
ar
X

iv
:1

40
3.

00
94

v2
  [

m
at

h.
A

P]
  2

6 
Ju

n 
20

16

ASYMPTOTICS OF EIGENSTATES OF ELLIPTIC PROBLEMS

WITH MIXED BOUNDARY DATA ON DOMAINS TENDING TO

INFINITY

M. CHIPOT, P. ROY, AND I. SHAFRIR

ABSTRACT. We analyze the asymptotic behavior of eigenvalues and eigenfunc-
tions of an elliptic operator with mixed boundary conditions on cylindrical domains
when the length of the cylinder goes to infinity. We identify the correct limiting
problem and show in particular, that in general the limiting behavior is very dif-
ferent from the one for the Dirichlet boundary conditions.

1. Introduction

Let ω be a bounded open set in R
n−1. For every ℓ > 0 set Ωℓ = (−ℓ, ℓ)× ω and

write each x ∈ Ωℓ as x = (x1, X2) with X2 = (x2, . . . , xn). We assume that the
matrices

A(X2) =

(

a11(X2) A12(X2)
At

12(X2) A22(X2)

)

are uniformly elliptic and uniformly bounded on ω (precise assumptions will be
made in Section 2). The limiting behavior, when ℓ goes to infinity, of the eigen-
values and eigenfunctions of the elliptic operator − div(A(X2)∇u) on Ωℓ with zero
Dirichlet boundary conditions, was studied by Chipot and Rougirel in [7]. We
shall recall below one of their main results that was the principal motivation for
the current paper. Let µk and σk

ℓ denote, respectively, the kth eigenvalues for the
problems

(1.1)

{

−div(A22(X2)∇u) = µu in ω,

u = 0 on ∂ω,

and

(1.2)

{

− div(A(X2)∇u) = σu in Ωℓ,

u = 0 on ∂Ωℓ.

The following relation between problem (1.2) (for large ℓ) and problem (1.1) was
established in [7].

Theorem A (Chipot-Rougirel).

(1.3) µ1 ≤ σ1
ℓ ≤ µ1 +

C

ℓ2
,

where C is a constant independent of ℓ.
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The main goal of the present article is to study the analogous problem for mixed
boundary conditions, at least for k = 1. Let us write ∂Ωℓ = Γℓ ∪ γℓ where

(1.4) Γℓ = {−ℓ, ℓ} × ω and γℓ = (−ℓ, ℓ)× ∂ω,

and denote by λk
ℓ the kth eigenvalue for the mixed Neumann-Dirichlet problem

(1.5)











−div(A(X2)∇u) = σu in Ωℓ,

u = 0 on γℓ,

(A(X2)∇u).ν = 0 on Γℓ.

One of our main results establishes that limℓ→∞ λ1
ℓ exists, but in general it is

strictly smaller than µ1. This “gap phenomenon” is explained by the appearance
of boundary effects near Γℓ. To gain better understanding of these effects we are led
to consider first the limit limℓ→0 λ

1
ℓ . Asymptotic behavior of elliptic problems set

on domains shrinking to zero in some directions are generally known as “Dimension
Reduction” problems and are addressed in [1, 3, 14] and in a setting particularly
suitable for us, in [2] . Our work establishes a somewhat surprising connection
between the theory of dimension reduction (i.e., “ℓ → 0”) and the theory for “ℓ →
∞”.

In order to have a more precise description of the boundary effects and to char-
acterize the value of the limit limℓ→∞ λ1

ℓ , we introduce eigenvalue problems on
the two semi-infinite cylinders Ω+

∞ = (0,∞) × ∂ω and Ω−
∞ = (−∞, 0) × ∂ω, with

mixed boundary conditions. Let ν±∞ denote the first eigenvalue for the operator
− div(A(X2)∇u) on Ω±

∞ with zero boundary condition on the lateral part of the
boundary ∂Ω±

∞. One might be tempted to expect that the equality ν+∞ = ν−∞ always
hold because of “symmetry considerations”. However, as we shall see in Section 6,
this equality is false in general. Our main results are summarized in the next the-
orem, that combines the results of Theorem 4.2 and Theorem 5.2. We denote by
W1 the positive normalized eigenfunction corresponding to µ1.

Main Theorem. We have limℓ→∞ λ1
ℓ = min(ν+∞, ν−∞) . If A12.∇W1 6≡ 0 a.e. on ω,

then limℓ→∞ λ1
ℓ < µ1. Otherwise, λ1

ℓ = µ1, ∀ℓ.

Many problems of the type “ℓ → ∞” were studied in the past. Besides the eigen-
value problem already mentioned [7], these include elliptic and parabolic equations,
variational inequalities and systems, see [5, 6, 8, 9, 10, 11, 12]. In all these prob-
lems it is found that the limit is characterized by the solution of the corresponding
problem on the section ω. We emphasize that the limiting behavior in our problem
is very different.

The paper is organized as follows. In Section 2 we give the main definitions
and notation needed in the subsequent sections. In Section 3 we illustrate the gap
phenomenon in a simple model case where ω = (−1, 1) and A is a 2 × 2 matrix

with constant coefficients, namely, A = Aδ =

(

1 δ
δ 1

)

. In Section 4 we prove

the gap phenomenon for the general case. In Section 5 we prove that the limit
limℓ→∞ λ1

ℓ exists, and identify its value using the eigenvalue problems on the semi-
infinite cylinders Ω+

∞ and Ω−
∞. In Section 6 we investigate further the problem on

a semi-infinite cylinder and use it to give a more precise description of the first
eigenfunction uℓ for large ℓ. In the last section, Section 7, we address briefly two
natural related problems. First, we present a result on the asymptotics of the
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second eigenvalue λ2
ℓ as ℓ goes to infinity (under some symmetry assumption on the

matrix A). Second, we give a partial result for the more general case of a domain
becoming large in several directions.

2. Preliminaries

For each ℓ > 0 consider Ωℓ = (−ℓ, ℓ)× ω with ω a bounded domain in R
n−1 as

in the Introduction. The lateral part of ∂Ωℓ and the remaining part of the cylinder
(i.e., the two ends) will be denoted by γℓ and Γℓ, respectively. Let us denote by
H1(Ωℓ) and H1

0 (Ωℓ) the usual spaces of functions defined by

H1(Ωℓ) =
{

v ∈ L2(Ωℓ)| ∂xi
v ∈ L2(Ωℓ), i = 1, 2, . . . , n

}

,

and

H1
0 (Ωℓ) =

{

v ∈ H1(Ωℓ)| v = 0 on ∂Ωℓ

}

,

or in a more precise way, H1
0 (Ωℓ) is the closure of C∞

c (Ωℓ) in H1(Ωℓ). The space
H1

0 (Ωℓ) is equipped with the norm

(2.1) ‖∇v‖22,Ωℓ
=

∫

Ωℓ

|∇v|2.

A suitable space for our problem is

V (Ωℓ) =
{

v ∈ H1(Ωℓ) | v = 0 on γℓ
}

,

where the boundary condition should be interpreted in the sense of traces. Thanks
to the Poincaré inequality, V (Ωℓ) becomes an Hilbert space when equipped with
the norm (2.1). For later use we define the sets

(2.2) Ω+
ℓ = [0, ℓ)× ω and Ω−

ℓ = (−ℓ, 0)× ω,

We decompose Γℓ (see (1.4)) into two parts as Γℓ = Γ+
ℓ ∪ Γ−

ℓ , where

(2.3) Γ+
ℓ = {ℓ} × ω and Γ−

ℓ = {−ℓ} × ω .

Similarly, for the lateral part of ∂Ωℓ we define,

(2.4) γ+
ℓ = (0, ℓ)× ∂ω and γ−

ℓ = (−ℓ, 0)× ∂ω .

We shall be concerned with the operator − div(A(X2)∇u) where, for each X2 ∈ ω,

A(X2) =

(

a11(X2) A12(X2)
At

12(X2) A22(X2)

)

is a symmetric n × n matrix, a11 ∈ R, A12 is a 1 × (n − 1) matrix and A22 is a
(n − 1) × (n − 1) matrix. The components of A(X2) are assumed to be bounded
measurable functions on ω and we assume the following bound

(2.5) ‖A(X2)‖ ≤ CA , a.e.X2 ∈ ω,

for the Euclidean operator norm. We also assume that A(X2) is uniformly elliptic
and denote by λA the largest positive number for which the following inequality
holds,

(2.6) A(X2)ξ.ξ ≥ λA|ξ|
2 , ∀ξ ∈ R

n, a.e.X2 ∈ ω.
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The weak formulation of the eigenvalue problem (1.1) is to find u ∈ H1
0 (ω) \ {0}

and µ ∈ R such that

(2.7)

∫

ω

(A22∇u).∇v dX2 = µ

∫

ω

uv dX2 , ∀v ∈ H1
0 (ω) .

Denote by µ1 the first eigenvalue of the problem (2.7) with the corresponding
normalized eigenfunction W1, i.e.,

∫

ω |W1|
2 = 1. It is well known that µ1 has a

variational characterization by the Rayleigh quotient:

(2.8) µ1 = inf

{
∫

ω

(A22(X2)∇u).∇u
∣

∣u ∈ H1
0 (ω) s.t.

∫

ω

u2 = 1

}

= inf
u∈H1

0
(ω)\{0}

∫

ω
(A22(X2)∇u).∇u

∫

ω u2
.

Moreover, W1 is simple and has constant sign in Ω (see [13]). The choice of positive
sign leaves us with a unique W1.

