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Università di Roma ”Tor Vergata”, via del Politecnico 1, 00133 Roma, Italy

e-mail address: michel.fremond@uniroma2.it

June 23, 2018

Abstract

We build a predictive theory for the evolution of mixture of helium

and supercooled helium at low temperature. The absolute tempera-

ture θ and the volume fraction β of helium, which is dominant at

temperature larger than the phase change temperature, are the state

quantities. The predictive theory accounts for local interactions at

the microscopic level, involving the gradient of β. The nonlinear heat

flux in the supercooled phase results from a Norton-Hoff potential.

We prove that the resulting set of partial differential equations has

solutions within a convenient analytical frame.

Key words: Supercooled helium, phase change, predictive theory,

existence theorem

1 Introduction

We investigate a phase transition model describing the thermal behaviour
of helium. The model is based on some experimental observations at low
temperature between θ > 0 K and θ ≃ 5 K, as described by E. Senger in [7].
Indeed, phase change occurs at θc = 2.17 K (pressure being the atmospheric
pressure): the helium, He II, is a superfluid at temperature lower than θc, the
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helium, He I, is a fluid at temperature larger than θc. The Gorter-Mellink
model assumes a nonlinear Fourier law based on a Norton-Hoff potential, [3].
In our approach this model is upgraded by considering microscopic motions
involved in the phase change, [7], [9]. Thus, the volume fraction β of the He I
is introduced, as well as the gradient of the volume fraction, ∇β, to account
for local interactions, [4]. A description of physics together with numerical
results are given in [7].
Within the small perturbation we derive a predictive theory and prove that
there exist solutions of the resulting set of partial differential equations in a
convenient analytical frame. The main novelty of the resulting system is rep-
resented by the nonlinear structure of the diffusive term for the temperature
(parabolic) equation. Indeed, we have the contribution of two degenerating
terms, characterizing different diffusive behaviour in the two phases. Hence,
the evolution equation governing the phase transition contains a multivalued
operator leading internal constraints on the phase variable.

In Section 2 we detail the model derivation, leading to an initial and
boundary value problem, whose analytical formulation is made precise in
Section 3. Existence of a solution is proved in Section 4 by a fixed point
argument, mainly combined with lower semicontinuity results.

2 The model

In this paper, we aim to model the phenomenon of helium supercooling by
use of the phase transitions theory. In particular, our two phases are given
by the helium at its normal state and at the supercooled state.

We consider helium located in a smooth bounded domain Ω ⊂ Rn, n ≤ 3.
At a first step, we study the evolution of the supercooling process during a
finite time interval (0, T ) and assume that no macroscopic deformations act
during the phenomenon. We use the notation Q := Ω× (0, T ).

First, we introduce the state variables of the model (θ, β): θ stands for the
absolute temperature; the phase parameter β, denoting the volume fraction
of helium at its normal state, (HE I), is

β ∈ [0, 1]. (2.1)

Assuming that the two phases can coexist at each point, with suitable propor-
tions, and that no voids nor overlapping can occur between the two phases,
we let 1− β be the volume fraction of supercooled helium, (HE II).

The free energy is stated as follows

Ψ(θ, β,∇β) = −csθ log θ −
l

θc
(θ − θc)β + k|∇β|2 + I[0,1](β), (2.2)

2



where θc is the phase transition temperature between helium and supercooled
helium, l the phase change latent heat, cs the heat capacity, and k an inter-
action coefficient between the two phases holding at a microscopic level. The
indicator function I[0,1](β) accounts for (2.1), as it is I[0,1](β) := 0 if β ∈ [0, 1]
and I[0,1](β) := +∞, otherwise, [6]. Then, we introduce the dissipative vari-
ables of the model βt and ∇θ, accounting for the thermodynamical evolution
of the system, and make precise the pseudo-potential of dissipation, [4]

Φ(βt,∇θ, θ, β) =
µ

2
|βt|

2 +
d

θ

(
|∇θ|2

2
+ (1− β)

|∇θ|p

p

)
, (2.3)

where 1 < p < 2 and µ, d are positive constants. For the sake of simplicity,
in the sequel we let let µ = d = l = k = cs = 1.

