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1 Introduction

The article gives an approach to the exponential stability of equations of the form

∂0V +AU = F, (1)

where we denote the derivative with respect to the temporal variable by ∂0. The (unbounded)
linear operator A, acting on some Hilbert space, is assumed to be maximal monotone and
we refer to the monographs [4, 15] for the topic of monotone operators on Hilbert spaces.
Equation (1) is completed by a constitutive relation of the form

V = MU,

where M is a bounded linear operator acting in time and space. Thus, we end up with an
equation of the form

(∂0M+A)U = F,

which we refer to as an evolutionary equation. This class of problems was introduced by
Picard in [16], where A was assumed to be skew-selfadjoint, and it was illustrated that many
equations of classical mathematical physics are covered by this abstract class. The well-
posedness for such problems is proved, by showing that the operator ∂0M+ A is boundedly
invertible in a suitable Hilbert space. More precisely, the derivative ∂0 is established as a
normal, continuously invertible operator in an exponentially weighted L2-space and M is
defined as a function of ∂−1

0 (see Section 2) and the well-posedness is shown under a positive
definiteness constraint on the operator M (see [16, Solution Theory] and Theorem 2.4 of this
article). Moreover, the question of causality, which can be seen as a characterizing property for
evolutionary processes, was addressed which leads to additional constraints on the operator M,
namely that M is defined via the Fourier-Laplace transformation of an analytic and bounded
function M : BC(r, r) → L(H) (for more details see Section 2). Especially the analyticity
of M is crucial for the causality, due to the correlation of supports of L2-functions and the
analyticity of their Laplace transforms by the Paley-Wiener Theorem (see [21, Theorem 19.2]).
Later on these results were generalized to the case of A being a maximal monotone relation
in [22, 24].

In this work we give sufficient criteria for the exponential stability of the evolutionary problem
in terms of the function M . The study of stability issues for differential equations, which goes
back to Lyapunov (see [14] for a survey), has become a very active field of research for many
decades and there exist numerous works dealing with this topic. We just like to mention some
standard approaches to exponential stability. The first strategy goes back to Lyapunov. The
aim is to find a suitable function (a so-called Lyapunov function) yielding a certain differential
inequality which allows to derive statements about the asymptotic behavior of solutions of the
differential equation. A second approach, which applies to linear differential equations, is based
on the theory of semigroups. In this framework different criteria for exponential stability were
derived in terms of the semigroup or its generator, e.g. Datko’s Lemma ([8] or [9, p. 300]),
Gearharts Theorem ([11] or [9, p. 302]) or the Spectral Mapping Theorem (see [9, p. 302,
Theorem 1.10]). A third approach uses the Fourier or the Laplace transform of a solution to
derive statements of their asymptotics. These methods are sometimes referred to as Frequency
Domain Methods. In our framework it seems to be appropriate to employ the last approach,
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2 The framework of evolutionary equations

since, by the definition of M, methods of vector-valued complex analysis are at hand through
the Fourier-Laplace transformation. Note that, due to the general structure of evolutionary
equations, the results apply to a broad class of differential equations, such as differential-
algebraic equations, equations with memory effects or integro-differential equations, where
semigroup methods may be difficult to apply.

The article is structured as follows. In Section 2 we recall the framework of evolutionary
equations and its solution theory (Theorem 2.4). Section 3 provides an abstract condition
for exponential stability for evolutionary equations in terms of the function M and the proof
of the main stability result (Theorem 3.7). To illustrate the versatility of the previous re-
sults, we discuss several examples in Section 4. We begin with studying differential-algebraic
equations of mixed type and derive a condition for their exponential stability. Moreover,
we give a concrete example for such an equation, which seems hard to be tackled by other
approaches, since the type of the differential equation switches on different parts of the un-
derlying domain. Furthermore, we give a possible approach of how to deal with initial value
problems. In Subsection 4.2 we consider an example of a partial differential equation with
memory effect. A similar problem was also treated by Batkai and Piazerra in [2], using a
semigroup approach. In contrast to their result our approach directly extends to the case of
differential-algebraic equations with delay. We conclude the article by discussing a parabolic
integro-differential equation with an operator-valued kernel, where we adopt the ideas of [23]
to derive the exponential stability.

Throughout let H be a complex Hilbert space. We denote its inner product by 〈·|·〉 which is
assumed to be linear in the second and conjugate linear in the first argument. We denote its
induced norm by | · |.

2 The framework of evolutionary equations

We recall some basic notions and results on linear evolutionary equations, i.e. equations of
the form (

∂0,̺M(∂−1
0,̺) +A

)
u = f, (2)

where A : D(A) ⊆ H → H is a linear, maximal monotone operator, ∂0,̺ denotes the time-
derivative, established in a suitable Hilbert space and M(∂−1

0,̺) is a bounded linear operator
in time and space, a so-called linear material law. We refer to [16, 17, 13, 22, 24] for more
details and proofs of the following statements. First we begin by introducing the Hilbert space
setting, where we want to consider equation (2).
For ̺ ∈ R we define the space H̺,0(R;H) as the space of (equivalence classes of) measurable
function f : R → H which are square-integrable with respect to the exponentially weighted
Lebesgue measure e−2̺t dt, equipped with the inner product

〈f |g〉H̺,0(R;H) :=

∫

R

〈f(t)|g(t)〉e−2̺t dt.

Note that H0,0(R;H) is just the space L2(R;H). We define the derivative ∂0,̺ as the closure
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of the operator

∂0,̺|C∞
c (R;H) : C

∞
c (R;H) ⊆ H̺,0(R;H) → H̺,0(R;H)

φ 7→ φ′,

where we denote by C∞
c (R;H) the space of function φ : R → H which are arbitrarily often

differentiable and have compact support.

Remark 2.1.

(a) For each ̺ ∈ R the operator ∂0,̺ is normal with Re ∂0,̺ = 1
2

(
∂0,̺ + ∂∗0,̺

)
= ̺.Moreover we

obtain that ∂∗0,̺ = −∂0,̺+2̺. In particular, for ̺ = 0 the operator ∂0,0 is skew-selfadjoint
and coincides with the usual weak derivative on L2(R;H) with domain H0,1(R;H) =
H1(R;H) =W 1

2 (R;H).