Similarly, the eigenvalue problem (1.5) has the following weak formulation: find
u ∈ V (Ωℓ) \ {0} and a real number λ such that

(2.9)

∫

Ωℓ

A∇u.∇v dx = λ

∫

Ωℓ

uv dx , ∀v ∈ V (Ωℓ).

It is well known, see [4], that the first eigenvalue λ1
ℓ for (2.9) is associated with a

variational characterization,
(2.10)

λ1
ℓ = inf

{
∫

Ωℓ

A∇u.∇u : u ∈ V (Ωℓ),

∫

Ωℓ

u2 = 1

}

= inf
u∈V (Ωℓ)\{0}

∫

Ωℓ
A(X2)∇u.∇u
∫

Ωℓ
u2

.

It is also true, and can be proved in the same way as it is done for the corresponding
Dirichlet problem, that λ1

ℓ is simple and the corresponding eigenfunction uℓ has
constant sign in Ωℓ, that we should fix as the positive sign in the sequel. For some
of our results we shall need to impose a certain symmetry condition on ω and A.

Definition 2.1. We shall say that property (S) holds if ω is symmetric w.r.t. the
origin (i.e., −ω = ω) and A(−X2) = A(X2).

From the uniqueness of uℓ we deduce easily the following symmetry result.

Proposition 2.1. If property (S) holds then uℓ(x1, X2) = uℓ(−x1,−X2).

Proof. Clearly vℓ(x1, X2) := uℓ(−x1,−X2) is a positive normalized eigenfunction
for λ1

ℓ , so it must be equal to uℓ. �

3. The gap phenomenon in a model problem

In this section we treat a two dimensional model problem in order to illustrate the
main ideas behind the analysis of the general case in the next sections. Throughout
this section ω = (−1, 1), Ωℓ = (−ℓ, ℓ) × (−1, 1), and the matrix A is a constant
matrix depending on the parameter δ ∈ [0, 1), namely,

(3.1) A = Aδ =

(

1 δ
δ 1

)

.
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Clearly Aδ satisfies all the assumptions made on A in Section 2. Since the eigenval-
ues of Aδ are 1± δ, λA = 1 − δ (see (2.6)). In this section we shall denote a point
in R

2 by x = (x1, x2). The problem (2.7) has the following simple form
{

−W ′′
1 = µ1W1 in (−1, 1) ,

W1(−1) = W1(1) = 0 .

where µ1 denotes the first eigenvalue and W1 is the corresponding positive normal-
ized eigenfunction. Therefore, µ1 = (π2 )

2 and W1(t) = cos(π2 t).

Proposition 3.1. For δ = 0 we have λ1
ℓ = µ1 for all ℓ > 0. For δ ∈ (0, 1) we have

(3.2) (1 − δ2)µ1 < λ1
ℓ < µ1, ∀ℓ > 0.

Proof. (i) Since A0 =

(

1 0
0 1

)

, the corresponding operator is just −∆, and the

function v(x1, x2) = W1(x2) is clearly a positive eigenfunction in (1.5) with σ = µ1,
for all ℓ > 0. It follows that λ1

ℓ = µ1 as claimed.
(ii) Assume now that δ ∈ (0, 1). Using the function v(x1, x2) = W1(x2) in the
Rayleigh quotient (2.10) yields the inequality

(3.3) λ1
ℓ ≤ µ1 .

We claim that the inequality in (3.3) is strict as stated in (3.2). Indeed, an equality
would imply that the function v (as defined above) is a positive eigenfunction
in (1.5) for σ = λ1

ℓ = µ1, and in particular, it satisfies the Neumann boundary
condition

0 = (Aδ∇v).ν = vx1
+ δvx2

= δvx2
on Γ+

ℓ = {ℓ} × (−1, 1) .

But this clearly contradicts the fact that (W1)
′(x2) 6= 0 for x2 ∈ (−1, 1) \ {0}. To

prove the inequality of the left in (3.2) we first notice the elementary inequality

(3.4) (Aδξ).ξ ≥ (1− δ2)|ξ2|
2, ∀ξ = (ξ1, ξ2) ∈ R

2 .

Indeed, (3.4) follows from the identity

(3.5) (Aδξ).ξ = ξ21 + 2δξ1ξ2 + ξ22 = (1− δ2)ξ22 + (ξ1 + δξ2)
2 .

By (3.4) and(2.8) we get

(3.6)

λ1
ℓ =

∫

Ωℓ

(Aδ∇uℓ).∇uℓ ≥ (1− δ2)

∫

Ωℓ

|∂x2
uℓ|

2

≥ (1− δ2)µ1

∫

Ωℓ

|uℓ|
2 = (1− δ2)µ1.

To conclude, we show that the inequality λ1
ℓ ≥ (1− δ2)µ1 is strict. Indeed, equality

would imply equalities in all the inequalities in (3.6), implying in particular that
uℓ(x1, x2) = W1(x2) in Ωℓ. It would then follow that λ1

ℓ = µ1. Contradiction. �

From now on we shall assume that δ ∈ (0, 1) (the first part of Proposition 3.1
settles completely the case δ = 0). Our main result in this section establishes the
following estimate about the behavior of λ1

ℓ as ℓ goes to infinity.

Theorem 3.1. lim supℓ→∞ λ1
ℓ < µ1, for every δ ∈ (0, 1).
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In the next section, when dealing with the general case, we shall actually see
that the limit limℓ→∞ λ1

ℓ exists. As mentioned in the Introduction, an important
ingredient in the proof of Theorem 3.1 is a study of the asymptotic behavior of λ1

ℓ

as ℓ → 0 (a dimension reduction problem).

Theorem 3.2. We have limℓ→0 λ
1
ℓ = (1− δ2)µ1.

Proof. It suffices to consider ℓ < 1. Fix any α ∈ (0, 1) and let ρℓ be the piecewise-
linear function defined by

ρℓ(t) =











t+1
ℓα t ∈ [−1,−1 + ℓα),

1 t ∈ [−1 + ℓα, 1− ℓα],
1−t
ℓα t ∈ (1− ℓα, 1] .

Consider the following test function

(3.7) vℓ(x1, x2) = W1(x2)− δx1W
′
1(x2)ρℓ(x2) .

Then clearly vℓ ∈ V (Ωℓ) is a valid test function. From (2.10), we have

(3.8)
λ1
ℓ ≤

∫

Ωℓ
Aδ∇vℓ.∇vℓ
∫

Ωℓ
v2ℓ

=

∫

Ωℓ
|∂x1

vℓ|
2 +

∫

Ωℓ
|∂x2

vℓ|
2 + 2δ

∫

Ωℓ
∂x1

vℓ∂x2
vℓ

∫

Ωℓ
v2ℓ

=
I1 + I2 + I3

I
.

We consider each of the terms I1, I2, I3 and I separately. First,

I1 = δ2
∫

Ωℓ

ρ2ℓ |W
′
1(x2)|

2 dx = 2ℓδ2
∫ 1

−1

ρ2ℓ |W
′
1(x2)|

2 dx2 .(3.9)

Next, calculating for I2,

I2 =

∫

Ωℓ

[

W ′
1(x2)− δx1{ρℓW

′′
1 (x2) +W ′

1(x2)ρ
′
ℓ(x2)}

]2

=

∫

Ωℓ

|W ′
1|

2 − 2δ

∫

Ωℓ

x1W
′
1(x2)

{

ρℓW
′′
1 (x2) +W ′

1(x2)ρ
′
ℓ(x2)

}

+ δ2
∫

Ωℓ

x2
1|ρℓW

′′
1 (x2) +W ′

1(x2)ρ
′
ℓ(x2)|

2.

The integral in the middle vanishes since
∫ ℓ

−ℓ
x1 = 0. Hence, using |ρ′ℓ| ≤

1
ℓα and

(2.8) we get

(3.10) I2 = 2ℓµ1 +
2δ2ℓ3

3

∫ 1

−1

|ρℓW
′′
1 +W ′

1ρ
′
ℓ|
2 ≤ 2ℓµ1 +

2δ2ℓ3

3
(C1 + C2ℓ

−2α),

where C1, C2 are two constants independent of ℓ. Next, for I3 we find,

(3.11) I3 = 2δ

∫

Ωℓ

−δW ′
1ρℓ [W

′
1 − x1δ {W

′
1ρ

′
ℓ + ρℓW

′′
1 }]

= −4ℓδ2
∫ 1

−1

ρℓ|W
′
1|

2 + 2δ3
∫

Ωℓ

x1W
′
1ρℓ {W

′
1ρ

′
ℓ + ρℓW

′′
1 } = −4ℓδ2

∫ 1

−1

ρℓ|W
′
1|

2.

Finally we compute the term I.

(3.12) I =

∫

Ωℓ

(W1 − δx1W
′
1ρℓ)

2
=

∫

Ωℓ

W 2
1 + δ2

∫

Ωℓ

x2
1ρ

2
ℓ |W

′
1|

2
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= 2ℓ+
2ℓ3δ2

3

∫ 1

−1

ρ2ℓ |W
′
1|

2 ≥ 2ℓ.

Plugging (3.9)–(3.12) in (3.8) yields

(3.13) λ1
ℓ ≤ δ2

∫ 1

−1

ρ2ℓ |W
′
1|

2 + µ1 − 2δ2
∫ 1

−1

ρℓ|W
′
1|

2 + ε(ℓ),

where ε(ℓ) → 0 as ℓ → 0. Since ρℓ → 1 pointwise, passing to the limit ℓ → 0 and
using dominated convergence for the RHS of (3.13) gives

(3.14) lim sup
ℓ→0

λ1
ℓ ≤ (1− δ2)µ1 .

