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Abstract

In this paper we investigate the homogenization problem with a non-homogeneous
Dirichlet condition. Our aim is to give error estimates with boundary data in
H'2(99). The tools used are those of the unfolding method in periodic homoge-
nization.

1 Introduction

We consider the following homogenization problem:
¢° € H(Q), —div(A. Ve ) =f in €, =g on OS2 (1.1)

where A, is a periodic matrix satisfying the usual condition of uniform ellipticity and
where f € L?(Q) and g € H1/2(09). We know (see e.g. [4], [10], [13]) that the function
¢° weakly converges in H'(Q) towards the solution ® of the homogenized problem

® € HY(Q), —div(AV®)=f in Q  ®=g on 00 (1.2)

where A is the homogenized matrix (see (4.4)) and (4.H)). Using the results in [10] we
can give an approximation of ¢¢ belonging to H'(Q) and we easily obtain

oF — O — 626 Q. <g—x®>X1<g> — 0 strongly in  H'(Q)
i=1 v

where Q. is the scale-splitting operator (see [10] or Subsection [2.4]) and where the y; are
the correctors (see (4.2)).

One of the aim of this paper is to give error estimates for this homogenization
problem. Obviously, if we have g € H%?(9Q) and the appropriate assumptions on

!The homogenization problem with L? boundary data is investigated in [3].
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the boundary of the domain then we can apply the results in [4], [13], [14], [15], [16]
and [22] to deduce error estimates. All of them require that the function ® belongs
at least to H?(Q). Here, the solution ® of the homogenized problem (L2) is only in
HY Q)N HE,(Q). In this paper we have to deal with this lack of regularity; this is the
main difficulty.

The tools of the unfolding method in periodic homogenization to obtain error esti-
mates (see [14], [I5] and [I6]) are the projection theorems. This is why we prove two
new projection theorems; the Theorems 3.1l and B2l Here, both theorems concern the
functions ¢ € H} () satisfying Vo/p € L?(2;R™) where p(z) is the distance between
x and the boundary of Q. In the first one we give the distance between T:(¢) (see
[10] or Subsection 2.4.1] for the definition of the unfolding operator 7;) and the space
L3(Q; H! (Y)) in terms of the L? norms of ¢/p and V¢/p and obviously €. In the

per
second one we prove an upper bound for the distance between 7:(V¢) and the space

VH' Q) ® V,L*(Q; H,,,.(Y)); again in terms of the L* norms of ¢/p and V¢/p and ¢
(see Section [3). This last theorem is partially a consequence of the first one. In this
paper we derive the new error estimates from the second projection theorem and those
obtained in [16].

Different results are known about the global H! error estimate regarding the classical
homogenization problem (L) (see e.g. [4], [I3]). Those with the minimal assumptions
are given in [15]; if the solution of the homogenized problem (L.2) belongs to H?(f2)
-see Proposition 4.3 in [I5]- (respectively H>/?(Q); see Theorem 3.3 in [16]) then the H*
global error is of order £'/2 (resp. £!/4) while if this solution belongs to H2 _(Q)NWP(Q)
(p > 2) the obtained H' global error is smaller and depends on p (see Proposition 4.4 in
[15] )E Here, with a non-homogeneous Dirichlet condition belonging only to H'/2(05)
we do not obtain a global H'! error estimate. The L? global error estimate only requires
a boundary of  sufficiently smooth (of class C*!) or a convex open set. Obviously if it
is possible to make use of a global H! error estimate, the L? global error will be better
(the reader will be able to compare the Theorem 3.2 in [16] with the Theorem [6.3). The
H?' local error estimate is always linked to the L? global error and never needs more
assumption (see Theorem 3.2 in [16] or the proof of Theorem [6.1]).

The paper is organized as follows. In Section 2 we introduce a few general notations,
then we give some remind$] on lemmas, definitions and results about the unfolding
method in periodic homogenization (see [10]), then we prove some new results involving
the main operators of this method. Section 3 is devoted to the new projection theorems.
In Section 4, we recall the main results on the classical homogenization problem. In
Section 5 we introduce an operator which allows to lift the distributions belonging to
H~1/2(9Q) in functions belonging to L?(2); this lifting operator will play an important
role in the case of strongly oscillating boundary data. In Section 6 we derive the error
estimates results (Theorems[6.Iland [6.3)) with a non-homogenous Dirichlet condition. We

2These propositions or theorem are proved with a Dirichlet condition, with a non-homogenous
Dirichlet condition belonging to H?/2(99) the results are obviously the same.
3We want to simplify the reading to a non-familiar reader with the unfolding method



end the paper by investigating a case where the boundary data are strongly oscillating
(see Theorem [T.1]in Section 7). A forthcoming paper will be devoted to homogenization
problems with other strongly oscillating boundary data.

As general references on the homogenization theory we refer to [I], [4] and [13]. The
reader is referred to [10], [12] and [I3] for an introduction of the unfolding method in
periodic homogenization. The following papers [5], [6], [7], [8], [11], [19], [24] give various
applications of the unfolding method in periodic homogenization. As far as the error
estimates are concerned, we refer to [2], [4], [14], [15], [16], [20], [22] and [23].

Keywords: periodic homogenization, error estimate, non-homogeneous Dirichlet con-
dition, periodic unfolding method.
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2 Preliminaries

2.1 Notations

e The space R* (k > 1) is endowed with the standard basis (el, ce ek); the euclidian
norm is denoted | - |.

e We denote by €2 a bounded domain in R™ with a Lipschitz boundaryH Let p(x) be
the distance between x € R" and the boundary of {2, we set

57:{x69|p(z)<7} 67:{936R"|p(x)<7} v € R*F.

e There exist constants a, A and ~q strictly positive and M > 1, a finite number N of
local euclidian coordinate systems (O,; ey, . . ., €,,) and mappings f,. : [—a,a]"™! — R,
Lipschitz continuous with ratio M, 1 <r < N, such that (see e.g. [I7] or [18])

N
o) = U{x = x; + Ty € R SL’; e A, and z,, = fr(:c;)},
r=1
where SL’; =Tyl + .+ TpnorCptr, ANy = {x; | zi €] —a,al, i €{1,...,n— 1}}

N
Q, C U Q, CQ, Q, = {x ER" |z, € A, and fo(x,) < Ty < frlz)) + A}

r=1

~ N
Q, C U{x eR" |z, € A, and fo(z,) — A < zpp < fr(z)) +A}
r=1

Vre{l,...,N}, VxeQ, wehave i(xm, — fu(x) < p(x) < Zpp — fr()).

oM
(2.1)

4In Section [l and those which follow, we will assume that  is a bounded domain of class C*! or an
open bounded convex set.



o We set
=10,1[", E.={(e€Z'|e(¢+Y)CQ},

= interior( U e(& +7)), A =0\ Q.