(b) For ̺ 6= 0 the operators ∂0,̺ onH̺,0(R;H) and ∂0,0+̺ on L2(R;H) are unitarily equivalent
and ∂0,̺ is boundedly invertible with ‖∂−1

0,̺‖ = 1
|̺| . For ̺ = 0 the operator ∂0,0 is not

boundedly invertible, since 0 lies in its continuous spectrum.

(c) For ̺ 6= 0 the inverse operator ∂−1
0,̺ is given by

(
∂−1
0,̺u

)
(t) =

{∫ t

−∞ u(s) ds if ̺ > 0,

−
∫∞
t
u(s) ds if ̺ < 0

for u ∈ H̺,0(R;H) and almost every t ∈ R. This representation yields that for ̺ > 0 the
operator ∂−1

0,̺ is forward causal whereas it is backward causal1 for ̺ < 0.

(d) Let ̺ ∈ R and denote by L̺ : H̺,0(R;H) → L2(R;H) the so-called Fourier-Laplace
transformation, defined as the unitary extension of the operator given by

(L̺φ) (x) =
1√
2π

∫

R

e−ixte−̺tφ(t) dt

for φ ∈ C∞
c (R;H) and x ∈ R. Then

∂0,̺ = L∗
̺(im+ ̺)L̺, (3)

where by m : D(m) ⊆ L2(R;H) → L2(R;H) we denote the multiplication-by-the-
argument operator with maximal domain, i.e., (mf) (t) = tf(t) for almost every t ∈ R

and every f ∈ D(m) := {f ∈ L2(R;H) | (t 7→ tf(t)) ∈ L2(R;H)} . Note that in the case
̺ = 0, (3) is just the usual spectral representation for the weak derivative on L2(R;H)
via the Fourier transformation (see [1, p. 112]).

We consider (2) as an equation in the Hilbert space H̺,0(R;H). As a matter of physical

relevance, we require that the corresponding solution operator
(
∂0,̺M(∂−1

0,̺) +A
)−1

, if it

1A mapping F : D(F ) ⊆ H̺,0(R;H) → H̺,0(R;H) is called forward causal if for each f, g ∈ D(F ) with f = g

on some interval ]−∞, a[ for a ∈ R the functions F (f) and F (g) coincide on the same interval ] −∞, a[.
Analogously F is called backward causal if for each f, g ∈ D(F ) with f = g on some interval ]a,∞[ for
a ∈ R the functions F (f) and F (g) coincide on the same interval ]a,∞[.
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2 The framework of evolutionary equations

exists, is forward causal, that means, roughly speaking, that the present state of the solution
u does not depend on the future behavior of the source term f. With Remark 2.1 (c) in mind,
we therefore assume that ̺ > 0.
We now define the operator M(∂−1

0,̺) for ̺ > 0 with the help of formula (3).

Definition 2.2. Let r > 0 and M : BC(r, r) → L(H) 2. For ̺ > 1
2r we define

M(∂−1
0,̺) := L∗

̺M

(
1

im+ ̺

)
L̺,

where M
(

1
im+̺

)
is defined as the multiplication operator

(
M
(

1
im+̺

)
f
)
(t) :=M

(
1

it+̺

)
f(t)

on L2(R;H) with domain
{
f ∈ L2(R;H)

∣∣∣
(
t 7→M

(
1

it+̺

)
f(t)

)
∈ L2(R;H)

}
. We callM(∂−1

0,̺)

a linear material law if the function M belongs to H∞(BC(r, r);L(H)), i.e., M is bounded
and analytic.

Remark 2.3. The notion material law is motivated by several examples of mathematical
physics, since it turns out that all material parameters, such as mass density, conductivity,
permeability etc. can be incorporated into the operator M(∂−1

0,̺) (see [16] for several exam-

ples). Thus, it is natural that M(∂−1
0,̺) is forward causal. Since the operator M(∂−1

0,̺) is linear
and it commutes with the translation operators τh, mapping u ∈ H̺,0(R;H) to t 7→ u(t+ h)
for h ∈ R, causality can be characterized via the requirement that sptM(∂−1

0,̺)u ⊆]0,∞[ if
sptu ⊆]0,∞[, where by spt g we denote the support of a function g ∈ L2,loc(R;H). This, how-
ever, can be characterized by the analyticity and boundedness of the mapping M , employing
a Paley-Wiener-type result (see e.g. [21, Theorem 19.2]). Moreover, note that due to the

boundedness of M , the operator M
(
∂−1
0,̺

)
becomes a bounded operator on H̺,0(R;H).

We are now able to state the solution theory for evolutionary equations. For the proof we
refer to [16, 24].

Theorem 2.4 (Solution Theory). Let A : D(A) ⊆ H → H be a maximal monotone linear
operator. Moreover, let r > 0 and M ∈ H∞(BC(r, r);L(H)) and assume that the solvability
condition is satisfied:

∃c > 0 ∀z ∈ BC(r, r) , x ∈ H : Re〈z−1M(z)x|x〉 ≥ c|x|2. (4)

Then for each ̺ > 1
2r the problem (2) is well-posed in H̺,0(R;H), i.e. for each ̺ > 1

2r the
operator ∂0,̺M(∂−1

0,̺)+A is boundedly invertible and has a dense range. Moreover, the solution

operator
(
∂0,̺M(∂−1

0,̺) +A
)−1

is forward causal.

Remark 2.5. Note that the solution operator
(
∂0,̺M(∂−1

0,̺) +A
)−1

commutes with the time-

derivative ∂0,̺. This yields, that for right hand sides f ∈ D(∂k0,̺) for k ∈ N in (2) the cor-

responding solution u also lies in D(∂k0,̺), i.e. the solution operator preserves “temporal”

regularity3.