Combining (3.14) with (3.2) we obtain the result of the theorem. �

Now we turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Let ℓ0 and η be two positive constants whose values will be
determined later. For ℓ > ℓ0 + η define φℓ by

φℓ =































vℓ0(x1 − ℓ+ ℓ0, x2) on (ℓ− ℓ0, ℓ)× (−1, 1) ,
(x1−(ℓ−ℓ0−η))W1(x2)

η on (ℓ− ℓ0 − η, ℓ − ℓ0)× (−1, 1) ,

0 on Ωℓ−ℓ0−η ,
(−x1−(ℓ−ℓ0−η))W1(x2)

η on (ℓ0 − ℓ,−ℓ+ ℓ0 + η)× (−1, 1) ,

vℓ0(x1 + ℓ− ℓ0, x2) on (−ℓ, ℓ0 − ℓ)× (−1, 1) ,

where vℓ0 is given by (3.7). We have

(3.15)

∫

Ωℓ

φ2
ℓ =

∫

Ωℓ\Ωℓ−ℓ0

φ2
ℓ +

∫

Ωℓ−ℓ0

φ2
ℓ

=

∫

Ωℓ0

v2ℓ0 + 2

(

∫ ℓ−ℓ0

ℓ−ℓ0−η

(x1 − ℓ+ ℓ0 + η)2

η2
dx1

)

(
∫ 1

−1

W 2
1

)

=

∫

Ωℓ0

v2ℓ0 +
2

3
η ,

where we used the fact that φℓ is an even function in x1 on Ωℓ \ Ωℓ−ℓ0 . Also,

(3.16)

∫

Ωℓ

Aδ∇φℓ.∇φℓ =

∫

Ωℓ0

Aδ∇vℓ0 .∇vℓ0 +

∫

Ωℓ−ℓ0

Aδ∇φℓ.∇φℓ .

Setting D = Ωℓ−ℓ0 \Ωℓ−ℓ0−η and using the fact that φℓ is even in D while ∂x1
φℓ is

odd on D we get

(3.17)

∫

Ωℓ−ℓ0

Aδ∇φℓ.∇φℓ =
1

η2

∫

D

W 2
1 + 2δ

∫

D

∂x1
φℓ∂x2

φℓ

+
2

η2

∫

(ℓ−ℓ0−η,ℓ−ℓ0)×(−1,1)

|W ′
1|

2(x1 − ℓ+ ℓ0 + η)2

=
2

η

∫ 1

−1

W 2
1 +

2η

3

∫ 1

−1

|W ′
1|

2 =
2

η
+

2ηµ1

3
.
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From (3.15)–(3.17) we obtain

(3.18) λ1
ℓ ≤

∫

Ωℓ0

Aδ∇vℓ0 .∇vℓ0 +
2
η + 2ηµ1

3
∫

Ωℓ0

v2ℓ0 +
2
3η

.

Noting that Theorem 3.2 implies that
∫

Ωℓ0

Aδ∇vℓ0 .∇vℓ0
∫

Ωℓ0

v2ℓ0
= (1− δ2)µ1 + ε(ℓ0) ,

we obtain from (3.18) that

(3.19)

λ1
ℓ − µ1 ≤

{

(1− δ2)µ1 + ε(ℓ0)
} ∫

Ωℓ0

v2ℓ0 +
2
η + 2ηµ1

3
∫

Ωℓ0

v2ℓ0 +
2
3η

− µ1

=
(ε(ℓ0)− δ2µ1)

∫

Ωℓ0

v2ℓ0 +
2
η

∫

Ωℓ0

v2ℓ0 +
2
3η

.

Choosing ℓ0 small enough such that ε(ℓ0)− δ2µ1 < 0, and then taking η sufficiently
large, makes the RHS of (3.19) equal a negative number, say −δ0. Hence, λ1

ℓ ≤
µ1 − δ0 for ℓ > ℓ0 + η, and the result follows. �

4. The gap phenomenon in the general case.

In this section we extend the results from Section 3 to a more general framework.
We shall use the notation from Section 2 and study the limit limℓ→∞ λ1

ℓ for λ
1
ℓ given

by (2.10). As in Section 3 our strategy is to study first the limit as ℓ goes to 0.

Theorem 4.1. We have limℓ→0 λ
1
ℓ = Λ1 where

(4.1) Λ1 = inf

{
∫

ω

A22(X2)∇u.∇u −
|A12(X2).∇u|2

a11(X2)
: u ∈ H1

0 (ω),

∫

ω

u2 = 1

}

.

Proof. The reason why we find Λ1 as the limiting value will be clarified by the

following simple observation. Let B =

(

b11 B12

Bt
12 B22

)

be a positive definite n × n

matrix and represent any vector z in R
n as z = (z1, Z2) with Z2 ∈ R

n−1. Then,
elementary calculus shows that for any fixed Z2 ∈ R

n−1 we have

(4.2) min
z1∈R

(Bz).z = (B22Z2).Z2 −
|B12Z2|

2

b11
.

Furthermore, the minimum in (4.2) is attained for

(4.3) z1 = −
B12Z2

b11
.

Applying (4.2) with B = A(X2) we obtain, for any ℓ > 0,

(4.4)

∫

Ωℓ

(A(X2)∇uℓ).∇uℓ ≥

∫

Ωℓ

(A22(X2)∇X2
uℓ).∇X2

uℓ −
|A12(X2)∇X2

uℓ|
2

a11(X2)

≥ Λ1

∫

Ωℓ

u2
ℓ .

By (4.4) the lower-bound

(4.5) lim inf
ℓ→0

λ1
ℓ ≥ Λ1 ,
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is clear. We note that from the above it follows in particular that

Λ1 ≥ λA · inf

{
∫

ω

|∇u|2 : u ∈ H1
0 (ω),

∫

ω

u2 = 1

}

.

(see (2.6)) and the infimum in (4.1) is actually a minimum, which is realized by a
positive function w1 ∈ H1

0 (ω).
In order to complete the proof of Theorem 4.1 we need to establish the upper-

bound part. A natural generalization of the construction used in the proof of
Theorem 3.2 would be to use

(4.6) vℓ(x) = w1(X2)−
(A12(X2).∇w1) x1ρℓ(X2)

a11(X2)
,

where ρl is an appropriate cut-off function. However, since the coefficients of the
matrix A(X2) are only assumed to be L∞-functions, the function on the RHS
of (4.6) does not necessarily belong to H1. To overcome this difficulty, we use an
approximation argument, motivated by [2, Ch. 14]. We apply standard mollification
to define a family of functions {Gε}ε>0 ⊂ C∞

c (ω) satisfying

(4.7) lim
ε→0

Gε(X2) =
A12(X2) · ∇w1

a11(X2)
in L2(ω) and a.e..

We then define

(4.8) vεℓ (x1, X2) = w1(X2)−Gε(X2)x1 .

First notice that

(4.9)

∫

Ωℓ

|vεℓ |
2 =

∫ ℓ

−ℓ

∫

ω

w2
1 − 2x1w1Gε + (x1Gε)

2
≥ 2ℓ

∫

ω

w2
1 = 2ℓ,

since
∫ ℓ

−ℓ x1 dx1 = 0. Now
∫

Ωℓ

A∇vεℓ .∇vεℓ =

∫

Ωℓ

a11(∂x1
vεℓ )

2 + 2(A12.∇X2
vεℓ )∂x1

vεℓ + (A22∇X2
vεℓ ).∇X2

vεℓ

= I1(ε) + I2(ε) + I3(ε) .

For the first integral we have

(4.10) I1(ε) =

∫

Ωℓ

a11G
2
ε = 2ℓ

∫

ω

a11G
2
ε .

For the second integral,

(4.11) I2(ε) = 2

∫ ℓ

−ℓ

∫

ω

A12.
{

∇w1 − x1∇Gε(X2)
}{

−Gε(X2)
}

.

Since the integral of the term containing x1 vanishes, we get

(4.12) I2(ε) = −4ℓ

∫

ω

(A12.∇w1)Gε .

For the last integral we have (after dropping the term with the vanishing integral),

(4.13) I3(ε) =

∫ ℓ

−ℓ

∫

ω

(A22∇w1).∇w1 + x2
1(A22∇Gε).∇Gε

= 2ℓ
{

∫

ω

(A22∇w1).∇w1 +
ℓ2

3

∫

ω

(A22∇Gε).∇Gε

}

.
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By (4.9)–(4.13) we deduce that

(4.14) lim sup
ℓ→0

λ1
ℓ ≤ lim sup

ℓ→0

∫

Ωℓ
A∇vεℓ .∇vεℓ
∫

Ωℓ
|vεℓ |

2
≤

∫

ω

a11 (Gε)
2
− 2

∫

ω

(A12.∇w1)Gε +

∫

ω

(

A22∇w1

)

.∇w1 .

Passing to the limit ε → 0 in (4.14), using (4.7), gives

lim sup
ℓ→0

λ1
ℓ ≤

∫

ω

(A22∇w1).∇w1 −
|A12∇w1|

2

a11
= Λ1 ,

which together with (4.5) yields the result. �

Remark 4.1. Replacing (4.8) by

(4.15) ṽεℓ (x1, X2) = W1(X2)− G̃ε(X2)x1 ,

where G̃ε is defined as in (4.7), but with w1 replacing W1, and carrying out the
same computation as in the last part of the proof of Theorem 4.1 yields

(4.16) inf
ε>0

lim
ℓ→0

∫

Ωℓ
(A∇ṽεℓ ).∇ṽεℓ
∫

Ωℓ
|ṽεℓ |

2
=

∫

ω

(A22∇W1).∇W1 −
|A12∇W1|

2

a11
.