The balance equations are recovered from the classical laws of continuum
thermo-mechanics. More precisely, we exploit a generalized version of the
principle of virtual power including also the effects of microscopic motions
which are responsible for the phase transition, [4]. Thus, we can recover
the equation governing the evolution of the phase parameter β as a balance
equation for microscopic movements. It is (n is the normal vector to the
boundary)

B − div H = 0 in Ω, H · n = 0 on ∂Ω, (2.4)

where B and H are new interior forces for which we are specifying in a mo-
ment the constitutive relations. Note that we are not considering applied
volume or surface forces acting on the microscopic level. The second equa-
tion is given by the energy balance, mainly governing the evolution of the
temperature

et + div q = r +Bβt +H · ∇βt in Ω, q · n = 0 on ∂Ω, (2.5)

e denoting the internal energy, q the heat flux, r an exterior heat source, and
Bβt +H · ∇βt microscopic mechanically induced heat sources.

Now, let us specify the constitutive relations for the above involved phys-
ical quantities. As usual, the internal energy e is specified by

e = Ψ+ θs, (2.6)

where the entropy s is

s = −
∂Ψ

∂θ
. (2.7)

Then, B is given by the sum of a non-dissipative contribution (derived by
the free energy Ψ) and a dissipative one (related to the pseudo-potential Φ),
i.e.

B = Bnd +Bd =
∂Ψ

∂β
+
∂Φ

∂βt
, (2.8)
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while H = Hnd is taken only as a non-dissipative vector defined by

Hnd =
∂Ψ

∇β
. (2.9)

Finally, the heat flux is recovered by the pseudo-potential of dissipation
through the following relation

q = −θ
∂Φ

∇θ
. (2.10)

Let us point out that, due to the explicit form of Φ, we eventually get

q = −β∇θ − (1− β)|∇θ|p−2∇θ. (2.11)

In particular, we find the classical Fourier heat flux law for the normal state
helium (β = 1), while the supercooled helium (β = 0) is characterized by a
lower order diffusion term for the temperature (p < 2).

To derive our PDE system, we substitute (2.7)-(2.10) (cf. (2.11)) in (2.4)-
(2.5). On account of (2.2) and (2.3), assuming the small perturbations as-
sumption (so that some higher order dissipative nonlinearities are neglected)
and letting the model derived close to the phase transition temperature θc,
we recover the following equations, with 1 < p < 2, (cf. Remark 2.1)

θt + βt − div (β∇θ + (1− β)|∇θ|p−2∇θ) = r (2.12)

βt −∆β + ∂I[0,1](β) ∋
1

θc
(θ − θc). (2.13)

Then, we have to combine (2.13) with suitable initial and boundary condi-
tions. In particular, Cauchy conditions hold in Ω

θ(0) = θ0, β(0) = β0, (2.14)

and on ∂Ω, ∂n being the normal derivative operator (cf. (2.5) and (2.4))

∂nχ = 0, (β∇θ + (1− β)|∇θ|p−2∇θ) · n = 0 (2.15)

Remark 2.1. Note that actually (2.12) is obtained regularizing the right hand
side of the following equation

θt +
θ

θc
βt − div (β∇θ + (1− β)|∇θ|p−2∇θ) = |βt|

2 + r (2.16)

neglecting the dissipative higher order nonlinearity (within the small pertur-
bations assumption) and letting θ/θc ∼ 1
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3 Analytical formulation

In this section, we make precise the abstract version of the analytical prob-
lem we are dealing with (2.12)-(2.15), and state the main existence result
(obtained under suitable assumptions on the data).

Concerning the regularity of initial data, we let

θ0 ∈ L2(Ω), (3.17)

β0 ∈ H1(Ω), β0 ∈ [0, 1] a.e. in Ω. (3.18)

Hence, we take in (2.12)

r ∈ L2(0, T ;L2(Ω)). (3.19)

Now, we can state the main existence result, which actually refers to an
abstract version of the system (2.13), (2.12) combined with (2.15), (2.14).

We first clarify the abstract setting we need as well as some related no-
tation. The Hilbert triplet

V := H1(Ω) →֒ H := L2(Ω) →֒ V ′, (3.20)

is introduced H being identified with its dual space, as usual. Then, by ‖·‖X
we denote the norm in a Banach space X and in any power of it. By 〈·, ·〉
we denote the duality pairing between V ′, V .