2We denote by BC(x, s) the open ball in C with center x ∈ C and radius s > 0
3Indeed, one can show that the solution operator

(

∂0,̺M(∂−1
0,̺) + A

)

−1

extends to the whole Sobolev-chain

(Hk(∂0,̺))k∈Z
associated with the derivative ∂0,̺, see [17] which yields a solution theory for distributional

right-hand sides.
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3 An abstract condition for exponential stability

In this section we show that under certain constraints on the function M , the corresponding
evolutionary problem is exponentially stable. Although in the literature, exponential stability
usually means that the solution of an initial value problem decays with an exponential rate
as time tends to infinity, we like to introduce a slightly weaker notion within our framework
which, however, yields the desired decay if the source term f is regular enough (see Remark
3.2 (a)). Moreover, since the framework of evolutionary equations covers different types of
equations, where initial values do not make sense, such as differential-algebraic or even pure
algebraic equations or equations with memory effect, where a given pre-history would be
more appropriate then an initial value, we cannot treat initial value problems within this
general approach. However, in concrete examples we can reformulate initial value problems
as evolutionary equations with a modified right hand side (see Subsection 4.1) such that the
following results still apply.

Definition 3.1. Let A : D(A) ⊆ H → H be a maximal monotone linear operator and
M ∈ H∞(BC(r, r);L(H)) for some r > 0 which satisfies the solvability condition (4). Let

̺ > 1
2r . We call the solution operator

(
∂0,̺M(∂−1

0,̺) +A
)−1

of (2) exponentially stable with

stability rate ν0 > 0 if for each 0 ≤ ν < ν0 and f ∈ H−ν,0(R;H) ∩H̺,0(R;H) the solution u
of (2) satisfies

u =
(
∂0,̺M(∂−1

0,̺) +A
)−1

f ∈
⋂

−ν<µ≤̺

Hµ,0(R;H),

which especially implies
∫
R
e2µt|u(t)|2 dt <∞ for all 0 ≤ µ < ν.

Remark 3.2.

(a) We show that our notion of exponential stability indeed yields an exponential decay of
the solution if the given right hand side is regular enough. For doing so, let ̺ > 1

2r and(
∂0,̺M(∂−1

0,̺) +A
)−1

exponentially stable with stability rate ν0 > 0. Moreover, assume

that f ∈ H−ν,0(R;H) ∩ H̺,0(R;H) and f ∈ D(∂0,̺) such that ∂0,̺f ∈ H−ν,0(R;H) ∩
H̺,0(R;H) for some 0 < ν < ν0. Then u =

(
∂0,̺M(∂−1

0,̺) +A
)−1

f also lies in D(∂0,̺) and

∂0,̺u =
(
∂0,̺M(∂−1

0,̺) +A
)−1

∂0,̺f (compare Remark 2.5). By the assumed exponential

stability, we get that eµmu ∈ L2(R;H) and eµm∂0,̺u ∈ L2(R;H) for each 0 ≤ µ < ν. The
latter yields eµmu ∈W 1

2 (R;H). Indeed, for φ ∈ C∞
c (R;H) we compute

〈µeµmu+ eµm∂0,̺u|φ〉L2(R;H)

=

∫

R

〈u(t)|µeµtφ(t)〉 dt+

∫

R

〈
(∂0,̺u) (t)| e(2̺+µ)tφ(t)e−2̺t

〉
dt

=

∫

R

〈u(t)|µeµtφ(t)〉 dt+ 〈∂0,̺u|e(2̺+µ)mφ〉H̺,0(R;H)

=

∫

R

〈u(t)|µeµtφ(t)〉 dt+
〈
u
∣∣∣−∂0,̺

(
e(2̺+µ)mφ

)〉
H̺,0(R;H)

7



3 An abstract condition for exponential stability

+
〈
u
∣∣∣2̺
(
e(2̺+µ)mφ

)〉
H̺,0(R;H)

=

∫

R

〈u(t)|µeµtφ(t)〉 dt−
∫

R

(2̺+ µ)〈u(t)|e(2̺+µ)tφ(t)〉e−2̺t dt

−
∫

R

〈u(t)|e(2̺+µ)tφ′(t)〉e−2̺t dt+

∫

R

2̺〈u(t)|e(2̺+µ)tφ(t)〉e−2̺t dt

= −
∫

R

〈u(t)|e(2̺+µ)tφ′(t)〉e−2̺t dt

= −〈eµmu|φ′〉L2(R;H).

Thus, we obtain eµt|u(t)| → 0 as t tends to infinity for each 0 ≤ µ < ν due to Sobolev’s
embedding theorem (see e.g. [9, p. 408]), i.e. u decays exponentially with a decay rate less
than ν.

(b) If f ∈ Hµ,0(R;H) ∩H̺,0(R;H) for some µ, ̺ ∈ R with µ > ̺, then f ∈ Hν,0(R;H) for all
ν ∈ [̺, µ]. Indeed, we estimate

∫

R

|f(t)|2e−2νt dt =

0∫

−∞

|f(t)|2e−2νt dt+

∞∫

0

|f(t)|2e−2νt dt

≤
0∫

−∞

|f(t)|2e−2µt dt+

∞∫

0

|f(t)|2e−2̺t dt

≤ |f |2Hµ,0(R;H) + |f |2H̺,0(R;H).

We now give conditions for the function M and show that they yield the well-posedness and
exponential stability for the corresponding evolutionary problem.

Hypotheses. Let ν0 > 0. We assume that

(a) M : C \BC

[
− 1

2ν0
, 1
2ν0

]
→ L(H) is analytic4,

(b) for each r > 0 and 0 ≤ ν < ν0 the function5

BC(r, r) \ {ν−1} ∋ z 7→ (1− νz)M
(
z(1 − νz)−1

)

has a bounded and analytic extension to BC(r, r),

(c) for every 0 < ν < ν0 there exists c > 0 such that for all z ∈ C \BC

[
− 1

2ν ,
1
2ν

]

Re z−1M(z) ≥ c.

Remark 3.3. Let M satisfy the assumptions above and let r > 0. Then the restriction of M
to BC(r, r) is an element of H∞(BC(r, r);L(H)). Indeed, the analyticity is clear from (a) and

4We denote by BC[x, s] the closed ball in C with center x ∈ C and radius s ≥ 0.
5Here and further on we set BC(r, r) \ {0

−1} := BC(r, r).
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the boundedness follows from (b). Hence, together with (c), it follows that the problem (2) is
well-posed for every ̺ > 0 according to Theorem 2.4.

We now state some auxiliary results which in particular imply that the solution operator(
∂0,̺M

(
∂−1
0,̺

)
+A

)−1

for an evolutionary problem does not depend on the particular choice

of ̺. These results can also be found in [17, p. 429 f.]. However, for sake of completeness we
present them again with a slightly modified proof.

