ω,Rk) ≡ X .

Then Ψt(x) is Gâteaux differentiable at every x ∈ X , satisfy Ψt(0) = 0 and by (4.1) it satisfies the
growth condition

(1/C) ‖x‖qX − C ≤ Ψt(x) ≤ C ‖x‖qX + C ∀x ∈ X, ∀t ∈ [0, T ] ,

Finally, for every t ∈ [0, T0] let Λt(w) : H → X∗ be defined by

〈
δ,Λt(w)

〉

X×X∗

:=

∫

Ω

{
Ξ
(
w(x), x, t

)
: ∇δ(x)−Θ

(
w(x), x, t

)
· δ(x)

}
dx

∀w ∈ L2(Ω,Rk) ≡ H, ∀δ ∈ W 1,q(Ω,Rk) ≡ X . (4.4)

Then Λt(w) is Gâteaux differentiable at every w ∈ H , and, since Ξ and Θ are Lipshitz functions,
the derivative of Λt(w) satisfy the Lipschitz condition

‖DΛt(w)‖L(H;X∗) ≤ C ∀w ∈ H, ∀t ∈ [0, T0] , (4.5)

for some C > 0. Thus all the conditions of Corollary 1.1 are satisfied and therefore, by its statement,
there exists unique u(t) ∈ Lq

(
0, T0;X

)
, such that (T̃ ◦ T ) · u(t) ∈ W 1,q∗

(
0, T0;X

∗
)
, T · u(0) = w(0)

and d
dt (T̃ ◦ T ) · u(t) + Λt

(
T · u(t)

)
+DΨt

(
u(t)

)
= 0. This completes the proof.

A Appendix

Lemma A.1. Let X, Y and Z be three Banach spaces, such that X is a reflexive space. Furthermore,
let T ∈ L(X ;Y ) and S ∈ L(X ;Z) be bounded linear operators. Moreover assume that S is an
injective inclusion (i.e. it satisfies kerS = {0}) and T is a compact operator. Then for each ε > 0
there exists some constant cε > 0 depending on ε (and on the spaces X, Y , Z and on the operators
T , S) such that ∥∥T · h

∥∥
Y
≤ ε
∥∥h
∥∥
X
+ cε

∥∥S · h
∥∥
Z

∀h ∈ X . (A.1)

Proof. Assume by contradiction that for some ε > 0 such a constant ce doesn’t exist. Then for every
natural number n ∈ N there exists hn ∈ X such that

∥∥T · hn
∥∥
Y
> ε
∥∥hn

∥∥
X
+ n

∥∥S · hn
∥∥
Z
. (A.2)

We consider the sequence {ξn} ⊂ X defined by the normalization

ξn :=
hn

‖hn‖X
, (A.3)

which satisfy ‖ξn‖X = 1 and by (A.2),

∥∥T · ξn
∥∥
Y
> ε+ n

∥∥S · ξn
∥∥
Z

∀n ∈ N . (A.4)

However, since ‖ξn‖X = 1, we have ‖T · ξn‖Y ≤ ‖T ‖L(X;Y ). So by (A.4) we deduce

∥∥S · ξn
∥∥
Z
<

1

n
‖T ‖L(X;Y ) ∀n ∈ N .

In particular
S · ξn → 0 as n→ +∞ strongly in Z . (A.5)
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On the other hand since ‖ξn‖X = 1 and since X is a reflexive space, up to a subsequence we must
have ξn ⇀ ξ weakly in X . Thus S · ξn ⇀ S · ξ weakly in Z and then by (A.5) we have S · ξ = 0.
So since S is an injective operator we deduce that ξ = 0 and thus ξn ⇀ 0 weakly in X . Therefore,
since T is a compact operator we have

T · ξn → 0 strongly in Y . (A.6)

However, returning to (A.4), in particular we deduce
∥∥T · ξn

∥∥
Y
> ε ∀n ∈ N , (A.7)

which contradicts with (A.6). So we proved (A.1).