Our next theorem provides an analog of Theorem 3.1 to the general case.

Theorem 4.2. We have

(4.17) lim sup
ℓ→∞

λ1
ℓ < µ1,

provided the following condition holds,

(4.18) A12.∇W1 6≡ 0 a.e. on ω.

In case (4.18) does not hold we have λ1
ℓ = µ1 for all ℓ > 0.

Remark 4.2. It is easy to construct examples where condition (4.18) doesn’t hold.

Take for example for ω the unit disc in R
2. For A22 =

(

1 0
0 1

)

, the eigenfunction

W1 is radially symmetric. We use polar coordinates on ω and represent each X2

as X2 = r(cos θ, sin θ). Taking a11 = 1 and A12(X2) = t(− sin θ, cos θ) for |t| small
enough (in order for the uniform ellipticity condition (2.6) to hold for the 3 by 3
matrix A) yields an example for which (4.18) doesn’t hold.

Proof. (i) Assume first that (4.18) holds. Then,

(4.19) Λ1 < µ1.

Indeed, this follows from

Λ1 ≤

∫

ω

A22(X2)∇W1.∇W1 −
|A12(X2)∇W1|

2

a11(X2)
<

∫

ω

A22(X2)∇W1.∇W1 = µ1 .

By the proof of Theorem 4.1 there exist positive values of ℓ0 and ε0 such that ṽε0ℓ0
defined by (4.15) satisfies

(4.20)

∫

Ωℓ0

A∇ṽε0ℓ0 .∇ṽε0ℓ0 < µ1

∫

Ωℓ0

|ṽε0ℓ0 |
2 .
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Notice that ṽε0ℓ0 (0, X2) = W1(X2). Let η > 0 be a parameter whose value will be
determined later. For ℓ > ℓ0 + η define φℓ as follows,

(4.21) φℓ =































ṽε0ℓ0 (x1 − ℓ+ ℓ0, X2) on (ℓ− ℓ0, ℓ)× ω ,
(x1−(ℓ−ℓ0−η))W1(X2)

η on (ℓ− ℓ0 − η, ℓ− ℓ0)× ω ,

0 on Ωℓ−ℓ0−η ,
(−x1−(ℓ−ℓ0−η))W1(X2)

η on (ℓ0 − ℓ,−(ℓ− ℓ0 − η)) × ω ,

ṽε0ℓ0 (x1 + ℓ− ℓ0, X2) on (−ℓ, ℓ0 − ℓ)× ω .

Since
∫

Ωℓ\Ωℓ−ℓ0

φ2
ℓ =

∫

Ωℓ0

|ṽε0ℓ0 |
2 ,

and
∫

Ωℓ−ℓ0

φ2
ℓ = 2

(

∫ ℓ−ℓ0

ℓ−ℓ0−η

(x1 − ℓ+ ℓ0 + η)2

η2
dx1

)

(
∫

ω

W 2
1 dX2

)

=
2

3
η ,

we have

(4.22)

∫

Ωℓ

φ2
ℓ =

∫

Ωℓ0

|ṽε0ℓ0 |
2 +

2

3
η .

Similarly

(4.23)

∫

Ωℓ

A∇φℓ.∇φℓ =

∫

Ωℓ0

A∇ṽε0ℓ0 .∇ṽε0ℓ0 +

∫

Ωℓ−ℓ0

A∇φℓ.∇φℓ .

Setting D = Ωℓ−ℓ0 \ Ωℓ−ℓ0−η and D+ = (ℓ − ℓ0 − η, ℓ − ℓ0) × ω, the last integral
above can be written as
∫

Ωℓ−ℓ0

A∇φℓ.∇φℓ =
1

η2

∫

D

a11W
2
1 + 2

∫

D

(

A12.∇X2
φℓ

)

∂x1
φℓ

+
2

η2

∫

D+

(x1 − ℓ+ ℓ0 + η)2A22∇W1.∇W1.

The second integral vanishes since its integrand is an odd function of x1 on D.
Therefore,
(4.24)
∫

Ωℓ−ℓ0

A∇φℓ.∇φℓ =
2

η

∫

ω

a11W
2
1 +

2η

3

∫

ω

A22∇W1.∇W1 =
2

η

∫

ω

a11W
2
1 +

2ηµ1

3
.

Combining (4.22), (4.23) and (4.24) we obtain

λ1
ℓ ≤

∫

Ωℓ
A∇φℓ.∇φℓ
∫

Ωℓ
φ2
ℓ

≤

∫

Ωℓ0

A∇ṽε0ℓ0 .∇ṽε0ℓ0 + 2
η

∫

ω a11W
2
1 + 2

3ηµ
1

∫

Ωℓ0

|ṽε0ℓ0 |
2 + 2

3η
.

Therefore,

(4.25) λ1
ℓ − µ1 ≤

∫

Ωℓ0

A∇ṽε0ℓ0 .∇ṽε0ℓ0 − µ1
∫

Ωℓ0

|ṽε0ℓ0 |
2 + 2

η

∫

ω
a11W

2
1

∫

Ωℓ0

|ṽε0ℓ0 |
2 + 2

3η
.

By (4.20) it is clear that we can fix a large enough value for η such that the RHS
of (4.25) is negative, and the result for case (i) follows.
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(ii) By (4.4) we have Λ1 ≤ λ1
ℓ for all ℓ > 0. On the other hand, using u(x) = W1(X2)

as a test function in (2.10) gives λ1
ℓ ≤ µ1. Thus we have,

(4.26) Λ1 ≤ λ1
ℓ ≤ µ1 , ∀ℓ > 0 .

In view of (4.26), the result for the case where (4.18) doesn’t hold would follow
once we show that in this case Λ1 = µ1. The Euler-Lagrange equation for an
eigenfunction v of the quadratic form in (4.1), with eigenvalue λ is

(4.27)

{

−div(A22∇v) + div((A12.∇v)At
12/a11) = λv in ω ,

v = 0 on ∂ω .

Of course v = w1 satisfies (4.27) with λ = Λ1. But since we assume that (4.18)
doesn’t hold, v = W1 is also a solution of (4.27) with λ = µ1. However, only the
first eigenvalue of the problem (4.27) can have a positive eigenfunction, so we must
have Λ1 = µ1 as claimed. �

5. Characterization of the limit limℓ→∞ λ1
ℓ

In this section we obtain more precise results on the asymptotic behavior of the
eigenfunctions{uℓ} and the eigenvalues {λ1

ℓ} as ℓ goes to infinity. We shall see that
when (4.18) holds, the eigenfunctions decay to zero in the bulk of the cylinder and
concentration occurs near the bases of the cylinder. We denote by [x] the integer
part of x.

Theorem 5.1. Assume (4.18) holds. Then, there exist α ∈ (0, 1) and a positive
constant c such that for ℓ > ℓ0 we have, for every 0 < r ≤ ℓ− 1,

∫

Ωr

u2
ℓ ≤ α[ℓ−r] ,(5.1)

and
∫

Ωr

|∇uℓ|
2 ≤ cα[ℓ−r] .(5.2)

Proof. Let ℓ and ℓ′ satisfy 0 < ℓ
′

≤ ℓ− 1. Define ρℓ′ = ρℓ′ (x1) by

(5.3) ρℓ′ (x1) =











1 |x1| ≤ ℓ′ ,

ℓ′ + 1− |x1| |x1| ∈ (ℓ′, ℓ′ + 1) ,

0 |x1| ≥ ℓ′ + 1 .

Using v = ρ2
ℓ′
uℓ ∈ V (Ωℓ) in (2.9), we get

∫

Ωℓ

(A∇uℓ).∇(ρ2
ℓ′
uℓ) = λ1

ℓ

∫

Ωℓ

ρ2
ℓ′
u2
ℓ ,

i.e.,

(5.4)

∫

Ωℓ

(

A∇(ρℓ′uℓ)
)

.∇(ρℓ′uℓ)−

∫

Ωℓ

u2
ℓ(A∇ρℓ′ ).∇ρℓ′ = λ1

ℓ

∫

Ωℓ

ρ2
ℓ′
u2
ℓ .

Since ρℓ′uℓ ∈ H1
0 (Ωℓ), by the Rayleigh quotient characterization of σ1

ℓ (see (1.2))
we have

(5.5) σ1
ℓ

∫

Ωℓ

u2
ℓρ

2
ℓ′
≤

∫

Ωℓ

A∇(ρℓ′uℓ).∇(ρℓ′uℓ) .
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Combining (5.4)–(5.5) with (2.5) we get

(5.6)

(σ1
ℓ − λ1

ℓ )

∫

Ωℓ

u2
ℓρ

2
ℓ′
≤

∫

Ωℓ

u2
ℓ(A∇ρℓ′ ).∇ρℓ′ =

∫

Ωℓ′+1\Ωℓ′

u2
ℓ(A∇ρℓ′ ).∇ρℓ′

≤ CA

∫

Ωℓ′+1\Ωℓ′

u2
ℓ .