Lemma 3.4. Let ̺, µ ∈ R with µ > ̺ and set U := {z ∈ C | Re z ∈ [̺, µ]}. Moreover, let
f : U → H be continuous on U and analytic in the interior of U , such that

∫ µ

̺
f(iR+s) ds→ 0

as R→ ±∞. Then

lim sup
R→∞

∣∣∣∣∣∣

R∫

−R

f(it+ µ) dt−
R∫

−R

f(it+ ̺) dt

∣∣∣∣∣∣
= 0.

Proof. According to Cauchy’s integral theorem we have

i

R∫

−R

f(it+ ̺) dt+

µ∫

̺

f(iR+ s) ds−


i

R∫

−R

f(it+ µ) dt+

µ∫

̺

f(−iR+ s) ds


 = 0

for each R > 0. The assertion now follows by taking the limes superior as R tend to ∞.

The next lemma shows that we can approximate a function which belongs to two different
exponentially weighted L2-spaces by the same sequence of test functions with respect to both
topologies.

Lemma 3.5. Let ̺, µ ∈ R and f ∈ H̺,0(R;H)∩Hµ,0(R;H). Then, for each ε > 0 there exists
φ ∈ C∞

c (R;H) such that

max
{
|f − φ|H̺,0(R;H), |f − φ|Hµ,0(R;H)

}
≤ ε.

Proof. Let ε > 0. Then we choose N ∈ N such that fN := fχ[−N,N ] satisfies

max
{
|f − fN |H̺,0(R;H), |f − fN |Hµ,0(R;H)

}
≤ ε

2
.

We denote by (ψk)k∈N ∈ C∞
c (R)N the Friedrichs mollifier (see e.g. [10, Chapter C.4]). Then,

for each k ∈ N we have that sptψk ∗ fN ⊆ [−N − 1, N + 1]. Now, we choose k0 large enough
such that

|ψk0 ∗ fN − fN |L2([−N−1,N+1];H) ≤ e−2max{|̺|,|µ|}(N+1) ε

2
.

Then the function ψk0 ∗ fN ∈ C∞
c (R;H) has the desired property.

Lemma 3.6. Let ̺, µ ∈ R with µ > ̺ and set U := {z ∈ C | Re z ∈ [̺, µ]}. Moreover, let
f ∈ H̺,0(R;H) ∩ Hµ,0(R;H) and T ∈ H∞(Ů ;L(H)) ∩ Cb(U ;L(H)) (i.e. T is bounded and
continuous on U and analytic in the interior of U). Then

(
L∗
̺T (im+ ̺)L̺f

)
(t) =

(
L∗
µT (im+ µ)Lµf

)
(t)

9



3 An abstract condition for exponential stability

for almost every t ∈ R.

Proof. According to Lemma 3.5 it suffices to prove the assertion for test functions. So let
φ ∈ C∞

c (R;H). We show that the function

U ∋ z 7→ eztT (z) ((LRe zφ) (Im z)) ∈ H

satisfies the assumptions of Lemma 3.4. Indeed it is continuous in U and analytic in the interior
of U as a composition of analytic functions. Furthermore, we estimate for s ∈ [̺, µ], ξ ∈ R :

|Lsφ(ξ)| ≤
1√
2π

∫

R

e−rs|φ(r)| dr ≤ C√
2π

∫

R

|φ(r)| dr,

where C := sup{e−rs | s ∈ [̺, µ], r ∈ sptφ}, which shows that the function

U ∋ z 7→ (LRe zφ) (Im z)

is bounded. Moreover, due to the Riemann-Lebesgue lemma, we get that (Lsφ) (R) → 0 as
R→ ±∞ for every s ∈ R. Therefore, according to Lebesgue’s dominated convergence theorem,
we deduce that
∣∣∣∣∣∣

µ∫

̺

e(iR+s)tT (iR + s) (Lsφ) (R) ds

∣∣∣∣∣∣
≤ max{e̺t, eµt}|T |∞

µ∫

̺

|(Lsφ)(R)| ds→ 0 (R→ ±∞).

Thus, by Lemma 3.4, we get that

∫

R

e(is+̺)tT (is+ ̺) (L̺φ) (s) ds =

∫

R

e(is+µ)tT (is+ µ)Lµφ(s) ds,

which yields the assertion.

We are now able to prove our main theorem.

Theorem 3.7. Let A : D(A) ⊆ H → H be a maximal monotone linear operator and M a
mapping satisfying the hypotheses above for some ν0 > 0. Then for each ̺ > 0 the solution

operator
(
∂0,̺M(∂−1

0,̺) +A
)−1

is exponentially stable with stability rate ν0.

Proof. Let ̺ > 0, 0 ≤ ν < ν0 and take f ∈ H−ν,0(R;H) ∩H̺,0(R;H). We set

u :=
(
∂0,̺M(∂−1

0,̺) +A
)−1

f

and we have to show that u ∈ Hµ,0(R;H) for each µ ∈]− ν, ̺]. Let 0 < η < ̺+ ν. We define

Ñ(z) = (1− νz)M
(
z (1− νz)−1

)

10



for z ∈ BC

(
1
2η ,

1
2η

)
\ {ν−1}. Note that according to hypotheses (b), Ñ has an extension

N ∈ H∞
(
BC

(
1
2η ,

1
2η

)
;L(H)

)
. Moreover,

Re z−1N(z) = Re z−1Ñ(z) = Re
(1− νz)

z
M

(
z

1− νz

)
≥ c (5)

for every z ∈ BC

(
1
2η ,

1
2η

)
\ {ν−1} and some suitable c > 0, since z (1− νz)−1 /∈ BC

[
− 1

2ν ,
1
2ν

]
.

Due to the continuity of N , estimate (5) also holds for z = 1
ν
. Thus, according to Theorem

2.4, we obtain a solution

v :=
(
∂0,ηN(∂−1

0,η) +A
)−1

eνmf ∈ Hη,0(R;H),

where we have used that eνmf ∈ H0,0(R;H) ∩ H̺+ν,0(R;H) ⊆ Hη,0(R;H) (see Remark 3.2
(b)). We apply Lemma 3.6 to T (z) = (zN(z−1) +A)−1 for z ∈ C with Re z ≥ η and get that

v = L∗
η

(
(im+ η)N

(
1

im+ η

)
+A

)−1

Lηe
νmf

= L∗
η+ν

(
(im+ η + ν)N

(
1

im+ η + ν

)
+A

)−1

Lη+νe
νmf.