Then, we make precise the notion of solution for the above problem. We
are looking for

θ ∈ H1(0, T ;V ′) ∩ L2(0, T ;H) ∩ Lp(0, T ;W 1,p(Ω)), (3.21)

β ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)), (3.22)

ξ ∈ L2(0, T ;H), (3.23)

with

ξ ∈ ∂I[0,1](β) a.e. in Q, (3.24)

β1/2∇θ ∈ L2(Q), (3.25)

fulfilling a.e. in (0, T ) in V ′

θt + βt − div (β∇θ + (1− β)|∇θ|p−2∇θ) = r (3.26)

βt −∆β + ξ =
1

θc
(θ − θc). (3.27)
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Here −div (H)3 → V ′ stands for the abstract operator

〈−div v, φ〉 =

∫

Ω

v · ∇φ,

and −∆ : V → V ′ for

〈−∆v, φ〉 =

∫

Ω

∇v · ∇φ.

The following theorem holds.

Theorem 3.1. Let (3.17)-(3.19) hold. Then, there exists a solution (θ, β, ξ)
to (3.26), (3.27), (3.24), (2.14) with regularity (3.21)-(3.23), (3.25). In par-

ticular, (3.27) is actually solved a.e. in Q.

4 Existence result

In order to prove the existence result stated by Theorem 3.1 we apply a
fixed point argument on a regularized version of our problem, showing that
it admits, at least locally in time, existence of a solution. Hence, exploiting
an a priori estimates-passage to the limit procedure we pass to the limit
showing that the limit problem admits a solution, at least in a weak sense.
We point out that, actually, the limit problem is solved globally in time, due
to suitable a priori estimates on the solutions, allowing to extend them on
the whole time interval.

4.1 The regularized problem

First, letting ε > 0, we regularize (3.26) as follows

θt + βt − ε∆θ − div (β∇θ + (1− β)|∇θ|p−2∇θ) = r, (4.28)

and combine it with (3.27) and (2.14). Then, we construct an operator T
fulfilling the assumption of the Schauder theorem and such that its fixed
points are eventually solutions to our system (4.28),(3.27), (3.24) with (2.14)
. To this aim, we introduce

B := {v ∈ L2(0, T̂ ;H) : ‖v‖L2(0,T̂ ;H) ≤ R}, (4.29)

here R > 0 is fixed and T̂ ∈ (0, T ] will be chosen later. Note that, from
now on, we denote by c possibly different positive constants not depending
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on the solutions, but just on the data of the problem, and by c(R) positive
constants depending in particular on R.

First, we take θ̄ ∈ B and substitute θ in (3.27). Fairly standard results
in the theory of evolution equations associated with maximal monotone op-
erators ensure the existence and uniqueness of

β := T1(θ̄) ∈ H1(0, T̂ ;H) ∩ L2(0, T̂ ;H2(Ω))

solving the resulting equation (actually a.e.), with (2.14) and (2.15) (note

that the right hand side of (3.27) belongs to L2(Ω×(0, T̂ )) and the regularity
of the initial datum is given by (3.18)). Then, we can exploit the following
a priori estimate on the solution β. We test (3.27) by βt −∆β and integrate

over (0, t), t ∈ (0, T̂ ). Integrating by parts, using a generalization of the
chain rule for subdifferential operators and exploiting the monotonicity of
the subdifferential ∂I[0,1](β) (cf. [2] and [1]), as well aas the positivity of the
indicator function I[0,1](·), we get (cf. also (3.18))

‖βt‖
2
L2(0,t;H) + ‖∇β(t)‖2H + ‖∆β‖2L2(0,t;H) +

∫

Ω

I(β(t)) (4.30)

≤ ‖β0‖
2
V + c

∫ t

0

‖θ̄ − θc‖H (‖βt‖H + ‖∆β‖H)

≤ c
(
1 + ‖θ̄‖2

L2(0,T̂ ;H)

)
+

1

2
‖βt‖

2
L2(0,t;H) +

1

2
‖∆β‖2L2(0,t;H),

where we have used the Young inequality. By (4.30), using the Gronwall
lemma, we eventually deduce

‖β‖H1(0,T̂ ;H)∩L∞(0,T̂ ;V )∩L2(0,T̂ ;H2(Ω)) ≤ c(R). (4.31)

Moreover, we can infer that β ∈ [0, 1] a.e.. By a comparison in (3.27) ξ ∈
∂I(β) satisfies

‖ξ‖L2(0,T̂ ;H) ≤ c(R). (4.32)

Now, as a second step, we take β = T1(θ̄) in (4.28) and look for a cor-
responding solution θ = T2(β) (actually depending on ε > 0). To this aim,
we apply the theory of parabolic nonlinear evolution equations (recall that
β ∈ [0, 1]), and get existence and uniqueness of a solution (see [5])

θ ∈ H1(0, T̂ ;V ′) ∩ L2(0, T̂ ;V ).