By (1.3) and (4.17) there exists β > 0 such that for ℓ > ℓ0 we have σ1
ℓ − λ1

ℓ ≥ β.
Therefore, from (5.6) we deduce that

(CA + β)

∫

Ω
ℓ
′

u2
ℓ ≤ CA

∫

Ω
ℓ
′
+1

u2
ℓ .

This leads to

(5.7)

∫

Ω
ℓ
′

u2
ℓ ≤ α

∫

Ω
ℓ
′
+1

u2
ℓ ,

with α = CA

CA+β < 1. Applying (5.7) successively for ℓ
′

= r, r+1, . . . , r+ [ℓ− r]− 1

yields

(5.8)

∫

Ωr

u2
ℓ ≤ α[ℓ−r]

∫

Ωℓ

u2
ℓ = α[ℓ−r] .

To prove (5.2), we fix r ∈ (0, ℓ− 2) and then use (5.4), with ℓ′ = r, combined with
(2.6) and (3.3), to obtain

(5.9) λA

∫

Ωr

|∇uℓ|
2 ≤

∫

Ωℓ

A∇(ρruℓ).∇(ρruℓ)

=

∫

Ωℓ

u2
ℓ(A∇ρr).∇ρr + λ1

ℓ

∫

Ωℓ

ρ2ru
2
ℓ ≤ (CA + µ1)

∫

Ωr+1

u2
ℓ .

Finally, (5.2) follows from (5.8)–(5.9) for r ≤ ℓ − 2. Choosing a step size of 1
2 in

the first part of the proof would allow r ≤ ℓ− 1. �

The decay of the eigenfunction in the bulk immediately implies concentration
near the two ends of the cylinder.

Corollary 5.1. If (4.18) holds then for every r ∈ (0, ℓ− 1] we have

(5.10)

∫

Ωℓ\Ωr

u2
ℓ ≥ 1− α[ℓ−r] and

∫

Ωℓ\Ωr

A∇uℓ.∇uℓ ≥ λ1
ℓ − c1α

[ℓ−r] .

To have a more precise description of the asymptotic behavior of λ1
ℓ we introduce

two variational problems on semi-infinite cylinders. Set

Ω+
∞ = (0,∞)× ω and Ω−

∞ = (−∞, 0)× ω ,

and denote the corresponding lateral parts of the boundary by

γ+
∞ = (0,∞)× ∂ω and γ−

∞ = (−∞, 0)× ∂ω .

Define the spaces

V (Ω±
∞) := {u ∈ H1(Ω±

∞) : u = 0 on γ±
∞} ,

and set

(5.11) ν±∞ = inf
06=u∈V (Ω±

∞)

∫

Ω±
∞
A∇u.∇u
∫

Ω±
∞
u2

.



14 M. CHIPOT, P. ROY, AND I. SHAFRIR

Remark 5.1. In case property (S) holds (see Definition 2.1) we clearly have ν+∞ =
ν−∞ as we can use the transformation v(x1, X2) 7→ v(−x1,−X2) to pass from a
function in V (Ω+

∞) to a function in V (Ω−
∞) (and vice versa) that has the same

Rayleigh quotient. In general we can only assert that ν−∞ = ν̃+∞ where ν̃+∞ is defined

as in (5.11), but with A being replaced by Ã, given by

Ã(X2) =

(

a11(X2) −A12(X2)
−At

12(X2) A22(X2)

)

.

This is easily seen by applying the transformation v(x1, X2) 7→ v(−x1, X2).

The next lemma gives the possible range of values for ν±∞.

Lemma 5.1. We have

(5.12) 0 < ν±∞ ≤ µ1 .

Proof. By Remark 5.1 it is enough to consider ν+∞. The fact that ν+∞ > 0 follows
from the Poincaré inequality. In order to show that ν+∞ ≤ µ1 we set for each ε > 0,

vε(x) = e−εx1W1(X2) .

Clearly vε ∈ V (Ω+
∞) and a direct computation gives

(5.13)
∫

Ω+
∞

A∇vε.∇vε =

∫

Ω+
∞

e−2εx1

(

a11ε
2W 2

1 − 2ε(A12.∇W1)W1 +A22∇W1.∇W1

)

= (

∫ ∞

0

e−2εx1)
(

µ1 + ε2
∫

ω

a11W
2
1 − 2ε

∫

ω

(A12.∇W1)W1

)

,

and

(5.14)

∫

Ω+
∞

v2ε =

∫ ∞

0

e−2εx1
(

=
1

2ε

)

.

By (5.13)–(5.14) we obtain
∫

Ω+
∞
A∇vε.∇vε
∫

Ω+
∞
v2ε

= µ1 − 2ε

∫

ω

(A12.∇W1)W1 + ε2
∫

ω

a11W
2
1 ,

so by sending ε to 0 we deduce that ν+∞ ≤ µ1. �

It is easy to identify ν±∞ with the limits, as ℓ → ∞, of certain minimization
problems on Ω±

ℓ . This is the content of the next lemma (see (2.3) and (2.4) for the

definitions of γ±
ℓ and Γ±

ℓ ).

Lemma 5.2. We have ν±∞ = limℓ→∞ λ̃1,±
ℓ , where

(5.15) λ̃1,±
ℓ = inf{

∫

Ω±

ℓ

A∇u.∇u : u ∈ H1(Ω±
ℓ ),

∫

Ω±

ℓ

u2 = 1, u = 0 on γ±
ℓ ∪ Γ±

ℓ } .

Remark 5.2. It is a standard fact that the infimum in (5.15) is actually attained.
The unique positive normalized minimizers will be denoted by ũ±

ℓ .

Proof. We present the proof for λ̃1,+
ℓ as the proof for λ̃1,−

ℓ is completely analogous.

Note first that the limit limℓ→∞ λ̃1,+
ℓ exists since the function ℓ 7→ λ̃1,+

ℓ is non

increasing. Indeed, if ℓ1 < ℓ2 then any admissible function in (5.15) for λ̃1,+
ℓ1

can

be extended to an admissible function for λ̃1,+
ℓ2

by setting it to zero on Ω+
ℓ2

\ Ω+
ℓ1
.
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A similar argument shows that λ̃1,+
ℓ ≥ ν+∞, for any ℓ > 0. On the other hand, the

density of the space
(5.16)
Vs(Ω

+
∞) = {u ∈ C∞(Ω+

∞) ∩ V (Ω+
∞) : ∃M = M(u) > 0 s.t. u = 0 on (M,∞)× ω} ,

in V (Ω+
∞) implies that for each u ∈ V (Ω+

∞) \ {0} and any ε > 0 we can find an ℓε
and vε ∈ Vs(Ω

+
∞) with supp(vε) ⊂ Ω+

ℓε
such that

∣

∣

∣

∣

∣

∫

Ω+
∞
(A∇vε).∇vε
∫

Ω+
∞
v2ε

−

∫

Ω+
∞
(A∇u).∇u
∫

Ω+
∞
u2

∣

∣

∣

∣

∣

≤ ε ,

and (5.15) follows (for λ̃1,+
ℓ ). �

Our next result complements the result of Theorem 4.2 in two ways: by showing
that the limit limℓ→∞ λ1

ℓ exists and by identifying its value.

Theorem 5.2. We have

(5.17) lim
ℓ→∞

λ1
ℓ = min(ν+∞, ν−∞) .

Proof. (i) We shall first show that

(5.18) lim sup
ℓ→∞

λ1
ℓ ≤ min(ν+∞, ν−∞) .

We may assume w.l.o.g. that ν+∞ = min(ν+∞, ν−∞). Given ε > 0 we may find by

Lemma 5.2 an ℓε > 1/ε such that λ̃1,+
ℓε

≤ ν+∞ + ε. Since λ1
ℓ/2 ≤ λ̃1,+

ℓ by the

definitions (2.10) and (5.15), we easily deduce (5.18).
(ii) We now treat the case where (4.18) holds. Let uℓ denote the positive normalized
minimizer in (2.10). Define vℓ(x) = ρ(x1)uℓ(x) where ρ is given by

(5.19) ρ(x1) =











0 x1 ≤ −1 ,

1 + x1 x1 ∈ (−1, 0) ,

1 x1 ≥ 0 .

By (2.5) and (5.19) we have

(5.20)

∫

(−1,ℓ)×ω

(A∇vℓ).∇vℓ ≤

∫

Ω+

ℓ

(A∇uℓ).∇uℓ + CA

∫

(−1,0)×ω

|∇vℓ|
2 .

Define wℓ+1(x1, X2) = vℓ(x1 + ℓ,X2) on Ω−
ℓ+1 and notice that it is an admissible

function for the infimum defining λ̃1,−
ℓ+1 (see (5.15)). By (5.20) and (5.1)–(5.2) we

obtain, for some positive constant C,

(5.21)

∫

Ω−

ℓ+1

(A∇wℓ+1).∇wℓ+1 ≤

∫

Ω+

ℓ

(A∇uℓ).∇uℓ + Cαℓ .

Denote

N±
ℓ =

∫

Ω±

ℓ

(A∇uℓ).∇uℓ and D±
ℓ =

∫

Ω±

ℓ

|uℓ|
2 ,

so that in particular we have

(5.22) N+
ℓ +N−

ℓ = λ1
ℓ and D+

ℓ +D−
ℓ = 1 .

By (5.21) and an analogous construction on Ω+
ℓ+1 we have

(5.23) λ̃1,−
ℓ+1 ≤

N+
ℓ + Cαℓ

D+
ℓ

and λ̃1,+
ℓ+1 ≤

N−
ℓ + Cαℓ

D−
ℓ

.