Using (it+ η + ν)N
(

1
it+η+ν

)
= (it+ η)M

(
1

it+η

)
for t ∈ R, we derive

e−νmv = L∗
η

(
(im+ η)M

(
1

im+ η

)
+A

)−1

Lηf.

Again, applying Lemma 3.6 to T (z) =
(
zM(z−1) +A

)−1
for z ∈ C with Re z ≥ min{̺, η} we

get that

e−νmv = L∗
η

(
(im+ η)M

(
1

im+ η

)
+A

)−1

Lηf

= L∗
̺

(
(im+ ̺)M

(
1

im+ ̺

)
+A

)−1

L̺f

= u,

which gives u ∈ Hη−ν(R;H). Since η ∈]0, ̺+ν[ was chosen arbitrarily, we get the assertion.

4 Examples

In this section we illustrate our results of the previous section by three different types of
differential equations which, however, are all covered by the abstract notion of evolutionary
equations. We emphasize that we do not claim that in the forthcoming examples the stability

11



4 Examples

rates are optimal under the given constraints nor that an exponential decay could not be
obtained under lesser constraints. But we emphasize that our approach provides a unified
way to study exponential stability of a broad class of differential equations.
We begin to study a class of differential-algebraic equations, where the material law is of the
simplest form. Moreover, we provide a strategy of how to deal with initial values problems for
this class. As a second example we treat a partial differential-algebraic equation with finite
delay. We conclude this section with an example of a parabolic integro-differential equation
with an operator-valued kernel.

4.1 Differential-algebraic equations of mixed type

It turns out that in applications, the material law is often of the form M(∂−1
0,̺) =M0+∂

−1
0,̺M1

(see for instance [16, 17, 22]), whereM0,M1 ∈ L(H). The corresponding evolutionary equation
is then of the form

(∂0,̺M0 +M1 +A) u = f, (6)

where A : D(A) ⊆ H → H is a maximal monotone linear operator. In order to obtain the
well-posedness of this evolutionary equation we require that M0 is selfadjoint and strictly
positive definite on its range, while ReM1 := 1

2(M1 +M∗
1 ) is strictly positive definite on the

kernel of M0 (see [16, 22, 24] for the proof of well-posedness). In order to obtain exponential
stability for this problem, we require that ReM1 is strictly positive definite on the whole space
H.

Theorem 4.1. Let A : D(A) ⊆ H → H be a maximal monotone linear operator and M0,M1 ∈
L(H) such that M0 is selfadjoint and strictly positive definite on its range, and ReM1 ≥ c > 0.

Then for each ̺ > 0 the solution operator
(
∂0,̺M0 +M1 +A

)−1
is exponentially stable with

stability rate c
‖M0‖

.

Proof. We have to verify the hypotheses (a)-(c) for the function

M(z) =M0 + zM1 (z ∈ C).

Obviously the assumption (a) holds. Let now r > 0 and ν ≥ 0. Then we compute

(1− νz)M
(
z(1− νz)−1

)
= (1 − νz)M0 + zM1

for z ∈ BC(r, r) \ {ν−1}, which shows (b). Let now ν ∈]0, c
‖M0‖

[. In order to show (c) we note,

that for z ∈ C \BC

[
− 1

2ν ,
1
2ν

]
there exists t ∈ R and ̺ > −ν such that z−1 = it+ ̺. Thus, for

̺ ≥ 0 we can estimate
Re z−1M(z) = ̺M0 +ReM1 ≥ c,

while for ̺ ∈ ]−ν, 0[ we estimate

Re z−1M(z) = ̺M0 +ReM1 ≥ −ν‖M0‖+ c > 0.

Thus, the assertion follows by Theorem 3.7

12



4.1 Differential-algebraic equations of mixed type

To illustrate the versatility of our approach, we discuss the following simple example of an
evolutionary equation, whose type (elliptic, parabolic or hyperbolic) changes on different parts
of the underlying domain. A similar example was also discussed in [18, 19].

Example 4.2. Let Ω ⊆ R
n and Ω0,Ω1 ⊆ Ω be measurable disjoint subsets with positive

Lebesgue measure. We consider the evolutionary equation

(
∂0,̺

(
χΩ0 + χΩ1 0

0 χΩ0

)
+

(
c 0
0 c

)
+

(
0 divc

grad 0

))(
v
q

)
=

(
f
g

)
, (7)

where c > 0. The differential operator divc is defined as the closure of the operator

div |C∞
c (Ω)n : C∞

c (Ω)n ⊆ L2(Ω)
n → L2(Ω)

(φi)i∈{1,...,n} 7→
n∑

i=1

∂iφi,

where we denote by ∂i the partial derivative with respect to the i-th coordinate. The operator
grad is defined as the negative adjoint of divc, i.e.

grad := − (divc)
∗ .

This operator is just the usual weak gradient on L2(Ω) with domain H1(Ω). Note that then the

operator matrix

(
0 divc

grad 0

)
is a skew-selfadjoint operator (and hence maximal monotone)

on H := L2(Ω)⊕ L2(Ω)
n. Moreover, the operators

M0 =

(
χΩ0 + χΩ1 0

0 χΩ0

)
, M1 =

(
c 0
0 c

)

satisfy the assumptions of Theorem 4.1 and hence, the solution operator is exponentially stable
with stability rate c.
Although this example seems to be quite easy, it seems hard to attack the problem of solving
(6) by using semigroup techniques. The reason for that is that (6) changes its type on different
parts of the domain Ω. Indeed, on Ω0 we obtain a hyperbolic problem of the form

(
∂0,̺

(
1 0
0 1

)
+

(
c 0
0 c

)
+

(
0 divc

grad 0

))(
v
q

)
=

(
f
g

)
,

while on Ω1 the problem becomes parabolic, namely

(
∂0,̺

(
1 0
0 0

)
+

(
c 0
0 c

)
+

(
0 divc

grad 0

))(
v
q

)
=

(
f
g

)
,

which yields, in case of g = 0 the parabolic differential equation

∂0,̺v + cv − c−1 divc grad v = f.