Then, let us proceed detailing some a priori estimates on this solution. For
the sake of simplicity, if it is allowed, we directly perform estimates in which
the positive bound c does not depend on the approximating parameter ε, as
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we are interested, in a second step, to pass to the limit on ε ց 0 on the
whole (0, T ). We test (4.28) by θ and integrate over (0, t), t ∈ [0, T ]. After
integrating by parts in time and exploiting the Hölder inequality, we get

1

2
‖θ(t)‖2H −

1

2
‖θ0‖H + ε

∫ t

0

‖∇θ‖2H +

∫ t

0

∫

Ω

β|∇θ|2 +

∫ t

0

∫

Ω

|∇θ|p (4.33)

≤

∫ t

0

‖r‖H‖θ‖H +

∫ t

0

‖βt‖H‖θ‖H +

∫ t

0

∫

Ω

β|∇θ|p.

Now, let us handle the last term on the right hand side of (4.33) exploiting
the Young inequality

∫ t

0

∫

Ω

β|∇θ|p =

∫ t

0

∫

Ω

β1−p/2βp/2|∇θ|p (4.34)

≤ δ

∫ t

0

∫

Ω

(
βp/2|∇θ|p

)2/p
+ Cδ

∫ t

0

∫

Ω

|β1−p/2|
2

2−p

≤ δ

∫ t

0

∫

Ω

(
β|∇θ|2

)
+ c
(
1 + ‖β‖2

L2(0,T̂ ;H)

)
.

Thus, letting, e.g., δ = 1/2, we combine (4.34) with (4.33), and the Gronwall
lemma implies

‖θ‖L∞(0,T̂ ;H)+‖β1/2∇θ‖L2(Ω×(0,T̂ ))+‖∇θ‖Lp(Ω×(0,T̂ ))+ε
1/2‖∇θ‖L2(Ω×(0,T̂ )) ≤ c(R).

(4.35)
Then, a comparison in (3.26) yields (at least)

‖θ‖H1(0,T̂ ;V ′) ≤ c. (4.36)

Now, we define
T (θ̄) = T2(T1(θ̄)).

It results that T : B → B is well-defined, at least for some small T̂ . Indeed,
by virtue of (4.35) we can infer that

‖θ‖L2(0,T̂ ;H) =

(∫ T̂

0

‖θ‖2H

)1/2

≤ ‖θ‖L∞(0,T̂ ;H)

T̂ 1/2

2
≤
c(R)

2
T̂ 1/2

and the right hand side is less than R if T̂ is sufficiently small. However,
as the above estimates do not depend on T̂ . Then, as θ ∈ C0([0, T̂ ];H),

β ∈ C0([0, T̂ ];V ), due to (3.17)-(3.18), we will be able to extend the result
on the whole time interval (0, T ). Thus, for the sake of simplicity, in the

8



sequel we directly refer to the interval (0, T ). Hence, it is clear that any fixed
point of T is a solution θ, T1(θ)) to (4.28),(3.27), (2.14).

Now, to prove that T admits a fixed point exploiting the Schauder theo-
rem, we have to show that it is compact and continuous w.r.t. to the topology
of L2(0, T ;H). Compactness easily follows by (4.35) and (4.36) (see [8]), as
ε > 0 (we have that L2(0, T ;H) is compact in H1(0, T ;V ′) ∩ L2(0, T ;V ).