Lemma A.2. Let X be a separable Banach space. Then there exists a separable Hilbert space Y
and a bounded linear inclusion operator S ∈ L(Y ;X) such that S is injective (i.e. kerS = {0}), the
image of S is dense in X and moreover, S is a compact operator.

Proof. If X is finite dimensional then X is isomorphic to R
k for some k and we are done. Otherwise

since X is a separable Banach space there exists a countable sequence {xn}+∞
n=1 ⊂ X such that

‖xn‖X = 1 for every n, every finite subsystem of the system {xn}+∞
n=1 is linearly independent and

the span of {xn}+∞
n=1 is dense in X . Set Ȳ := l2 where l2 is a standard separable Hilbert space

defined by

l2 :=
{
ȳ = αn : N → R :

+∞∑

n=1

α2
n < +∞

}
(A.8)

with the scalar product

〈
ȳ1, ȳ2

〉
Ȳ×Ȳ

=
+∞∑

n=1

αnβn for ȳ1 = {αn}, ȳ2 = {βn} . (A.9)

Next we prove that for every ȳ = {αn} there exists a limit in X ,

x = lim
N→+∞

N∑

n=1

αn

n
xn . (A.10)

Indeed since ‖xn‖X = 1 for every N ∈ N and m ∈ N we have

∥∥∥∥
N+m∑

n=N

αn

n
xn

∥∥∥∥
2

X

≤
(N+m∑

n=N

α2
n

)
·
(N+m∑

n=N

1

n2

)
≤
( +∞∑

n=N

α2
n

)
·
( +∞∑

n=N

1

n2

)
→ 0 as N → +∞ .

Thus sinceX is a Banach space the limit in (A.10) exists. Then define the linear operator S̄ : Ȳ → X
for every ȳ = {αn} ∈ Ȳ by

S̄ · ȳ = lim
N→+∞

N∑

n=1

αn

n
xn . (A.11)

As before,

∥∥S̄ · ȳ
∥∥2
X

=

∥∥∥∥ lim
N→+∞

N∑

n=1

αn

n
xn

∥∥∥∥
2

X

≤
( +∞∑

n=1

α2
n

)
·
( +∞∑

n=1

1

n2

)
=

( +∞∑

n=1

1

n2

)
· ‖ȳ‖2Y . (A.12)

Thus S̄ is a bounded operator i.e. S̄ ∈ L(Y ;X). Next clearly for every finite linear combination

z =
∑N

n=1 cnxn (where cn ∈ R) there exists ȳ ∈ Ȳ such that S̄ · ȳ = z. So the image of S̄ is dense in

X . We will prove now that S̄ is a compact operator. Indeed let ȳn := {α(n)
j }+∞

j=1 ∈ Ȳ be such that

ȳn ⇀ 0 weakly in Ȳ . This means limn→+∞ α
(n)
j = 0 for every j and

∑+∞
j=1

(
α
(n)
j

)2 ≤ C for some
constant C > 0. Fix some ε > 0. Then since for every n

∥∥∥∥ lim
m→+∞

N+m∑

j=N

α
(n)
j

j
xj

∥∥∥∥
2

X

≤
(+∞∑

j=1

(
α
(n)
j

)2
)
·
( +∞∑

j=N

1

j2

)
≤ C

( +∞∑

j=N

1

j2

)
→ 0 as N → +∞ ,
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there exists N0 such that

∥∥∥∥ lim
m→+∞

N0+m∑

j=N0

α
(n)
j

j
xj

∥∥∥∥
X

<
ε

2
∀n ∈ N . (A.13)

On the other hand, since limn→+∞ α
(n)
j = 0, there exist n0 such that |α(n)

j | < ε/(2N0) for every
n > n0 and 1 ≤ j ≤ N0 and thus

∥∥∥∥
N0−1∑

j=1

α
(n)
j

j
xj

∥∥∥∥
X

<
ε

2
∀n > n0 . (A.14)

Plugging (A.14) into (A.13) we deduce that

∥∥S̄ · ȳn
∥∥
X
< ε ∀n > n0 .