£€8e

Y
Q.

where ¢ is a strictly positive real.
o We define
« HY(Q) = {0 € 13(Q) | Vo € L2 R™) },
« 13, = {o € L) | o/p € LA},
* HYy,(Q) = {6 € HY(Q) | Vo/p € LH%R") |,
We endow H,(Q) (resp. H{,,(§2)) with the norm

Vo € H)Q), [18ll = [16ll@ + 10V 8|2z
(resp. Vo€ HY (@), 1éllyo = [|V6/o] azn )

Note that if ¢ belongs to H}(€2) then the function 1) = p¢ is in Hy(€2) and vice versa if
a function 1 belongs to Hg(€2) then ¢ = /p is in H)(Q) since we have (see [9] or [21])

Below we recall a classical extension lemma which is proved for example in [15] or
which can be proved using the local charts ([2.1]).

Lemma 2.1. Let Q) be a bounded domain with a Lipschitz boundary, there exist co >

1 (which depends only on the boundary of Q) and a linear and continuous extension
operator P from L*(Q) into L*(R™) which also maps H* () into H'(R") such that

Vo e L*(Q), P@), =0,  [IP@)l2@n) < Cllélli2),

2.3
IPO5., < Clll g (23)

Moreover we have

o€ HNQ),  [IVPO)z@nan < ClIV6l o).

From now on, if need be, a function ¢ belonging to L*(Q) (resp. H(Y)) will be
extended to a function belonging to L*(R™) (resp. H'(R")) using the above lemma. The
extension will be still denoted ¢.

2.2 A characterization of the functions belonging to H; /p(Q)

The two first projection theorems (see [15]) regarded the functions belonging to
H}(Q) while those in [16] regarded the functions in H'(2). In this paper we prove two



new projection theorems which involve the functions in H ll/p(Q); this is why we first
give a simple characterization of these functions in the Lemma 2.2 below.

Observe first that if a function ¢ satisfies ¢/p € H}(S2) then ¢ belongs to H 1,(82).-
The reverse is true.

Lemma 2.2. Let € be a bounded domain with a Lipschitz boundary, we have
o€ Hy,(Q) < ¢/pe Hy().
Furthermore there exists a constant which depends only on 0S) such that

Vo€ HINQ) 6/ ay + 19/l ey < Cllollasm (2.4)

Proof. Step 1. Let ¢ be in H'(] — a,a[" "' x]0, A[) (a, A > 0) satisfying —V¢( ) €
L*(] — a,a[""'x]0, A]) and ¢(z) = 0 for a.e. x in]— a,a* *x{0}U] — a,a[*~ 1><{A}

We have ) ) v )
/ W(SZH d:cg—/ | <Z5(2~”C)| d. (2.5)
—a,an-1x]0,4]  Tn 2 fl—aqr-1x0,4]  Th

2
To prove (2.5]), we choose n > 0 and we integrate by parts / 7|¢(x)| .
]—a,a]"—1x]0,A[ (77 + zn)

Y

then thanks to the identity relation 2bc < b? + ¢ we obtain

2 1 1 2
[ 6(2)| lol 1 L
J—asa)n-1x]0,4[ (M + Tn) 2 Ji—aan-1x)0,a1 (N + 20)? 1 Oy,

1 2
< _/ |V¢(2 )| d
2 i_aar-1xj0,4]  Tn

Passing to the limit (n — 0) it leads to (2.5]).
Step 2. Let h be in W*°(Q) such that

h(z) € [0, 1],
Vo € €, h(z)=1 if p(x) > 70,
h(z) =0 if p(x) < /2.

Let ¢ be in Hll/p(Q). The function ¢h/p* belongs to H} (), therefore as a consequence
of the Poincaré’s inequality we obtain

/|¢> Dh()? <C/‘V ‘d <o/(|v¢<x>|2+|¢(a:>|2)daf

(@)* , (2.6)
SC’/Q\Vqﬁ(x)deSC/Q%d:C



Then using the local chart of €2, given by (Z1), the inequality (23) and thanks to a
simple change of variables we get

6(2)(1 — h(a)) V(6) (1 — ha)) V@) + o)
/ L wc | T POE wc | P

Since ¢ € HJ(Q) the function ¢/p belongs to L*(2) and we have (2.2)). Hence, adding
these inequalities (r = 1,..., N) we obtain

/ch 1— ) <C/|V¢ i (2.7)

Finally ¢/p* € L*(Q) and (2.6)-(2.7) lead to Hgb/szLz(Q) < C||¢l|1, and then (24). O

2.3 Two lemmas

In the Lemma 23] we give sharp estimates of a function on the boundary and in a
neighborhood of the boundary of 2. The second estimate in (2.8)) is used to obtain the
L? global error.

Lemma 2.3. Let Q) be a bounded domain with a Lipschitz boundary, there exists g > 0
(see Subsection[Z3) such that for any v €]0,70] and for any ¢ € H'(Q) we have

C
ollizom < =573 (16llzxa,) + Ml o)

161l z2@,) < C (721101200 + MV 251, zm)-

(2.8)

The constants do not depend on 7.