Now, we aim to prove (strong) continuity. To this aim we take a sequence

θ̄n → θ̄ in L2(0, T ;H) (4.37)

and show that the corresponding θn strongly converges to

θn = T (θ̄n) → θ = T (θ̄) (4.38)

strongly in L2(0, T ;H).
First, we observe that (4.31), (4.35), and (4.36) hold for βn = T1(θ̄n)

and θn for constants c independent of n. Thus, by weak and weak star
compactness results, we get, at least for some suitable subsequences,

βn ⇀
∗ β in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)). (4.39)

Hence, we use strong compactness theorems yielding (at least for subse-
quences)

βn → β in C0([0, T ];H) ∩ L2(0, T ;H2−δ(Ω)), δ > 0. (4.40)

As βn ∈ [0, 1] a.e. and, for a subsequence, βn → β a.e. (cf. (4.40)), the
Lebesgue theorem ensures that

βn → β in Lq(Q), ∀q < +∞. (4.41)

Analogously, due to (4.32), we can infer that

ξn ⇀ ξ in L2(0, T ;H), (4.42)

so that (4.40) and (4.42) lead to the identification (cf. [2])

ξ ∈ ∂I(β), (4.43)

a.e. in Q. The above convergences (4.39)-(4.43) allow us to pass to the
limit in the equation (3.27) as n→ +∞, actually in L2(0, T ;H) and thus to
identify the limit equation a.e. in Q. By the uniqueness of the limit equation,
once θ̄ is fixed, we identify β = T1(θ̄) and extend (4.39)-(4.43) to the whole
sequences.
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Now, we deal with (3.26) where βn is fixed and look for suitable con-
vergence results of the corresponding solutions θn = T2(βn), as n tends to
+∞. We first point out that (4.35) and (4.36), due to weak and weak star
compactness results, imply that the following convergence holds, up to the
extraction of some suitable subsequences,

θn ⇀
∗ θ in H1(0, T ;V ′) ∩ L∞(0, T ;H) ∩ Lp(0, T ;W 1,p(Ω)), (4.44)

β1/2
n ∇θn ⇀ η in L2(0, T ;H), (4.45)

ε1/2θn ⇀ ε1/2θ in L2(0, T ;V ). (4.46)

As ε > 0, (4.35) implies that, at least for a subsequence,

θn → θ in L2(0, T ;H). (4.47)

Then, we can easily identify η = β1/2∇θ in (4.45) due to (4.41) and (4.44).
Indeed, βn strongly converges to β, and thus it converges almost everywhere.
As a consequences β

1/2
n → β1/2 a.e. and β

1/2
n ∈ [0, 1] a.e. (i.e. they are uni-

formly bounded). The Lebesgue theorem ensures that β
1/2
n → β1/2 strongly

in Lr(Q) for any 1 ≤ r < +∞. Finally, note that, due to (4.46), ∇θn
converges weakly in L2(Q).

Then, let us point out that (4.35) yields

‖|∇θn
p−2∇θn|‖Lp′(Q) ≤ c,

1

p
+

1

p′
= 1, (4.48)

so that (4.41), combined with (4.48), yields

(1− βn)|∇θn
p−2|∇θn ⇀ (1− β)ψ in Lp′(Q), (4.49)

(and consequently in L2(Q)) where

|∇θn
p−2|∇θn ⇀ ψ in Lp′(Q). (4.50)

By the previous convergences we are allowed to pass to the limit as n→
+∞ in (4.28) and get

θt − ε∆θ − div (β∇θ + (1− β)ψ) + βt = r, (4.51)

in V ′, for a.e. t. Now, our aim is to identify ψ in (4.51) with |∇θp−2|∇θ.
Once β is fixed we introduce the function

Ĵβ : Lp(Ω) → (−∞,+∞], Ĵβ(∇θ) =

∫

Ω

(1− β)

p
|∇θ|p (4.52)

if |∇θ|p ∈ L1(Ω), Ĵβ(∇θ) = +∞ otherwise.
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Then, the subdifferential of Ĵβ can be standardly computed as

∂Ĵβ = (1− β)|∇θ|p−2∇θ. (4.53)

Our goal is to prove that (1 − β)ψ ∈ ∂Ĵβ(∇θ) a.e. in Q, i.e. (by definition
of the subdifferential)

∫

Q

(1− β)ψ(∇w −∇θ) ≤

∫

Q

(1− β)

p
|∇w|p −

∫

Q

(1− β)

p
|∇θ|p, (4.54)

for any w ∈ Lp(0, T ;W 1,p(Ω)). To this aim we first prove that

lim sup
n→+∞

∫

Q

(1− βn)|∇θn|
p−2∇θn ≤

∫

Q

(1− β)ψ∇θ. (4.55)