16 M. CHIPOT, P. ROY, AND I. SHAFRIR

From (5.23) and (5.22) it follows that

(5.24) min{λ̃1,−
ℓ+1, λ̃

1,+
ℓ+1} ≤ D+

ℓ λ̃
1,−
ℓ+1 +D−

ℓ λ̃
1,+
ℓ+1 ≤ λ1

ℓ + Cαℓ .

Passing to the limit ℓ → ∞ in (5.24) and using Lemma 5.2 yields

(5.25) min(ν+∞, ν−∞) ≤ lim inf
ℓ→∞

λ1
ℓ ,

which combined with (5.18) clearly implies (5.17) (when (4.18) holds).
(iii) Finally, we turn to the case where (4.18) doesn’t hold. In this case we know
already from Theorem 4.2 that λ1

ℓ = µ1 for all ℓ. The proof of (5.17) will be clearly
completed if we show that ν+∞ = ν−∞ = µ1. We shall only show that ν+∞ = µ1 as
the argument for ν−∞ is identical. By Lemma 5.1 we have ν+∞ ≤ µ1. The reverse
inequality is a special case of Theorem 6.1 (ii), see below. �

The argument of the above proof can be used to derive an additional information
that will be useful in the next section.

Proposition 5.1. If ν+∞ < ν−∞ then limℓ→∞

∫

Ω+

ℓ

|∇uℓ|
2 + |uℓ|

2 = 0.

Proof. We use the same notation as in the proof of Theorem 5.2. Passing to the
limit ℓ → ∞ in (5.24), using Lemma 5.2 and (5.17) yields

(

lim sup
ℓ→∞

D+
ℓ

)

ν−∞ +
(

1− lim sup
ℓ→∞

D+
ℓ )ν

+
∞ ≤ lim

ℓ→∞
λ1
ℓ = ν+∞ ,

so necessarily lim supℓ→∞ D+
ℓ = 0. Next, by (5.23) we have for ℓ large,

(5.26)
N+

ℓ

D−
ℓ

+ λ̃1,+
ℓ+1 − Cαℓ ≤

N+
ℓ +N−

ℓ

D−
ℓ

≤
N+

ℓ +N−
ℓ

D+
ℓ +D−

ℓ

= λ1
ℓ .

Since in our case, limℓ→∞ λ1
ℓ = limℓ→∞ λ̃1,+

ℓ+1 = ν+∞, and we know already that

limℓ→∞ D−
ℓ = 1, we deduce from (5.26) that limℓ→∞ N+

ℓ = 0. �

6. The problem on a semi-infinite cylinder

In this section we further investigate the minimization problem (5.11). By Re-
mark 5.1 it is enough to consider ν+∞. There are two main questions we are interested
in. First, we want to identify the conditions under which the infimum in (5.11) is
attained. Second, we would like to know when the inequality ν+∞ < µ1 hold. The
next proposition shows that the two questions are closely related to each other.

Proposition 6.1. If

(6.1) ν+∞ < µ1 ,

then ν+∞ is attained. The minimizer ũ+ is unique up to multiplication by a constant,
has constant sign and satisfies

(6.2)











−div(A(X2)∇ũ+) = ν+∞ũ+ in Ω+
∞ ,

ũ+ = 0 on γ+
∞ ,

(A(X2)∇ũ+).ν = 0 on {0} × ω .
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Proof. The existence of a minimizer will be achieved by taking the limit ℓ → ∞
of the minimizers {ũ+

ℓ } in (5.15) (see Remark 5.2). Since {ũ+
ℓ } is bounded in

H1(Ω+
∞), a subsequence {ũ+

ℓk
} converges weakly to some limit ũ+ ∈ H1(Ω+

∞). Take

any ϕ ∈ Vs(Ω
+
∞). Since ν+∞ = limk→∞ λ̃1,+

ℓk
by Lemma 5.2, we can pass to the limit

in the following equality, that holds for ℓk > M(ϕ) (see (5.16)),
∫

Ω+
∞

A∇ũ+
ℓk

· ∇ϕ = λ̃1,+
ℓk

∫

Ω+
∞

ũ+
ℓk
ϕ ,

and obtain that

(6.3)

∫

Ω+
∞

A∇ũ+ · ∇ϕ = ν+∞

∫

Ω+
∞

ũ+ϕ .

Since (6.3) is valid for any ϕ ∈ Vs(Ω
+
∞), and by density also for any ϕ ∈ V (Ω+

∞), we
obtain that ũ+ is a solution of (6.2). To conclude that it is a minimizer realizing
ν+∞ in (5.11) we only need to prove that it is nontrivial, i.e., that ũ+ 6≡ 0. Actually,
we are going to show that

∫

Ω+
∞
(ũ+)2 = 1 and ũ+ > 0. For that matter we will

prove decay estimates for ũ+
ℓ for large x1, that imply concentration near x1 = 0,

using the same technique as the one used in the proof of Theorem 5.1.
Let ℓ and ℓ′ satisfy 0 < ℓ

′

≤ ℓ− 1. Define ρ̃ℓ′ = ρ̃ℓ′ (x1) by

ρ̃ℓ′ (x1) =











0 x1 ≤ ℓ′ ,

x1 − ℓ′ x1 ∈ (ℓ′, ℓ′ + 1) ,

1 x1 ≥ ℓ′ + 1 .

By the Euler-Lagrange equation satisfied by ũ+
ℓ we have

∫

Ω+

ℓ

(A∇ũ+
ℓ ).∇(ρ̃2

ℓ′
ũ+
ℓ ) = λ̃1,+

ℓ

∫

Ω+

ℓ

ρ̃2
ℓ′
|ũ+

ℓ |
2 .

Repeating the argument used to derive (5.6) we obtain
(6.4)

(σ1
ℓ/2 − λ̃1,+

ℓ )

∫

Ω+

ℓ
\Ωℓ′+1

|ũ+
ℓ |

2 ≤ (σ1
ℓ/2 − λ̃1,+

ℓ )

∫

Ω+

ℓ

|ũ+
ℓ |

2ρ̃2
ℓ′
≤

∫

Ω+

ℓ

|ũ+
ℓ |

2(A∇ρ̃ℓ′ ).∇ρ̃ℓ′

=

∫

Ω+

ℓ′+1
\Ωℓ′

|ũ+
ℓ |

2(A∇ρ̃ℓ′ ).∇ρ̃ℓ′ ≤ CA

∫

Ω+

ℓ′+1
\Ωℓ′

|ũ+
ℓ |

2 .

Using (1.3) together with (6.1) and Lemma 5.2 we deduce that there exist ℓ̃0 > 0

and β̃ > 0 such that for ℓ > ℓ̃0 we have σ1
ℓ/2− λ̃1,+

ℓ ≥ β̃. Therefore, we deduce from

(6.4) that

(6.5)

∫

Ω+

ℓ
\Ωℓ′+1

|ũ+
ℓ |

2 ≤ α̃

∫

Ω+

ℓ
\Ωℓ′

|ũ+
ℓ |

2 with α̃ :=
CA

β̃ + CA

.

Fix any r > 1. Applying (6.5) successively for ℓ
′

= r − 1, r − 2, . . . , r − [r] yields
∫

Ω+

ℓ
\Ωr

|ũ+
ℓ |

2 ≤ α̃[r]

∫

Ω+

ℓ

|ũ+
ℓ |

2 = α̃[r], ∀ℓ > r .

In other words,

(6.6)

∫

Ω+
r

|ũ+
ℓ |

2 ≥ 1− α̃[r] .
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Since ũℓk → ũ+ strongly in L2(Ω+
r ), we deduce from (6.6) that

(6.7)

∫

Ω+
r

(ũ+)2 ≥ 1− α̃[r] .

This already implies that ũ+ is a nontrivial nonnegative solution to (6.2) and there-
fore, a minimizer in (5.11). Applying (6.7) with arbitrary large r, we get that
∫

Ω+
∞
(ũ+)2 = 1. The uniqueness of the minimizer follows by a standard argument,

using the fact that any minimizer must have a constant sign. �

Open Problem: Is it true that (6.1) is also a necessary condition for the existence

of a minimizer realizing ν+∞? In Theorem 6.1 below we will show nonexistence of a
minimizer when ν+∞ = µ1, but under the additional condition (6.9).

The next result provides a sufficient condition for (6.1) to hold and another one for
it to fail.

Theorem 6.1. (i) Assume that (4.18) is satisfied. If the following condition holds,

(6.8)

∫

ω

(A12.∇W1)W1 ≥ 0 ,

then (6.1) holds.
(ii) If

(6.9) A12.∇W1 ≤ 0 a.e. in ω

then ν+∞ = µ1. Moreover, in this case there is no minimizer realizing ν+∞.

Proof. (i) Assume that (6.8) is satisfied. A similar computation to the one done in
the proof of Theorem 4.1 (see also Remark 4.1) shows that {ṽεℓ} given by (4.15),
satisfy not only (4.16), but also

inf
ε>0

lim
ℓ→0

∫

Ω−

ℓ

(A∇ṽεℓ ).∇ṽεℓ
∫

Ω−

ℓ

|ṽεℓ |
2

=

∫

ω

(A22∇W1).∇W1 −
|A12∇W1|

2

a11
.

Indeed, we only need to note that the term corresponding to the second term on
the RHS of (4.11) is of the order O(ℓ2). Hence, we can fix values of ℓ1 and ε1 such
that the following analog of (4.20) holds,

(6.10) − γ1 :=

∫

Ω−

ℓ1

(A∇ṽε1ℓ1 ).∇ṽε1ℓ1 − µ1

∫

Ω−

ℓ1

|ṽε1ℓ1 |
2 < 0 .