Proof. Let ¢ be in H'(] — a,a[""*x]0, A[). For n €]0, A[ we have

HwHLZ —a,a["~1x{0}) HwHLZ —a,a[”~1x]0,n[) +C77HV¢HL2( ]—a,a[*—1x]0,n[;R™)>
||¢||L2(]—a,a[”*1><}0,77[) < Cn||w||L2(]—a,a[”*1><{0}) + 077 ||V¢||L2(]—a,a[”*1X}O,n[;R")'

The constants do not depend on 7. Now, let ¢ be in H'(Q). We use the above estimates,
the local charts of €2, given by (2.]) and a simple change of variables to obtain (2.8). O

In this second lemma we show that a function in HJ(2) can be approached by
functions vanishing close to the boundary of 2. Among other things this lemma is used
to give an approximation of ¢ via the scale-splitting operator Q. (see Lemma [2.6]) and
it is also used in the main projection theorem (Theorem [B.2)).



Lemma 2.4. Let ¢ be in H} (), there exists ¢p. € H(R™) satisfying

¢e(x) =0 for a.e. x ¢ 56\/56,

(2.9)
¢ = ¢cllr2@) < Cel[Vollzqpny,  [|9ellm@) < Cll¢llm -
Moreover, if ¢ € Hll/p(Q) then we have
16 = 6 /ell ey < CelIVellym el < Clidllype (210)

The constant C' is independent of e.

Proof. Let ¢ be in H}(2). We define ¢. by

(p(x) = 6v/ne)™
Cba(x) = p(SL’)
0 fora. e. z€R™\ Q.

o(z) fora. e. x€(Q

where 7 = max{0,d}. The above function ¢. belongs to H!(R") and satisfies ¢. = 0
outside Qg /m.. Then due to the fact that ¢/p belongs to L*(2) and verifies ||¢/p||r2() <
C||V||r2@;rn) We obtain the estimates in (2Z9). If ¢ € Hll/p(Q) we use the estimate

(24) to obtain (2.10). O

2.4 Reminds and complements on the unfolding operators

In the sequel, we will make use of some definitions and results from [10] concerning the
periodic unfolding method. Below we remind them briefly.

2.4.1 Some reminds

For almost every x € R", there exists an unique element in Z™ denoted [z] such that
x = [z] + {z}, {z} €Y.

e The unfolding operator T..
For any ¢ € L'(2), the function T.(¢) € L' (2 x Y) is given by

T(¢)(z,y) = ¢<5 [g * 5y> for ae. (z,y) € Q. x Y,

(2.11)
0 for a.e. (z,y) € Ao x Y.
Since A, C ﬁ\/ﬁe, using Proposition 2.5 in [10] we get
| [owiz- [ T@wpisi|< [ owlde<lollpg,,  (212)
Q % A-



For ¢ € L?(2) we have
T r2@) < 119l r2(@)-

We also have (see Proposition 2.5 in [10]) for ¢ € H'(Q2) (resp. ¥ € H}(Q))

[ 7:(¢) — ¢HL2(SA25><Y) < Ce[|Vol|r2omn)
(resp.  |[Te(¥) = ¥||r2xy) < Cel|VY||L2rny ).

e The local average operator M.
For ¢ € L*(R™), the function M_(¢) € L=(R") is defined by

M (¢)(x) = /ng(e [g + 5y)dy for a.e. x € R™.

(2.13)

(2.14)

(2.15)

The value of M. (¢) in the cell e(€+Y) (£ € Z™) will be denoted M.(¢)(g€). In [10] we

proved the following results:
For ¢ € L*(Q) we have

IM(D)[L2) < Clldllra),  [IMe(@) = dlla-1(0) < Cell9ll 2
and for ¢ € H} () (resp. ¢ € H'(Q)) we have

[|M:(¥) = V|2 < Cel| VY| 20mm)
(resp.  [[M(0) — ¢HL2(§E) < Cel|Vel|L2arny )-

e The scale-splitting operator Q..
x For ¢ € L'(R"), the function Q.(¢) € WH>(R") is given by

Q(¢)(x) = > Mc(§)(e§)Hegx)  for ace. x €R”,

Lezm
where
H.¢(z) = H(I—g&?ﬁ) with
Ja=lal)@ =Tzl (=) i ze[-1,1]7
H(Z)_{ 0 it 2eR"\[-1,1]"

Below, we remind some results about Q. proved in [10] and [16].
x For ¢ € L*(R") we have
¢

[|Q:(0)|| L2y < C|@]| 2Ry |V Qe ()| L2@nimn) < . |[@]] L2 mn)

and
Q.(p) — ¢ strongly in ~ L*(R").

(2.16)

(2.17)

(2.18)



x For ¢ € H'(R") we have

IV Qe(d) 2@nigny < ClIVO|L2@rimny,
|6 — Qe(P)|r2@ny < Cel|V||r2mnn)
and
Q.(p) — ¢ strongly in ~ H'(R™). (2.20)
« For ¢ € L2(R*) and y € L2(Y) we have Qs(qb)x({é}) € L2(RY), vgg(@x({é}) c
L*(R™) and
19X ({2}) liaqery < Cllslzzanlixlzze;

. (2.21)
|2-@X({2}) @ < 9l s, Iz,
Moreover, if ¢ € H*(R") then we have
1(2:(6) = Me@)X({ 2} llz2ary < CEIVEl2qensznlIxor,
IV QX ({2} ey < CITEl2qann Iz, (2.22)
IVQ-OX ({2} s ey < CIVOl s Il

2.4.2 Some complements

In this subsection, we extend some results given above to functions belonging to
H pl(Q) These technical complements intervene in the proofs of the projection theorems
and in the Theorem

Lemma 2.5. For ¢ € H () we have
lp(Me(9) — &) ||12(0) < Celld]],,

Vi € {1a s 'an}a ||p( ( + 561) )||L2(Q) S Cg||¢||p’ (223)
lp(M:(0)(- +cei) = Mc(9))||r2() < Cell9l],.

For ¢ € L}, () we have

IM:(9) = llayyy < Cellé/pllr2@)- (2.24)
The constants do not depend on €.

Proof. Step 1. We prove (2.23),.
Let ¢ be in H}(€) and let £( +Y') be a cell included in Q.

Case 1: p(e€) > 2¢/ne.