Indeed, testing (3.26) written for n by θn and integrating over (0, T ) leads to

lim sup
n→+∞

∫

Q

(1− βn)|∇θn|
p−2∇θn = lim sup

n→+∞
−
1

2

∫

Ω

|θn(t)|
2 +

1

2

∫

Ω

|θ0|
2 (4.56)

− ε

∫

Q

|∇θn|
2 −

∫

Q

βn|∇θn|
2 −

∫

Q

θnβnt +

∫

Q

rθn

≤ −
1

2

∫

Ω

|θ(t)|2 +
1

2

∫

Ω

|θ0|
2 − ε

∫

Q

|∇θ|2 −

∫

Q

β|∇θ|2 −

∫

Q

θβt +

∫

Q

rθ

= +

∫

Q

(1− β)ψ∇θ.

To prove (4.56) we have used (weak) lower semicontinuity of norms, conver-
gences (4.44)-(4.46), (4.49), and (4.47). Hence the right-hand side is identi-
fied by virtue of (4.51). As a consequence, we immediately have that

∫

Q

(1−β)ψ(∇w−∇θ) ≤ lim inf
n→+∞

∫

Q

(1−βn)|∇θn|
p−2∇θn(∇w−∇θn), (4.57)

for any w ∈ Lp(0, T ;W 1,p(Ω)). Thus, it is now a standard matter to prove
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the following chain of inequalities

∫

Q

(1− β)ψ(∇w −∇θ) ≤ lim inf
n→+∞

∫

Q

(1− βn)|∇θn|
p−2∇θn(∇w −∇θn)

(4.58)

≤ lim inf
n→+∞

∫

Q

(1− βn)

p
(|∇w|p − |∇θn|

p)

≤ lim sup
n→+∞

∫

Q

(1− βn)

p
(|∇w|p − |∇θn|

p)

≤

∫

Q

(1− β)
|∇w|p

p
− lim inf

n→+∞

∫

Q

(1− βn)
|∇θn|

p

p

≤

∫

Q

(1− β)
|∇w|p

p
−

∫

Q

(1− β)
|∇θ|p

p

which concludes our proof. Indeed, note in particular that, as (4.44) and
(4.41) hold, we can infer that

(1− βn)
1/p∇θn ⇀ (1− β)1/p∇θ in Lp(Q), (4.59)

so that, by weak lower semicontinuity of norms,

lim inf
n→+∞

∫

Q

(1− βn)
|∇θn|

p

p
≥

∫

Q

(1− β)
|∇θ|p

p
.

4.2 The existence result: the limit as εց 0

We are now in the position of proving Theorem 3.1 by passing to the limit in
(4.28) as ε ց 0. To this aim, after denoting by (θε, βε, ξε) a solution to the
system (4.28), (3.27), (3.24), with ε > 0, we perform the analogous estimate
as (4.30) and (4.33)-(4.34), i.e. we test (3.27) by ∂tβε − ∆βε and (4.28) by

12



θε. After integrating over (0, t) we get

‖∂tβε|
2
L2(0,t;H) + ‖∇βε(t)‖

2
H + ‖∆βε|

2
L2(0,t;H) +

∫

Ω

I(βε(t)) (4.60)

+
1

2
‖θε(t)‖

2
H + ε‖∇θε‖

2
L2(0,t;H) +

∫ ∫

Q

βε|∇θε|
2 +

∫ ∫

Q

|∇θε|
2

≤
1

2
‖∂tβε|

2
L2(0,t;H) +

1

2
‖∆θε‖

2
L2(0,t;H)

+ c

(
1 + ‖θε‖

2
L2(0,t;H) +

∫ t

0

‖r‖H‖θ‖H

)
+

∫ ∫

Q

β|∇θε|
p

≤
1

2
‖∂tβε|

2
L2(0,t;H) +

1

2
‖∆θε‖

2
L2(0,t;H) +

1

2

∫ ∫

Q

βε|∇θε|
2

+ c

(
1 + ‖θε‖

2
L2(0,t;H) +

∫ t

0

‖r‖H‖θ‖H + ‖βε‖
2
L2(0,t;H)

)
.