For each α > 0 we define a test function in V∞(Ω+
∞) by

zα(x1, X2) =

{

ṽε1ℓ1 (x1 − ℓ1, X2) x1 ∈ [0, ℓ1) ,

W1(X2)e
−α(x1−ℓ1) x1 ∈ [ℓ1,∞) .

Above we used the fact that ṽε1ℓ1 (0, X2) = W1(X2). We have,
∫

Ω+
∞

|zα|
2 =

∫

Ω−

ℓ1

|ṽε1ℓ1 |
2 + (

∫ ∞

0

e−2αx1)

∫

ω

W 2
1 =

∫

Ω−

ℓ1

|ṽε1ℓ1 |
2 +

1

2α
,

and
∫

Ω+
∞

(A∇zα).∇zα =

∫

Ω−

ℓ1

(A∇ṽε1ℓ1 ).∇ṽε1ℓ1

+
1

2α

(

α2

∫

ω

a11W
2
1 − 2α

∫

ω

(A12.∇W1)W1 +

∫

ω

(A22∇W1).∇W1

)
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Therefore, using (6.10) we get

(6.11) ν+∞ − µ1 ≤

∫

Ω+
∞
A∇zα.∇zα
∫

Ω+
∞
|zα|2

− µ1 <
α
2

∫

ω a11W
2
1 −

∫

ω(A12.∇W1)W1 − γ1
∫

Ω−

ℓ1

|vε1ℓ1 |
2 + 1

2α

.

Since γ1 > 0 and
∫

ω
(A12.∇W1)W1 ≥ 0 by (6.8), it is clear that we can choose α

small enough to ensure that the RHS of (6.11) is negative, completing the proof of
(6.1).
(ii) We notice that not only Vs(Ω

∞
+ ) is dense in V (Ω∞

+ ) (see (5.16)), but its subspace

V 0
s (Ω

+
∞) =

{

u ∈ Vs(Ω
+
∞) : ∃δ = δ(u) > 0 s.t. u(x) = 0 for dist(x, γ+

∞) ≤ δ
}

,

is dense as well. By elliptic regularity and the strong maximum principle we know
that W1 is continuous and positive in ω (see [15, Chapter 8]). We shall use the
following version of Picone identity,

(6.12) (A∇u).∇u − (A∇v).∇
(u2

v

)

= A
(

∇u−
u

v
∇v
)

.
(

∇u−
u

v
∇v
)

≥ 0 .

Using (6.12) with any u ∈ V 0
s (Ω

+
∞) and v = W1, integrating and applying the

generalized Green formula yields
(6.13)

0 ≤

∫

Ω+
∞

A
(

∇u−
u

W1
∇W1

)

.
(

∇u−
u

W1
∇W1

)

=

∫

Ω+
∞

(A∇u).∇u− (A∇W1).∇
( u2

W1

)

=

∫

Ω+
∞

(A∇u).∇u +

∫

Ω+
∞

div(A∇W1)
( u2

W1

)

−

∫

{0}×ω

(A∇W1.ν)
( u2

W1

)

=

∫

Ω+
∞

(A∇u).∇u − µ1u2 +

∫

ω

(

A12.∇W1

)u2(0, X2)

W1(X2)
.

By (6.13) and (6.9) we deduce that

(6.14) 0 ≤

∫

Ω+
∞

A
(

∇u−
u

W1
∇W1

)

.
(

∇u−
u

W1
∇W1

)

≤

∫

Ω+
∞

A∇u.∇u − µ1u2 .

By the density of V 0
s (Ω

+
∞) in V (Ω+

∞) it follows that (6.14) holds for every u ∈
V (Ω+

∞), i.e., ν+∞ ≥ µ1. Finally, applying (5.12) we get that ν+∞ = µ1. To conclude,
assume by negation that ν+∞ is realized by a minimizer u. Then, by (6.14) we get
that ∇

(

u
W1

)

= 0 a.e., implying that u = cW1 for some constant c 6= 0. But this is

clearly a contradiction since W1 6∈ V (Ω+
∞). �

Remark 6.1. An immediate consequence of Theorem 6.1 and Remark 5.1 is that if
(4.18) holds and

∫

ω(A12.∇W1)W1 = 0, then we have both ν+∞ < µ1 and ν−∞ < µ1. A
special case is when property (S) holds. Another direct consequence is that whenever
(4.18) holds we have min(ν+∞, ν−∞) < µ1. However, this fact follows already from
our previous results, by combining Theorem 4.2 and Theorem 5.2.

Our last result provides a description of the asymptotic profile of the eigenfunc-
tions {uℓ} near the ends of the cylinder. We denote by ũ± the unique positive
renormalized minimizer for ν±∞, when it exists. For each ℓ > 0 we define:

(6.15)
ṽ+ℓ (x1, X2) = uℓ(x1 − ℓ,X2) on Ω+

ℓ ,

ṽ−ℓ (x1, X2) = uℓ(x1 + ℓ,X2) on Ω−
ℓ .
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The next theorem describes two possible scenarios that may occur: concentration
near one of the ends of the cylinder, or concentration near both ends.

Theorem 6.2. (i) If ν+∞ < ν−∞ then, for every r > 0,

(6.16) ṽ+ℓ → ũ+ in H1(Ω+
r ) and ṽ−ℓ → 0 in H1(Ω−

r ) .

(ii) If both (6.2) and property (S) hold then we have ṽ+ℓ (x1, X2) = ṽ−ℓ (−x1,−X2)
and for every r > 0,

(6.17) ṽ+ℓ → ũ+ in H1(Ω+
r ) and ṽ−ℓ → ũ− in H1(Ω−

r ) .

Proof. (i) The convergence of {ṽ−ℓ } to 0 in H1(Ω−
r ) for all r > 0 is clear from

Proposition 5.1, so we only need to prove the result for {ṽ+ℓ }. Since {ṽ
+
ℓ } is bounded

in H1(Ω+
ℓ ), given any sequence ℓk → ∞, we can apply a diagonal argument to {ṽ+ℓk}

to extract a subsequence, still denoted by {ℓk}, such that ṽ+ℓk converges weakly in

H1(Ω+
r ) and strongly in L2(Ω+

r ) to some function v+ ∈ H1(Ω+
∞), for every r > 0.

By (5.1) and Proposition 5.1 we have

(6.18)

∫

Ω+
r

|ṽ+ℓ |
2 =

∫

Ω−

ℓ
\Ωℓ−r

|uℓ|
2 = 1−

∫

Ω−

l−r

|uℓ|
2 −

∫

Ω+

ℓ

|uℓ|
2 ≥ 1− α[r] + o(1) ,

where o(1) stands for a quantity that tends to 0 when ℓ → ∞. Passing to the limit
in (6.18) with ℓ = ℓk, yields,

(6.19)

∫

Ω+
r

|v+|2 ≥ 1− α[r] ,

and since r is arbitrary, we get that
∫

Ω+
∞
|v+|2 = 1. In addition, we clearly have

(6.20) ν+∞ = lim
ℓ→∞

λ1
ℓ ≥ lim

ℓ→∞

∫

Ωℓ

(A∇uℓ).∇uℓ

≥ lim sup
k→∞

∫

Ω+
r

(A∇ṽ+ℓk).∇ṽ+ℓk ≥

∫

Ω+
r

(A∇v+).∇v+ .

From (6.19)–(6.20) we deduce that
∫

Ω+
∞
(A∇v+).∇v+ = ν+∞, i.e., v+ is a nonnegative

normalized minimizer, realizing ν+∞ in (5.11). Therefore, it must coincide with ũ+.
Finally, defining on (0,∞) the function

f(r) = lim sup
k→∞

∫

Ω+
r

(A∇ṽ+ℓk).∇ṽ+ℓk −

∫

Ω+
r

(A∇ũ+).∇ũ+ ,

we see that on the one hand it is a nonnegative and nondecreasing function, while on
the other hand limr→∞ f(r) = 0. Hence f(r) ≡ 0, implying the strong convergence
ṽ+ℓk → ũ+ in H1(Ω+

r ) for all r > 0. The uniqueness of the possible limit implies the

the same convergence holds for the whole family {ṽ+ℓ }.
(ii) In this case we have the symmetry relation uℓ(x1, X2) = uℓ(−x1,−X2) by
Proposition 2.1, and the same argument as in (i) gives the result. �

Remark 6.2. Theorem 6.2 provides a description of the profile of uℓ near the ends
of the cylinder. As pointed to us by Y. Pinchover, a description of the profile of
uℓ in the bulk can be given using the characterization of positive solutions in an
infinite cylinder, given in [17]. Indeed, setting vℓ(x) = uℓ(x)/uℓ(0), and employing
Harnack’s inequality and the boundary Harnack principle (see [16, Theorems 1.2
and 1.3]) we obtain a subsequence {vℓk} that converges uniformly on each cylinder



21

Ωr, r > 0, to a limit v. The function v is a positive solution on the infinite
cylinder Ω∞ = (−∞,∞) × ω of − div(A(X2)∇v) = λ∞v satisfying v = 0 on
∂Ω∞ = (−∞,∞)× ∂ω, where λ∞ = limℓ→∞ λ1

ℓ = min(ν+∞, ν−∞) (by Theorem 5.2).
From [17, Theorem 5.1] (that handles a much more general situation) it follows
that such v is a linear combination of one or two exponential solutions of the form
vα(x) = Φα(X2)e

αx1 . In particular, when property (S) holds it follows that v takes
the form

v(x) = g(X2)e
αx1 + g(−X2)e

−αx1

for some α > 0, if (4.18) holds, and v(x) = cW1(X2) if (4.18) doesn’t hold.