In this case, observing that

| < mMaX.ee(e+v){(2)}
o minz€€(5+Y){p(Z)}

and thanks to the Poincaré-Wirtinger’s inequality we obtain

/ () PIM()(£€) — o) P < [ max {p()}]? / M. (6)(c€) — o) Pde
e(€+Y) e(€+Y)

<3

z€e(€4Y)

< [ max_{p(z)}]?C<? / V() Pdz

z€e(§+Y) e(E+Y)
< e / @) IVé() P
e(€+Y)

Case 2: p(e€) < 2y/ne.
In this case we have

/ (@) PIM(S)(cE) — b(a)Pde < C / 6(x) Pz

c(6+Y) c(6+Y)

The cases 1 and 2 lead to

[ ()P IM.(6)(z) — b(x)dr < C& / (P@PIVO@)? + @) dr.  (2.25)

Qe

Since A. C Q sme and due to Lemma 2.T] we get

/A [p(@)P*IM:(¢)(2) — ¢(a)[*dx < 052/~ |6 (x)|*d

o)
coV/ne

which in turn with ([2.25) gives (2.23]),. Proceeding in the same way we obtain ([2.23),

and (2.23)),.

Step 2. We prove ([2.24)).
Let ¢ be in L3, (Q) and ¢ € H)(2). We have

1/p

Consequently we obtain

[0 -0 = [ (M) -w)o| < [ 140 - o]+ [ [Me0) - 0)9]
Q Q Ae Ae
< C([1ll22a0) + IM(D)| 200 1[0 ]| 2200 -

The inclusion A. C Qz., the fact that ¢ € L},,() and the estimates (23),-(2.23),
lead to

[ (4e(6) - v < Celloflllvle
Hence ([2.24]) is proved. O

10



Lemma 2.6. For ¢ € H () we have

1p(Q:=(8) = &)l12(0) < Celloll, (2.26)
For ¢ € Hl/p(Q) and ¢. given by Lemma we have

1Q:(@)lsp < Cllllyp,  [[(6 = Q:e(92)) /0| 12y < Cell 1y,

Vi = ilel +...+ inena (’il, . ,’Ln) c {O, 1}n (227)
I(M (i) - Me(9))/0|l 12 < Cell8l1/0
For ¢ € L*(R") and x € L*(Y)
| (M) = pMAONX ({2 }) iaqey < Collolznlixliizg): (228)

For ¢ € H)(Q) and x € L*(Y)

(Q-6) = Me@)X({ = }) 200y < ColBlolixlzze
10V QX ({2 }) |2y < ClNNIN 20

The constants do not depend on €.

(2.29)

Proof. Step 1. Let ¢ be in H(§2). We first prove

1(Q:(6) — M:())]lr20) < Cellgll,. (2.30)
To do that, we proceed as in the proof of ([2.23)),. Let £({ +Y) be a cell included in €.
Case 1: p(e€) > 3v/ne.

In this case we have

1 < maxzeg(g+y){p(z)} <4 and 1 < maXzEa(§+2Y){P(Z)} E

T minecerov){p(2)} T mineev{p(z)} T 2
By definition of Q.(¢) we deduce that

/ P(@)21Q.(6) () — Mo(6)(c6)Pd < [ max_{p(=)}]? / 10.(6)(x) — M.(6)(c6) P
c(6+Y) (6+Y)

z€e(€+Y)

<[ max (p2yPCe [ LI

z€e(E4+Y
< e / () |V () 2.
(&+2Y)

Case 2: p(e€) < 3y/ne. Then again by definition of Q.(¢) we get

| b)) - M) Pd <02 [ jola)d.
c(6+Y)

e(€+2Y)

11



As a consequence of both cases we get

[ [0(2)]?|Q=(6)(2) — M(8)(2)[Pdx < 062/Q (@) |Vp(2)]* + |¢(x)]?)dz.  (2.31)
Furthermore we have

/As[p(x)] |Q:(¢)(2)"dw < Ce /A |1Q:(¢)(2)["dx < Ce /Qlcb(év)l da

which with (231) lead to (2.30). Then as a consequence of (2.23)), and ([2.30) we get
2.26).
Step 2. We prove (2.27), .

Let ¢ be in Hll/p(Q) and ¢. given by Lemma 2.4l Due to the fact that ¢.(x) = 0 for a.e.

x e R\ 526\/55, hence Q. (¢.)(x) = 0 for every x € Q such that p(x) < 4/ne. Again we
take a cell (£ +Y) included in 2 such that p(e€) > 3y/ne. The values taken by Q.(¢.)
in the cell £(£ +Y) depend only on the values of ¢, in (£ +2Y"). Then we have

1 5 C ,
T /7 N9 e\We d -~ . e d
/€(£+Y) [P(@PWQ ($e)lw)lde < [mingece+v){p(z)}? /e(£+2Y) Vot
[maxyec(erov){p(2)}]? 1 9 1 )
C e dx < C ——|Vo. dx.
S R T sy PRI € [ GrplVouf
Adding all these inequalities gives
1 5 1 )
— (O de <C | ——— B d
/{;24\/55 [p(x)]2|VQ (¢ )(ZL’)| r < [) [p(x)]2|v¢ (l’)| X

Since Q.(¢.)(x) = 0 for every x € € such that p(x) < 4y/ne, we get ||Q:(¢:)||1/, <
C||pe|]1/,. We conclude using (ZI0),.

Step 3. Now we prove (227),. Again we consider a cell €({ +Y) included in 2 such
that p(¢£) > 3y/ne. We have

1 2 X C ) — x 2 i
oy PR 00) = ooVt = g | 10:0(0) e
C ) 20
~ [mingecevy{p(2)}]? ie{o;}n /E(E—i-i—i-Y) Me(ge)(et +el) = ge(z)fd
o [max.ec(erov) {p(2) })° 1 2 2de 2 1 2 2de
< O LR L GO <O [ ol o
Hence we get
! 2 T 2 # T 2 X
o 100 — o) < €2 | Zogie. s

12



The above estimate and the fact that Q.(¢:)(x) — ¢.(x) = 0 for a.e. z € Q such
that p(z) < 4y/ne yield |[(¢. — Q(0:))/pllr2) < C¢ll@e|1/,- We conclude using both

estimates in (2.10).
Proceeding as in the Steps 2 and 3 we obtain (2.27),, (2.28) and (2:29). O

3 Two new projection theorems

Theorem 3.1. Let ¢ be in H{, (). There exists 6. € H: (Y; L*(Q2)) such that

per

1/p

{||$€||H1YL2 < C{||¢||L2 +5||v¢||[L2 Q)" }
NTe(@) = el vy ) < Ce(llo/pllz@) + €ll8lly,)-

The constants depend only on n and OS2.