Then by using the Gronwall lemma, we get the analogous of (4.31), (4.32),
(4.35), (4.36), now independently of ε, i.e.

‖βε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H2(Ω)) ≤ c (4.61)

‖θε‖H1(0,T ;V ′)∩L∞(0,T ;H)∩Lp(0,T ;W 1,p(Ω)) ≤ c (4.62)

‖ξε‖L2(0,T ;H) ≤ c (4.63)

‖β1/2
ε ∇θε‖L2(0,T ;H) ≤ c (4.64)

ε1/2‖θε‖L2(0,T ;H) ≤ c. (4.65)

As in the previous section (cf. (4.39)-(4.42)), by compactness, we can deduce
that, at least for some subsequences,

βε ⇀
∗ β in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) (4.66)

βε → β in C0([0, T ];H) ∩ L2(0, T ;H2−δ(Ω)), δ > 0 (4.67)

βn → β in Lq(Q), ∀q < +∞. (4.68)

ξn ⇀ ξ in L2(0, T ;H) (4.69)

and (at least)

θε ⇀
∗ θ in H1(0, T ;V ′) ∩ L∞(0, T ;H) ∩ Lp(0, T ;W 1,p(Ω)) (4.70)

θε → θ in L∞(0, T ;Lq(Ω)), (4.71)

where q is such that Lq is compact embedded in W 1,p, i.e. p > nq
q+n

(n

standing for the dimension of Ω). Note in particular that (4.47) still holds
for n = 2 for any p ∈ (1, 2), while for n = 3 it is ensured just for p > 6/5.
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Then, by virtue of (4.66)-(4.69) and (4.70) we can pass to the limit in (3.27)
(written for ε > 0) as ε tends to zero, identifying ξ ∈ ∂I0,1(β). Hence, we are
interested in pass to the limit in (4.28). We make use of convergences (4.67),
(4.66), (4.70), observing in particular that

−ε∆θε → 0 in L2(0, T ;V ′).

Arguing as in the previous section, we can infer that

β1/2
ε ∇θε ⇀ β1/2∇θ in L2(0, T ;H), (4.72)

and
(1− βε)|∇θε|

p−2∇θε ⇀ (1− β)ψ in Lp′(Q). (4.73)

We aim to identify ψ = |∇θ|p−2∇θ. To this aim we proceed as in the previous
section, thus we do not detail inequalities. We just make some comment on
the equivalent version of (4.56). Indeed, in the general case we cannot infer
that

∫
Q
θε∂tβε →

∫
Q
θ∂tβ. Thus, to prove that

lim sup
εց0

−

∫

Q

θε∂tβε ≤ −

∫

Q

θ∂tβ

we use semicontinuity for the equation (3.27) (written for ε > 0) formally
tested by θc∂tβε. There holds

lim sup
εց0

−

∫

Q

θε∂tβε (4.74)

= lim sup
εց0

−θc

(∫

Q

|∂tβε|
2 −

1

2

∫

Ω

|∇βε(t)|
2 +

1

2

∫

Ω

|∇β0|
2 −

∫

Q

ξε∂tβε +

∫

Q

∂tβε

)

= − lim inf
εց0

θc

(∫

Q

|∂tβ
2
ε |+

1

2

∫

Ω

|∇βε(t)|
2 −

1

2

∫

Ω

|∇β0|
2 +

∫

Q

ξε∂tβε −

∫

Q

∂tβε

)

≤ −θc

(∫

Q

∂tβ
2 −

1

2

∫

Ω

|∇β(t)|2 +
1

2

∫

Ω

|∇β0|
2 −

∫

Q

ξ∂tβ +

∫

Q

∂tβ

)

= −

∫

Q

θ∂tβ,

by the fact that we have already identified the limit of (3.27) (written for
ε > 0, as ε ց 0. Note that we have exploited weak lower semicontinuity
of norms with (4.66)-(4.67), and the lower semicontinuity of the indicator
function. Thus, we are in the position of proving the analogous of (4.56) and
thus (4.57)-(4.58) easily follow, concluding our proof.
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non Linéaires Dunod, Gauthier-Villars Paris, 1969

[6] J.J. Moreau, Fonctionelles convexes, Collége de France (1966) and
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