7. Some additional results

So far we only studied the asymptotic behavior of the first eigenvalue λ1
ℓ and the

corresponding eigenfunction uℓ. The analogous behavior of the other eigenvalues
λ2
ℓ , λ

3
ℓ , etc., is also of interest. For the case of Dirichlet boundary condition this

was done in [7]. For our case of mixed boundary conditions we have the following
partial result for λ2

ℓ .

Theorem 7.1. If property (S) holds then

lim
ℓ→∞

λ2
ℓ = lim

ℓ→∞
λ1
ℓ .

Proof. Define h−
ℓ and h+

ℓ on Ωℓ by

h−
ℓ (x) =

{

ũ+
ℓ (x1 + ℓ,X2) on Ω−

ℓ ,

0 on Ω+
ℓ

and

h+
ℓ =

{

ũ−
ℓ (x1 − ℓ,X2) on Ω+

ℓ ,

0 on Ω−
ℓ ,

where ũ−
ℓ , ũ

+
ℓ are defined in Remark 5.2. Set Hℓ = αℓh

−
ℓ + βℓh

+
ℓ , where αℓ, βℓ are

chosen such that
∫

Ωℓ

uℓHℓ = 0 and α2
ℓ + β2

ℓ > 0 .

Such a choice is possible since we have to satisfy one linear equation in two un-
knowns. From the Rayleigh quotient characterization of λ2

ℓ we get, since the func-
tions h+

ℓ and h−
ℓ have disjoint supports,

(7.1)

λ2
ℓ = min

{
∫

Ωℓ
(A∇u).∇u
∫

Ωℓ
u2

∣

∣ 0 6= u ∈ V (Ωℓ),

∫

Ωℓ

uuℓ = 0

}

≤

∫

Ωℓ
A∇Hℓ.∇Hℓ
∫

Ωℓ
H2

ℓ

=
α2
ℓ

∫

Ω−

ℓ

(A∇h−
ℓ ).∇h−

ℓ + β2
ℓ

∫

Ω+

ℓ

(A∇h+
ℓ ).∇h+

ℓ

α2
ℓ

∫

Ω−

ℓ

(h−
ℓ )

2 + β2
ℓ

∫

Ω+

ℓ

(h+
ℓ )

2
=

α2
ℓ λ̃

1,+
ℓ + β2

ℓ λ̃
1,−
ℓ

α2
ℓ + β2

ℓ

.

But the symmetry property (S) implies, by the same proof as that of Proposi-

tion 2.1, that ũ+
ℓ (x1, X2) = ũ−

ℓ (−x1,−X2) and λ̃1,+
ℓ = λ̃1,−

ℓ . Therefore, (7.1)

implies that the RHS of (7.1) equals λ̃1,+
ℓ and we obtain that

λ1
ℓ < λ2

ℓ ≤ λ̃1,+
ℓ = λ̃1,−

ℓ .

The theorem then follows from Lemma 5.2 and Theorem 5.2. �
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In the previous sections we considered the case of a cylinder which goes to infinity
in one direction. We now consider the more general case of a domain that tends to
infinity in several directions. In the rest of the paper we set

Ωℓ = (−ℓ, ℓ)p × ω,

where 1 ≤ p < n and ω is a bounded subset of Rn−p. The points in Ωℓ are denoted
by

X = (X1, X2) with X1 = (x1, . . . , xp) and X2 = (xp+1, . . . , xn) .

Let A(X2) be a n × n symmetric, positive definite matrix, uniformly elliptic and
uniformly bounded on ω, as in the previous sections. Now we consider the following
decomposition to sub-matrices:

A(X2) =

(

A11(X2) A12(X2)
At

12(X2) A22(X2)

)

where A11, A12 and A22 are p × p, p × (n − p) and (n − p) × (n − p) matrices, re-
spectively. We still denote by µ1 and W1 the first eigenvalue and the corresponding
eigenfunction for the problem (1.1). Let Ci denote the i-th row of the matrix A12,
and denote by Bi the (n− p+ 1)× (n− p+ 1) matrix

Bi(X2) =

(

aii(X2) Ci(X2)
Ct

i (X2) A22(X2)

)

,

for 1 ≤ i ≤ p. Since the matrix Bi can be viewed as a representation of the
restriction of the operator associated with A to the subspace of Rn consisting of
the vectors v = (v1, . . . , vn) satisfying vj = 0 for all j such that i 6= j ≤ p, we
conclude that the matrices Bi(X2) are also uniformly elliptic for X2 ∈ ω.

The following eigenvalue problem is the generalization of (1.5) to our setting:

(7.2)











−div(A(X2)∇u) = σu in Ωℓ,

u = 0 on (−ℓ, ℓ)p × ∂ω,

(A(X2)∇u).ν = 0 on ∂(−ℓ, ℓ)p × ω.

As before we denote by λ1
ℓ the first eigenvalue and by uℓ the corresponding normal-

ized positive eigenfunction. We have the following generalization of Theorem 4.2.

Theorem 7.2. We have

lim sup
ℓ→∞

λ1
ℓ < µ1,

provided the following condition holds,

(7.3) A12.∇W1 6≡ 0 a.e. on ω ,

where 0 denotes the zero element in R
p. In case (7.3) does not hold we have λ1

ℓ = µ1

for all ℓ > 0.

Proof. Assume first that (7.3) doesn’t hold. Then there exists i ∈ {1, . . . , p} for
which (A12∇W1)i is not identically zero (a.e.) on ω. It follows that the hypotheses
of Theorem 4.2 (for the case where (4.18) holds) are satisfied for the eigenvalue prob-

lem associated with the operator − div(Bi(X2)∇v) on the domain Ω̃ℓ = (−ℓ, ℓ)×ω

in R
n−p+1. Hence, there exist functions φℓ(x1, X2) ∈ V (Ω̃ℓ), ℓ > 0, such that

(7.4) lim sup
ℓ→∞

∫

Ω̃ℓ
(Bi(X2)∇φℓ).∇φℓ

∫

Ω̃ℓ
φ2
ℓ

< µ1 .
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Define on Ωℓ, vℓ(X1, X2) := φℓ(xi, X2). Noting that

∫

Ωℓ

(A∇vℓ).∇vℓ = (2ℓ)p−1

∫

Ω̃ℓ

(Bi∇φℓ).∇φℓ and

∫

Ωℓ

v2ℓ = (2ℓ)p−1

∫

Ω̃ℓ

φ2
ℓ ,

we get from (7.4) that

lim sup
ℓ→∞

λ1
ℓ ≤ lim sup

ℓ→∞

∫

Ωℓ
A∇vℓ · ∇vℓ
∫

Ωℓ
v2ℓ

< µ1 .

Assume now that (7.3) does hold. Next we apply a simple generalization of an

argument from Theorem 4.1. Let B =

(

B11 B12

Bt
12 B22

)

be a positive definite n × n

matrix, where B11 and B22 are p× p and (n− p)× (n− p) matrices, respectively.
Represent any vector z in R

n as z = (Z1, Z2) with Z1 ∈ R
p and Z2 ∈ R

n−p. Then,
by a similar computation to the one leading to (4.2)–(4.3) we get that for any fixed
Z2 ∈ R

n−p we have

(7.5) min
Z1∈Rp

(Bz).z = (B22Z2).Z2 −
(

B−1
11 B12Z2

)

.B12Z2 ,

and the minimum in (7.5) is attained for

Z1 = −B−1
11 (B12Z2) .

Applying (7.5) with B = A(X2) we obtain, for any ℓ > 0,
(7.6)
∫

Ωℓ

(A(X2)∇uℓ).∇uℓ ≥

∫

Ωℓ

(A22∇X2
uℓ).∇X2

uℓ −
(

A−1
11 A12∇X2

uℓ

)

.A12∇X2
uℓ

≥ Λ1

∫

Ωℓ

u2
ℓ ,

where Λ1 is defined, generalizing (4.1), by

(7.7) Λ1 = inf

{
∫

ω

A22∇u.∇u−
(

A−1
11 A12∇u

)

.A12∇u : u ∈ H1
0 (ω),

∫

ω

u2 = 1

}

.

The infimum in (7.7) is attained by a unique positive function, denoted again by
w1, that satisfies

(7.8)

{

− div(A22∇w1) + div(At
12A

−1
11 A12∇w1) = Λ1w1 in ω ,

w1 = 0 on ∂ω .

But if (7.3) holds, then W1 is also a positive eigenfunction in (7.8), with eigenvalue
µ1. As in the proof of Theorem 4.2 we conclude that Λ1 = µ1 and the result follows
from (7.6) (since clearly λ1

ℓ ≤ µ1). �
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E-mail address: prosenjit.roy@math.uzh.ch

(Itai Shafrir)
Department of Mathematics, Technion - Israel Institute of Technology

32000, Haifa, Israel

E-mail address: shafrir@math.technion.ac.il


	1. Introduction
	2. Preliminaries
	3. The gap phenomenon in a model problem
	4. The gap phenomenon in the general case.
	5. Characterization of the limit lim 1
	6. The problem on a semi-infinite cylinder
	7. Some additional results 
	References