Proof. Here, we proceed as in the proof of Proposition 3.3 in [15]. We first reintroduce
the open sets (). ; and the "double” unfolding operators 7. ;. We set

Q=N (ﬁe — ce;), K; = interior(Y U (e; +Y)), i€ {l,...,n}.

The unfolding operator 7;; from L*(Q) into L*(Q2 x K;) is defined by

q + 6y> for x € (AZ&Z- and for a.e. y € K,

Yle
Vg e I3Q),  To()(a.y) = () -
0 for x € Q\ €. ; and for a.e. y € K.

The restriction of 7 ;(¢) to (AZ&Z- x Y is equal to T(v).
Step 1. Let us first take ¢ € Ll/p

Toi(@) (. 4+ €) — Tei(¢) in LAY (H(2))'). For any W € H}() a change of variables

p

1
(Q). We set ¢ = ;qb and we evaluate the difference

gives for a. e. y €Y

/QT (P)(x,y + €)W / To(0)(z + e, y)¥(x)dx
:/ﬁ . To(9)(x,y)V(x — ce;)dz.

Then we obtain for a. e. y € Y

‘/Q{ﬁz( Sy+e) =T y)Jv — / T (¢ .,y)p{\lf(.—gei)—\ll}‘

S‘ /{A2 Te () () (Te(p) — p) {0 (. — cey) — ‘I’}‘ + OO W 2@, o 1Y 2@, -
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Estimate (2.23), leads to
p(B(. —ce;) — \II)HLQ@W_) <Ce||lv|l, Vie{l,...,n}.

We have
|| T=(p) — pl|zee() < Ce. (3.2)

The above inequalities imply
<T@y +e)—Ti(9)(,y), ¥ Z(HY(Q)) ,HL(Q)

/ [Tea(0) .y + ) — Toal @)z, ) }0(2)da
<Ce|[Y[| N1 Te() (s W)l 2 + Cell¥| 2@l Te(¥) (- ¥) | 220
HCITAR) o, o 1Y 2@, )

Therefore, for a.e. y € Y we have
I Tei(@) (s y +€) = Tea( D) Wl py < CElT(D) (92 + CNT(O) Yl oga, i

which leads to the following estimate of the difference between 7. ;(¢) and one of its

translated :

Tei(@)(s -+ €) = Tei( D)l 2prmyyy < Cellé/pll2@) + Clidll 2,
< Cello/pl L2

The constant depends only on the boundary of €.

Step 2.  Let ¢ € Hl/ (©2). The above estimate (3.3]) applied to ¢ and its partial
derivatives give

‘QXY

vied - (3.3)

[ Tei(@)(s - + &) = Tesl )| 2vmieyyy < Celld/pllrao
Tei(Vo)(., - + &) = T VOl 2 vy ymy < Celldlliyp-

which in turn lead to (we recall that V,(72:(¢)) = eT-:(V)).

172a(@) (- + ei) = TealOlmrmyyyy < Celllo/pllz) + £lldllp)-

From these inequalities for i € {1,...,n} we deduce the estimate of the difference of the
traces of the function y — T.(¢)(.,y) on the faces Y; ={y €Y |y, =0} and e; + Y;

T=(@) (s +e;) — T )HHl/Z(Y S(HL(Q) <C€(||¢/PHL2(Q +5H¢H1/p> (3.4)

These estimates (i € {1,...,n}) give a measure of the periodic defect of the function

y — Te(9)(-, y) (see [13]).

14



Then we decompose T;(¢) into the sum of an element belonging to H! (Y;L*()) and

one to (H'(Y; Lz(Q)))L (the orthogonal of H},.(Y; L*(Q2)) in H'(Y; LPZT(Q)), see [15])
T(@)=0: 40, G € Hp(ViIXQ), € (H(GIQ)).  (35)

The function y — T:(¢)(., y) takes its values in a finite dimensional space,
Pl = D Peel)xeel)
§€E
where X.¢(.) is the characteristic function of the cell (¢ +Y) and where ¢ (..) €
(HI(Y))L (the orthogonal of H! (V) in H'(Y), see [15]). The decomposition (B.5) is

per

the same in H'(Y; (H}(€))') and we have

Hgg&H%{l(Y;L?(Q)) + H@H?{l(y;y(m) = “7;(¢)“§{1(Y;L2(Q)) < C{WHL%Q) + 5HV¢||[L2(Q)}"}2’

It gives the first inequality in (3I) and the estimate of ¢_ in H'(Y;L*(2)). From

Theorem 2.2 in [I5] and (3.4]) we obtain a finer estimate of ¢, in H(Y; (H;(Q))/)
||55||H1(Y;(Hp1(9))’) < Ce(llo/pllra@) +elldlly,)-

It is the second inequality in (B3.1]). O

Theorem 3.2. For ¢ € H} (), there exists 6. € H:

per

(Y L*(Q2)) such that

el (viL20)) < ClIVOlliz2@n,

. (3.6)
Te(V§) = Vo = Vydelliroy oy < Cellollip-

The constants depend only on OS).
Proof. Let ¢ be in H{, () and ¢ = ¢/p € H§(Q2). The function ¢ is extended by 0

1/p
outside of 2. We decompose ¢ as

¢=®+ep, where ®=0Q.(¢.) and ¢ = %(qﬁ - Qa(qﬁa))

where ¢, is given by Lemma 24 We have ® and ¢ € H;(2) and due to ([Z27) we get
the following estimates:

D1/ +ell@ll1yp + 1@/l L2) < Cll@]]1/p- (3.7)

The projection TheoremB.Ilapplied to ¢ € Hj, () gives an element o, in H)..(Y; L*(Q))
such that R
|[@ell 21 (viz2)) < Clldl]1)ps