Therefore S · ȳn → 0 strongly in X and so S̄ is a compact operator. Finally, set Z := {ȳ ∈ Ȳ :
S̄ · ȳ = 0}. Then Z is a close subspace of Ȳ . Next define Y to be the orthogonally dual to Z space

Y :=
{
ȳ ∈ Ȳ :

〈
ȳ, z
〉
Ȳ ×Ȳ

= 0 ∀z ∈ Z
}
.

Then Y is a close subspace of Ȳ . Therefore Y is a separable Hilbert space by itself. Define S ∈
L(Y ;X) by S := S̄ |Y . Then clearly S is injective i.e. kerS = {0}. Moreover, if x = S̄ · ȳ where
ȳ ∈ Ȳ then we can represent ȳ = z+ y where z ∈ Z and y ∈ Y , and since S̄ · z = 0 we have x = S ·y.
Therefore since the image of S̄ is dense in X we deduce that the image of S is also dense in X .
Finally, S is a compact operator. This completes the proof.

Lemma A.3. Let X be a separable Banach space. Then there exists a separable Hilbert space Y
and a bounded linear inclusion operator S ∈ L(X ;Y ) such that S is injective (i.e. kerS = {0}), the
image of S is dense in Y and moreover, S is a compact operator.

Proof. By the Lindenstrauss’s Theorem (see [6]) every separable Banach space is continuously em-
bedded in c0 where c0 is a Banach space of real sequences which tend to 0, i.e. it is defined by

c0 :=
{
αn : N → R : lim

n→+∞
an = 0

}
,

∥∥αn

∥∥
c0

:= sup
n∈N

∣∣an
∣∣ . (A.15)

So there exists an embedding operator P ∈ L(X ; c0) which is an injective inclusion (i.e. kerP = {0}).
Next define Q ∈ L(c0, l2), where l2 is the separable Hilbert space defined in (A.8), by the formula

Q ·
(
{αn}+∞

n=1

)
=
{αn

n

}+∞

n=1
∈ l2 ∀{αn}+∞

n=1 ∈ c0 . (A.16)

Then clearly Q ∈ L(c0, l2) is an injective inclusion. Moreover we will prove now that Q is a compact

operator. Indeed for every j ∈ N let hj := {α(j)
n }+∞

n=1 ⊂ c0 be such that hj ⇀ 0 weakly in c0 as
j → +∞. Thus in particular we have





lim
j→+∞

α
(j)
n = 0 ∀n ∈ N

|α(j)
n | ≤ C ∀n, j ∈ N ,

(A.17)

for some constant C > 0. Then for every j,m ∈ N we have

∥∥Q · hj
∥∥
l2
=

+∞∑

n=1

(
α
(j)
n

n

)2

=

m∑

n=1

(
α
(j)
n

n

)2

+

+∞∑

n=m

(
α
(j)
n

n

)2

≤
m∑

n=1

(
α
(j)
n

n

)2

+4C2
+∞∑

n=m

1

n2
. (A.18)
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Thus, since
∑+∞

n=1
1
n2 < +∞, for every ε > 0 there exists m = mε ∈ N such that 4C2

∑+∞
n=m

1
n2 < ε.

Therefore, by (A.18) we obtain

∥∥Q · hj
∥∥
l2
≤

m∑

n=1

(
α
(j)
n

n

)2

+ ε . (A.19)

Then letting j → +∞ in (A.19) and using (A.17) we deduce

lim
j→+∞

∥∥Q · hj
∥∥
l2
≤ ε ,

and since ε > 0 was arbitrary we finally infer that Q · hj → 0 strongly in l2. So we proved that Q
is a compact operator. Next define S ∈ L(X ; l2) by S := Q ◦ P , where P ∈ L(X ; c0) is an injective
embedding. Thus since P and Q are injective, we obtain that S is also an injective embedding of
X to l2. Moreover since Q is a compact operator we obtain that S ∈ L(X ; l2) is also a compact
operator. Finally, let Y be the closure of the image of S in l2. Then Y is a subspace in l2 and so
the separable Hilbert space by itself. Moreover S ∈ (X ;Y ) is an injective compact inclusion of X
to Y with dense in Y image.
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