13



4 Examples

On the remaining part Ω \ (Ω0 ∪ Ω1) the problem is elliptic

((
c 0
0 c

)
+

(
0 divc

grad 0

))(
v
q

)
=

(
f
g

)
.

Note that we can treat this problem, without requiring any explicit transmission conditions on
the interfaces ∂Ω0 and ∂Ω1 and without imposing regularity assumptions on these boundaries.

Initial value problems

Now, we present a possible way to tackle initial value problems for equations of the form (6).
Consider the following initial value problem6

(∂0,̺M0 +M1 +A) u = f on ]0,∞[ (8)

M0u(0+) =M0u0

for M0,M1, A as before, f ∈ H−ν,0(R;H) ∩H̺,0(R;H) for some ν, ̺ > 0 with spt f ⊆ [0,∞[
and u0 ∈ D(A). One way to deal with such problems is to consider the evolutionary equation

(∂0,̺M0 +M1 +A) ṽ = f − χ[0,∞[(m)M1u0 − χ[0,∞[(m)Au0 on R,

for the new unknown ṽ := u− χ[0,∞[(m)u0 given by ṽ(t) = u(t)− χ[0,∞[(t)u0 for almost every
t ∈ R. Then the right-hand side belongs to H̺,0(R;H) for positive ̺, but does not decay
if f decays. Hence, this approach can be used for the issue of well-posedness but it is not
appropriate for exponential stability.
Instead, we consider an alternative problem for the unknown

v := u− φ(m)u0,

where φ is given by

φ(t) :=





1 if t ∈ [0, 1],

2− t if t ∈]1, 2[,
0 otherwise.

It is clear that if u satisfies (8), then v satisfies the equation

(∂0,̺M0 +M1 +A) v = f + χ]1,2[(m)M0u0 − φ(m)M1u0 − φ(m)Au0 =: g (9)

and vice versa. Since the function χ]1,2[(m)M0u0−φ(m)M1u0−φ(m)Au0 belongs toHµ,0(R;H)
for every µ ∈ R, we obtain g ∈ H̺,0(R;H) ∩H−ν,0(R;H). Thus, Theorem 4.1 applies to (9)
and we get that (9) is well-posed and v ∈ Hµ,0(R;H) for each µ ∈] − ν, ̺]. This gives that
u ∈ Hµ,0(R;H) for each µ ∈] − ν, ̺], since φ(m)u0 ∈ ⋂µ∈RHµ,0(R;H). It is left to show in
which sense M0u attains the initial value M0u0. By (9) we get that

∂0,̺M0v = g −M1v −Av

6Note that it only makes sense to prescribe an initial value for M0u yielding an initial value for the part of
u lying in the range of M0.
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4.2 Linear partial differential equations with finite delay

and the right hand side belongs to H̺,0(R;H−1(A+1)), where H−1(A+1) is the extrapolation
space7 associated with A+ 1. Thus, a version of Sobolev’s embedding theorem ([17, Lemma
3.1.59], [13, Lemma 5.2]) yields that M0v is continuous as a function which attains values in

H−1(A+1). Furthermore, due to the causality of the solution operator
(
∂0,̺M0 +M1 +A

)−1
,

v is supported on [0,∞[, since spt g ⊆ [0,∞[. This yields M0v(0+) =M0v(0−) = 0 and hence,
since φ(0+) = 1 we get that M0u(0+) =M0u0, where the equality holds in H−1(A+ 1).

4.2 Linear partial differential equations with finite delay

As a second example we study a differential equation with finite delay of the form

(∂0,̺M0 + τh +M1 +A) u = f, (10)

where M0,M1 ∈ L(H) such that M0 is selfadjoint and non-negative, ReM1 ≥ c > 1, A :
D(A) ⊆ H → H is linear and maximal monotone and τh is the translation operator with
respect to time, i.e. (τhu) (t) = u(t+ h) for t ∈ R and some h ≤ 0. We will prove that under
these assumptions, the corresponding solution operator is exponentially stable and we give
an estimate for the stability rate. A similar problem is treated in [2, Example 4.14] for a
particular operator A, where the well-posedness is shown via semigroups and a criterion for
the exponential stability is given, using the Spectral Mapping Theorem for eventually norm
continuous semigroups (cf. [9, p. 280]).

Before we state our stability result for (10), we need to inspect the operator τh a bit closer.

Lemma 4.3. Let ̺, h ∈ R. We define the operator

τh : H̺,0(R;H) → H̺,0(R;H)

u 7→ (t 7→ u(t+ h)) .

Then τh ∈ L(H̺,0(R;H)) with ‖τh‖ = e̺h and τh = L∗
̺e

(im+̺)hL̺.

Proof. Obviously, τh defines a bounded linear operator on H̺,0(R;H). For φ ∈ C∞
c (R;H) we

compute

L̺ (τhφ) (t) =
1√
2π

∫

R

e−iste−̺sφ(s + h) ds

= e(it+̺)h 1√
2π

∫

R

e−iste−̺sφ(s) ds

= e(it+̺)h (L̺φ) (t)

for each t ∈ R, which gives τh = L∗
̺e

(im+̺)hL̺. Moreover, by this unitary equivalence we get
that

‖τh‖ = ‖e(im+̺)h‖ = e̺h.

7For a boundedly invertible linear operator C : D(C) ⊆ H → H the extrapolation space H−1(C) is given as
the completion of H with respect to the norm | · |H

−1(C) defined as |x|H
−1(C) := |C−1x|H for x ∈ H (see

[17, Section 2.1]).
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Using this lemma, we are able to write (10) as an evolutionary equation with

M(z) =M0 + zez
−1h + zM1, (11)

which is clearly analytic and bounded on balls of the form BC(r, r) for r > 0 if we require that
h ≤ 0. This restriction is natural, since for h ≤ 0 the operator τh is forward causal, while for
h > 0 it is backward causal.

Theorem 4.4. Let A : D(A) ⊆ H → H be a maximal monotone linear operator, M0,M1 ∈
L(H) such that M0 is selfadjoint and non-negative and ReM1 ≥ c > 1. Moreover let h < 0.