= (3.8)
Te(@) = Pell i vz yyy < Celldlly

15



Now we evaluate ||7:(V®) — V(I)H[L?(Y;(H;(Q))’)]"‘
From (2.24)), (2.27), and (3.7) we get

IV® = M (V)| (111 0mmyy < Celldllayp- (3.9)
We set
HO(2) = (1—]2)@=|zs]) ... (1= |zal) if 2= (21,20,...,20) € [-1,1]",
0 if zeR"\[-1,1]"

I:{i\i:z’2e2—|—...+inen, (i2,...,in)e{0,1}”‘1}

For £ € Z" and for every (z,y) € e(§ +Y) X Y we have

7;@_2) e =3 M(6.) (2(€ + &1 + i)g) — M.(6:) (e(€ +1)) HO(y — i)
L e +e1+1i) — Mc(:)(e(€ +1)
M. < ) ) = on— 12 g) (8 )

iel
Now, let us take ¢ € H;(Q). We recall that ¢.(z) = 0 for a.e. z € R” \56\/56, hence

8(I)> =01in A..

¢(z) =0 for x € R” \63\/55; as a first consequence /\/15(6—
X1

For y € Y we have

< E(S—i)(.,y) - M€(§z> V> )y my@) = /{E(Si)( LY) — Mg(g—i)(x)}lp(x)dx
- [ {75 - w5 @Mt
Besides we have
/ M (o) (M () @) = & > Ms<§—‘1’) () M) (=€)
Z Z (€ + e +1) — Mc(¢) (e +1))

- 5 8 M)
Eezn iel
- 3 ZZMEW&(g_eQ) MDD (g ete + 1)
Eezn iel
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and

A ﬁ(?—i)@,ywe(w(x)dx

Qe

=" [ et )E) Meld) (€ +D) } HY (y — i) M (¢)(e€)
gezr i€l

=y 3o MDA o)) MDD o oyt + )
gezr i€l

Due to the fact that ¢.(x) = 0 for a.e. z € R” \66\/55, in the above summations we
only take the £’s belonging to =. and satisfying p(¢£) > 34/ne. Hence

<7;(§—i)(-,y) —Ms(gj)) Y >y By

o Z Ma(¢)(5(f - eli) (¢)(€f)) Z [H(l)(y —i) —
ol icl

L1 ML) (o6 + 1)),

2

1
1} = 0 we obtain that

Thanks to the identity relation Z [H Wy —1i) — T

i€l

‘ Z [H(l)(y - 1) - 2n1_1]Ma(¢a)(5(§ + 1))‘ < Z }Ma(¢a)(€(€ + 1)) - Me(¢e)(5€)}

iel il
Taking into account the last equality and inequality above we deduce that
0P 0P

a_g:1> (wy) = Mf(a_xl) V> @) Hy@)

_n Z Z ‘M5(¢) (5(5 - el)) - Ms(w) (55)) “ME(@)@(S + i)) . Mg(¢a)(€§)‘

£
cezm i€l

<7;(

=3 [ M0 = ) = M| IML8(+ 20) = Me(or)

iel

<E 3 I ML) = 200) = M) | (M8 -+ 50— M(6)

iel

Due to (2.23); and (2.27), we finally get

L2(Q)

0P 0o
< T (g ) 6 9) = Me(G )% >y e < Cllédd vl

It leads to 9% -
[7(5%) = (50 ) | e oy = ColI0elso (3.10)
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Besides we have

0
/ 37? () / o(x) 75— (x)dz < Cllo/pll 2@ |[¥ll, < Clll1ypl 1],

Hence

< Ce¢l|#]|1,- This last estimate with (2.10),, (3.9) and (B.10)

H (%1 H (H}(QR"))
yield - 96
(5) o < Cel|édl
In the same way we prove the estimates for the partial derivatives of ® with respect
to x;, 1 € {2,...,n}. Hence we get [|[T2(V®) — Vo 1oy, @Y < Ce||pe||1/p- Then
thanks to (B.8) the second estimate in (B.6]) is proved. O

Lo (Y5(HA(Q))

4 Reminds about the classical periodic homogeniza-
tion problem

We consider the homogenization problem

¢ € Hy(9), /QAE(:C)ng(x)vqp(x)dx = /Qf(fﬁ)wﬂ?)dﬂ?, Vi € Hy(Q), (4.1)

where
o A(x) = A<{£}> for a.e. x € (), where A is a square matrix belonging to
€

L>®(Y;R™") and satisfying the condition of uniform ellipticity c|¢]? < A(y)€ - € for a.e.
y € Y, with ¢ a strictly positive constant,

o fcL2(Q).
We showed in [10] that
T.(V¢*) — VO + V,¢ strongly in  L2(Q x YV;R")

where (®,¢) € HE(Q) x L2(; H)..(Y)) is the solution of the problem of unfolding
homogenization

)€ Hy(Q) x L*(Q; HE, (Y))

per

/ / DATE) + V800, )} (VU + V,0(e,) bady = [ fa)¥(a)do.
Q
The correctors x;, i € {1,...,n}, are the solutions of the variational problems
i € H;er(y) / Xi = Oa
Y

/Y AWVy(xi(y) +5:) Vyo(y)dy =0, V¢ € Hp, (V).

18



They allow to express <$ in terms of the partial derivatives of ®
~ 0P
= — i 4.
0= X (4.3)
and to give the homogenized problem satisfied by ®
® € H)(Q), / AVO(2)VU (x)dx = / f(z)V(x)dx, YU € Hy(Q) (4.4)
Q Q

where (see [10])

5 An operator from H~/?(09) into L*(Q)

From now on, Q is a bounded domain with a C*' boundary or an open bounded
convezx set.

In this section we first introduce a lifting operator T (defined by (E.11)) from H/2(9Q)
into H'(2). This operator and the estimate (5.2)) are in fact sufficient to obtain the error
estimates with a non-homogeneous Dirichlet condition (Theorem [6.3]); one of the aim
of this paper. Then we extend this operator. The extension of T from H~'/2(9) into
H) () is essential in order to get a sharper estimate (6.3) than (6.2),. In Theorem
[T1] we give an application based on (6.3), in this theorem we investigate a first case of
strongly oscillating boundary data.

Let g be in H'/2(012), there exists one ¢, € H'(€) such that

div(AV¢,) =0 in €, pg=9g on 09 (5.1)
where A is the matrix given by (45). We have
gl (@) < Cllgllazon)- (5.2)

We denote by T the operator from H'Y?(0) into H'()) which associates to g €
HY2(09) the function ¢, € H ().

Now, let (1, ¥) be a couple in [C*°(Q2)]?, integrating by parts over 2 gives
/ AV (2) VI (2) / Y(2)div(ATV) (z)dr + [ (x)(ATVE)(2)dz - v(z)do.
o0

The space C*(2) being dense in H'(Q) and H?(£2), hence the above equality holds true
for any ¢ € H'(Q) and any ¥ € H?*(Q2). Hence, for ¥ € Hj(Q) N H*(Q) and ¢, defined

by (B1]) we get
/qug(x)div(ATV\I/)(x)dx = / g(z) (ATVU)(z) - v(z)do. (5.3)

o0
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Under the assumption on 2 the function ¥(g) defined by
U(g) € Hy(Q),  div(ATV¥(g))=¢, in Q
belongs to Hi(Q) N H?(2) and satisfies
W ()20 < Cllogllr2)-
Taking ¥ = ¥(g) in the above equality (5.3]) we obtain

]Qu%cwﬁdx=:égg@»cATv¢«gxx»-u@»mfs|@HH1&@QJKATV¢«m>-wnpm@m

< C||g||H*1/2(8Q)||\D(g)||H2(Q)-
This leads to
[égllL2) < Cllgllir-1/2(90)- (5.4)

Due to (5.4, the operator T admits an extension (still denoted T) from H~/2(9Q)
into L*(€) and we have

Vg e H'2(09),  [IT(9)|le2@) < Cllglla-120).

For g € H='/2(092), we also denote ¢, = T(g). This function is the ”very weak” solution
of the problem

by € L* (), div(AVe,) =0 in Q, bg=9 on 0N
or the solution of the following:
g € L*(9),
/Q¢g(93) div(ATV(z))de =< g, (ATVY) - v > 51200 51/2(009) (5.5)
vy € Hy(Q) N H*(Q).
Lemma 5.1. The operator T is a bicontinuous linear operator from H~Y2(082) onto
H = {qb e LX) | div(AVe) =0 in Q}
There exists a constant C' > 1 such that

_ 1
vge H200),  Zlgll-on < IT@lee < Cllglls-veen.  (56)

Proof. Let ¢ be in H we are going to prove that there exists an element g € H~/2(99)
such that T(g) = ¢. To do that, we consider a continuous linear lifting operator R from
HY2(08) into H} (Q) N H?(Q) satisfying for any h € HY2(082)

R(h) € H}(Q) N H*(N),

ATVR(h)jpa-v="h on 0f),

[IR(A) 1202 < ClIA 17260
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The map h — / ¢ div(ATVR(h)) is a continuous linear form defined over H'/2(052).
Thus, there exists g € H~'/2(99) such that

/ 6 div(ATTR(R)) =< g, h > 4172000 1172001 - (5.7)
Q

Since ¢ € H, we deduce that for any ¢ € C3°(§2) we have / ¢ div(ATVep) = 0. There-
Q

fore, for any ¢ € H3(Q2) we have /¢diV(ATV¢) = (. Taking into account (B.7) we
Q
get

/Q ¢ div(ATVY) =< g, (ATVY) - v > po1pp0) merea), V€ Hy(Q) N H?(Q).

It yields ¢ = ¢, and then (5.6). O

Remark 5.2. It is well known (see e.g. [18]) that every function ¢ € H also belongs to
H) () and verifies
oll, < Clioll2 - (5.8)

6 Error estimates with a non-homogeneous Dirich-
let condition

Theorem 6.1. Let (¢€)6>0 be a sequence of functions belonging to H*(Y) such that
div(A.Ve) =0 in Q. (6.1)

Setting g. = ¢jpq and ¢g. = T(g:) € HY(Q), there exists g > 0 such that for every
e < gq we have

&%) < Cllgell mrr2o0), 16° = dg.llz2@) < C2||gell /200,
Jo(76 = P00 = 3 0 (52) 906 (), < €2l sy o2
i=1 ¢ ’
Moreover we have
16110 < C(2[19ell mrr200) + 19l -17200) ) - (6.3)

The x;’s are the correctors introduced in Section [§] and T is the operator defined in
Section [
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Proof. Step 1. We prove the first estimate in (6.2]). From Section [ we get
g llr@) < Cllgellmroa)  lgllo < Cllgellu-172(00)- (6.4)
We write (6.1)) in the following weak form:

¢E = QEE + ¢gea an S H&(Q)

. 6.5
/A€V¢€Vv = —/AEVQZ)QEVU Yo € Hy(Q). (6.5)
Q Q
The solution ¢, of the above variational problem satisfies
16ella1(0) < ClIVg.[l12mn).
Hence, from (6.4]), and the above estimate we get the first inequality in (€.2]).
Step 2. We prove the second estimate in (6.2)).
For every test function v € H}(£2) we have
/ AVEVo = 0. (6.6)
Q

Now, in order to obtain the L? error estimate we proceed as in the proof of the Theorem
3.2 in [16]. We first recall that for any ¢ € H'(Q2) we have (see Lemma [2.3) for every

e <ey=/3vVn
il o < O 2116l e

Let U be a test function belonging to H}(Q) N H*(Q). The above estimate yields

IVU] 2, ) < CeV2||U| 2o (6.7)

ﬁScOﬁs;Rn
which in turn with (2.12)-(2.13)-(2.14), and ©.2),-(6.6) lead to
[ AT @) VU @dads]| < O gl Vs (69)
XY
The Theorem 2.3 in [16] gives an element ¢. € L2(€; H. (Y)) such that

p

||T(V¢E) - V¢€ - VyQSEH[LQ(Y;(Hl(Q))/)]n S 051/2||V¢8| |L2(Q;Rn)

(6.9)
< 081/2||g€HH1/2(3Q)'

The above inequalities (6.8) and (G.9) yield

| /Q YA(V¢€+quASE)VU‘ < CE2 gl msaomm 1T 20, (6.10)
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We set (2)
n _ p\r
Vr e R", pe() —1nf{1, . }

Now, we take Y € H! (V) and we consider the test function u. € H}(2) defined for

a.e. x € (1 by "
wla) = 200 (5 ) x (2).