Then for each ̺ > 0 the solution operator
(
∂0,̺M0 + τh +M1 +A

)−1
is exponentially stable

with stability rate ν0 > 0 satisfying

ν0‖M0‖+ e−ν0h = c.

Proof. We have to show that M given by (11) satisfies the hypotheses (a)-(c) of Section 3.
Obviously M is analytic on C \ {0}, which shows (a). Let now r > 0 and ν ≥ 0. As

(1− νz)M
(
z(1− νz)−1

)
= (1− νz)M0 + ze(z

−1−ν)h + zM1

for z ∈ BC(r, r) \ {ν−1}, we see that z 7→ (1− νz)M
(
z(1− νz)−1

)
has an analytic extension

to BC(r, r). Moreover we estimate

sup
z∈BC(r,r)

|e(z−1−ν)h| = sup
̺> 1

2r

e(̺−ν)h,

which is finite, since h < 0. Thus, hypothesis (b) is also satisfied. For showing (c), let ν ∈]0, ν0[
and z ∈ C\BC

[
− 1

2ν ,
1
2ν

]
. Then there exists ̺ > −ν and t ∈ R such that z−1 = it+̺. If ̺ ≥ 0

we estimate

Re z−1M(z) = ̺M0 + e̺h cos(th) +ReM1 ≥ c− 1 > 0,

and for the case ̺ ∈]− ν, 0[ we get

Re z−1M(z) = ̺M0 + e̺h cos(th) +ReM1 ≥ −ν‖M0‖ − e−νh + c > 0,

since ν < ν0. This proves (c) and thus, the assertion follows by Theorem 3.7.

Remark 4.5. Note that M0 in (10) is allowed to have a non-trivial kernel which could also
depend on the spatial variable (compare Subsection 4.1). Thus, Theorem 4.4 also covers a
certain class of differential-algebraic equations with delay.

4.3 Parabolic integro-differential equations

We consider the following parabolic integro-differential equation

∂0,̺u+Bu− C ∗Bu = f, (12)

where B : D(B) ⊆ H → H is linear such that A := B − c is maximal monotone for some
c > 0, C : [0,∞[→ L(H) is a weakly measurable function such that t 7→ ‖C(t)‖ is measurable
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4.3 Parabolic integro-differential equations

and there exists ν0 > 0 with
∫∞
0 ‖C(t)‖eν0t dt < 1. We set U := {z ∈ C | Im z ≤ ν0} and

define the complex Fourier transform of C by

Ĉ(z) :=
1√
2π

∞∫

0

e−itzC(t) dt (z ∈ U),

where the integral is meant in the weak sense. Note that Ĉ : U → L(H) is continuous and
bounded on U and analytic in the interior of U8. The well-posedness and asymptotic behavior
for equations of the form (12), including non-linear perturbations, were discussed in several
works (e.g. [5, 25, 23] and [6, 20, 3, 7, 23] for a hyperbolic version of the problem), imposing
additional constraints on the kernel C.
Following [23] we are led to assume that C satisfies the following conditions:

1. C(t) is selfadjoint for almost every t ∈ R,

2. C(t) and C(s) commute for almost every t, s ∈ R,

3. for all t ∈ R we have
t Im Ĉ(t+ iν0) ≤ 0. (13)

Remark 4.6.

(a) Note that (13) is equivalent to

Im Ĉ(t+ iν0) ≤ 0 (t ∈]0,∞[).

(b) A typical example for a kernel satisfying the conditions above is a real-valued, differentiable
function k : [0,∞[→ [0,∞[ with

∫∞
0 k(t)eν0t dt < 1 and k′(t) ≤ −k(t)ν0 for every t ≥ 0.

Similar kernels were considered by Prï¿1
2 ss [20] under a weaker constraint on k′. Indeed,

the conditions 1. and 2. are trivially satisfied, since k is real-valued. For showing condition
3. we note that

eν0tk(t)− eν0sk(s) ≤ sup
ξ∈[s,t]

eν0ξ(ν0k(ξ) + k′(ξ)) ≤ 0,

for every t ≥ s ≥ 0. Thus, the function t 7→ eν0tk(t) is non-increasing and we estimate

Im k̂(t+ iν0) =
1√
2π

∞∫

0

eν0s sin(−ts)k(s) ds

=
1√
2π

∞∑

k=0




(2k+1)π
t∫

k π
t

eν0s sin(−ts)k(s) ds+

2(k+1)π
t∫

(2k+1)π
t

eν0s sin(−ts)k(s) ds




=
1√
2π

∞∑

k=0

(2k+1)π
t∫

k π
t

sin(−ts)
(
eν0sk(s)− eν0(s+

π
t
)k
(
s+

π

t

))
ds

8Here we use the fact that scalar analyticity and local boundedness on a norming set yields analyticity (see
[12, Theorem 3.10.1]).
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≤ 0

for every t ∈]0,∞[ (compare [23, Remark 3.6 (b)]).

(c) In [6] the authors considered real-valued kernels k : [0,∞[→ R such that
∫∞
0 k(s)eν0s ds <

1 and the integrated kernel [0,∞[∋ t 7→
∫∞
t
k(s)eν0s ds gives rise to a positive definite

convolution operator on L2([0,∞[). Again, the conditions 1. and 2. are satisfied, since k
is real-valued and condition 3. holds according to [6, Proposition 2.2 (a)].

Before we can state a stability result for problems of the form (12), we recall some properties
of the convolution operator C ∗ .
Lemma 4.7. We denote by S(R;H) the space of simple H-valued functions. Then for ̺ ≥ −ν0
the operator

C∗ : S(R;H) ⊆ H̺,0(R;H) → H̺,0(R;H)

u 7→


t 7→

∫

R

C(t− s)u(s) ds




is bounded and linear with ‖C ∗‖L(H̺,0(R;H)) ≤
∫∞
0 ‖C(t)‖eν0t dt and can therefore be extended

to H̺,0(R;H). Moreover, for u ∈ H̺,0(R;H), ̺ ≥ −ν0 we have

(L̺(C ∗ u)) (t) =
√
2πĈ(t− i̺) (L̺u(t)) (14)

for almost every t ∈ R.

Proof. A proof for the first assertion can be found in [23, Lemma 3.1]. The proof of formula
(14) is straight forward and we omit it.

According to Lemma 4.7, the operator (1−C∗) is boundedly invertible in H̺,0(R;H) for each
̺ ≥ −ν0. Therefore, instead of considering (12) we can study

(
∂0,̺(1−C∗)−1 +B

)
u = (1− C∗)−1f, (15)

or equivalently (
∂0,̺(1− C∗)−1 + c+A

)
u = (1− C∗)−1f.

Note, that this as an evolutionary equation of the form (2) where M is defined by

M(z) = (1−
√
2πĈ(−iz−1))−1 + cz,

(
z ∈ C \BC

(
− 1

2ν0
,

1

2ν0

))
(16)

where we have used Lemma 4.7. The next lemma shows that (13) already implies that the
same condition holds if one replaces −ν0 by ̺ for arbitrary ̺ ≥ −ν0.
Lemma 4.8. Assume that C satisfies the conditions 1., 2. and 3. above. Then for every
̺ ≥ −ν0 we have

t Im Ĉ(t− i̺) ≤ 0.

Proof. The proof can be done analogously to the one of [23, Lemma 3.7].

18



4.3 Parabolic integro-differential equations

We now state our stability result for (15).

Theorem 4.9. Let A : D(A) ⊆ H → H be maximal monotone and linear and let c > 0.
Moreover, let C : [0,∞[→ L(H) be weakly measurable, such that t 7→ ‖C(t)‖ is measurable
and there exists ν0 > 0 such that

∫∞
0 ‖C(t)‖eν0t < 1 and C satisfies the conditions 1., 2. and

3. from above. Then for each ̺ > 0 the solution operator
(
∂0,̺(1− C∗)−1 + c+A

)−1
exists

and is exponentially stable with a stability rate ν1 ∈]0, ν0] satisfying

ν1


1−

∞∫

0

‖C(s)‖eν1s ds




−1

≤ c.

Proof. Let ν1 ∈]0, ν0] such that ν1
(
1−

∫∞
0 ‖C(s)‖eν1s ds

)−1 ≤ c. We prove that M given by

(16) satisfies the hypotheses of Section 3. The assumption (a) is clear, since ‖
√
2πĈ(−iz−1)‖ <

1 for each z ∈ C\BC

[
− 1

2ν1
, 1
2ν1

]
. Let now r > 0 and 0 ≤ ν < ν1. Then for z ∈ BC(r, r)\{ν−1}

we compute

(1− νz)M(z(1 − νz)−1) = (1− νz)

((
1−

√
2πĈ

(
−iz−1(1− νz)

))−1
+ cz(1 − νz)−1

)

= (1− νz)
(
1−

√
2πĈ

(
−i(z−1 − ν)

))−1
+ cz,

which has a holomorphic extension in ν−1. Noting that for each z ∈ BC(r, r) we have that
z−1 = it+ ̺ for some ̺ > 1

2r , t ∈ R, we estimate

‖
√
2πĈ(−i(z−1 − ν))‖ ≤

∞∫

0

e−(̺−ν)s‖C(s)‖ ds

≤
∞∫

0

eν0s‖C(s)‖ ds < 1.

Hence, the extension of (1 − νz)M(z(1 − νz)−1) to BC(r, r) is indeed bounded for each r >

0, ν ∈ [0, ν1[. We now show that M satisfies the assumption (c) on C \ BC

[
− 1

2ν1
, 1
2ν1

]
. We

follow the strategy of the proof of [23, Lemma 3.8]. Let z ∈ C \ BC

[
− 1

2ν1
, 1
2ν1

]
. Note that

then there exists ̺ > −ν1 and t ∈ R such that z−1 = it+̺. We set D := |1−
√
2πĈ(t− i̺)|−1,

which is well-defined according to Lemma 4.8. Note that

(1−
√
2πĈ(t− i̺))−1 = D2(1−

√
2πĈ(−t− i̺)),

where we have used assumption 1. Moreover, due to assumption 2., we get that

D2(1−
√
2πĈ(−t− i̺)) = D(1−

√
2πĈ(−t− i̺))D.
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Thus, we obtain for x ∈ H

Re〈z−1M(z)x|x〉 = Re

〈
z−1

(
(1−

√
2πĈ(−iz−1))−1 + cz

)
x
∣∣∣x
〉

= Re

〈(
̺Re

(
1−

√
2πĈ(−t− i̺)

)
+

√
2πt Im Ĉ(−t− i̺)

)
Dx
∣∣∣Dx

〉
+ c|x|2

≥ ̺Re

〈
D
(
1−

√
2πĈ(−t− i̺)

)
Dx
∣∣∣x
〉
+ c|x|2.

If ̺ is non-negative, the latter term can be estimated by c. For negative ̺ we observe that

∥∥∥DRe

(
1−

√
2πĈ(−t− i̺)

)
D
∥∥∥ ≤

∥∥∥∥
(
1−

√
2πĈ(−t− i̺)

)−1
∥∥∥∥

≤ 1

1− ‖
√
2πĈ(−t− i̺)‖

≤


1−

∞∫

0

eν1s‖C(s)‖ ds




−1

and hence,

̺Re

〈
D
(
1−

√
2πĈ(−t− i̺)

)
Dx
∣∣∣ x
〉
+ c|x|2 ≥


̺


1−

∞∫

0

eν1s‖C(s)‖ ds




−1

+ c


 |x|2

>


−ν1


1−

∞∫

0

eν1s‖C(s)‖ ds




−1

+ c


 |x|2,

which shows that M satisfies hypothesis (c), according to the choice of ν1. Thus, the assertion
follows by Theorem 3.7.

Remark 4.10. Theorem 4.9 gives the exponential stability for equation (15). This also yields
the exponential stability of the original problem (12), since the operator (1−C∗)−1 leaves the
space H−ν,0(R;H) for all ν ≤ ν0 invariant. Indeed, observing that

eνm(1− C∗)−1 = (1− (eνmC) ∗)−1 eνm

we obtain for f ∈ H−ν,0(R;H) ∩H̺,0(R;H)

eνm(1− C∗)−1f = (1− (eνmC) ∗)−1 eνmf ∈ L2(R;H).
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