5
Due to (2.2I)), and (6.7) we get

Jo-(5;,)vix(2)

Then by a straightforward calculation and thanks to (2.21]),-(2.22)), and (6.7)-(6.11]) we

obtain Hvu€ Q6<3U>Vyx< )

which in turn with again (6.11) give

< C?||U|| 2oy |1X |2 (v (6.11)

LQ(Q\/EE;R”)

< C2||U|| 2o X 111 v

L2(Q;R")

190 sy < O N0 N2yl ¥ iy (6.12)

and then with (2.22), they lead to

7o = 2. (57) v ()

Ox; < Ce?||U|| (e 1% |1 (v -

L2(Q;R™)

In (IBEI) we replace Vu, with M, (gg)Vyx< ); we continue using (ZI12)-(ZI3) and

(6.2),-([@12) to obtain
_ oU N _
[ AT )M (5,) @) dads] < C 2l U1l |
Qxy L
which with (2.I7), and then (£.9) give

ou _ _
[ AT @10, 0V dy| < € gl |0 v K

(6.13)
As in [16] we introduce the adjoint correctors X; € H),,.(Y), i € {1,...,n}, defined by

| AV ) 4wy =0 € (), (6.14)
From (6.13) we get

‘ /QXY AV + qul)vy(g ggiz)

< C"?||gel 2 ooy [1U | 20
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and from the definition (£2) of the correctors y; we have

oA e () =

Thus

~ 09 " 0U _
‘/Qxy AVy(“bf "L, )92 Oz; )| < 2 2Hgellvaiony U
7=1
and thanks to (6.I4) we obtain

~ "L dgF
| / AV, (6. = 3 ) VU] < Ce2llgulloony U s
QxY i=1 %

The above estimate, (6.10) and the expression (£H) of the matrix A yield

| [ Av6rvU| < € gl Ul
Finally, since we have / AV ¢, Vv =0 for any v € Hj (), we deduce that
Q

e B@NH@, | [ AV - 0,)V0] < C g llson 1V o
Now, let U. € H3(€2) be the solution of the following variational problem:

/AVuVUe = / v(¢F — @), Vv e HYQ).
Q Q

Under the assumption on the boundary of 2, we know that U. belongs to HJ (2)NH?(12)
and satisfies ||U.||g2(q) < C||¢°—dq.||L2() (the constant do not depend on €). Therefore,
the second estimate in (6.2]) is proved.

0
Step 3. We prove the third estimate in (6.2) and (6.3]). The partial derivative %

T
satisfies 9 0
Jge o . UPg. 9
d1V<AV( oz, )) =0 in o, e L}(Q).
Thus, from Remark 5.8 and estimate (6.4), we get
8¢95 8(%5
HpV( ox; ) L2(QR?) CH ox; N2 = < Cllgell 17200 (6.15)

Now, let U be in HJ (), the function pU belongs to H/ (©2). Applying the Theorem
with the function pU, there exists u. € L*(Q; H..(Y)) such that

per

| Te(V(pU)) — V(pU) — vyaeHL?(Y;(H,}(Q;R" < C'5||/)U||Hl () < Ce||Ul|m1 () (6.16)
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The above estimates (6.15]) and (6.16) lead to

< Cel|U| @19l m1r2 00

‘/Qxy V‘bgs""Z ¢gsvaZ>< (V(PU)) V(pU)—Vyﬂ€>

By definition of the correctors y; we have

/QXY (V¢QS+Z %v Yi) Vit = 0.

Besides, from the definitions of the function ¢, and the homogenized matrix A we have

OZ/QAV%EV(pU) zfgxyA<V¢gs+iZ:;

The above inequality and equalities yield

’ /f;xY v¢gs - Z

We have

a¢gs
AV Vo).

09y
. Vy)@) V(pU))‘ < Ce||VU| 2| gellmr1r2 00y (6.17)

V(pU) = p(VU + vp%).

Then since U/p € L*(Q) and ||U/p||12(0) < C||VU||12@rn) and due to (B.2) we get

U
< CaHVU FVp~
p 1 L2(Q;Rn)

< Ce||U .
L2(Q;R") < Celltllar e

(Vo) = T (VU + 9 )

From (6.I7) and the above inequalities we deduce that

"9, U
e ) — ) < 2(Q:Rn 1/2 .
| (e + > g Vo) (VU + 9o )| < CelITU sz gl s
We recall that pV¢,. € Hy(2;R™), hence from (2.14)),, (ZI7), and ([G.I5) we get
0o u
PV g + > p 5V Xi ) T:( VU + Vp—
‘/QXY ! Z ! ) ( )

_/QXY ( (PV5.) +ZM ( (Z]s)VyXi)ﬁ(VUJFW%)’ < Ce||VU| 2z |9l 112 (00

7

Then transforming by inverse unfolding we obtain

| / (p905. + ZM (v ;jjj)vyxi@) (vu+ w%) | < Cel[ VU2

|9¢| |H1/2(aQ) .
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Now, thanks to (Z28) and (G.15]) we get

[ A V%ﬁrZM () ¥ () (0995 )| < CelITUl .oy

T

Then using ([2:29), it leads to

(2

| [ 460+ 30 (52 9 () V00| < CelITUlln oo
i=1

Werecallthat/AngSE (pU) = 0. We choose U = ,0<¢ — g — EZQa<a¢gE>X2(;>>

81’7; 3
which belongs to H}(Q2). Due to the second estimate in (G.2)), the third one in (6.2))
follows immediately.

The estimate (6.3)) is the consequence of (2.29),, (€.2),, [6.2),, (€.4), and (615). O

Corollary 6.2. Let (¢5)6>0 be a sequence of functions belonging to H'(Q) and satisfying
@©1). We set g. = Ploq: if we have

g- — g weakly in Hl/Q(GQ)

then we obtain

¢ — ¢, weakly in H'(Q),

g 0 : , 6.18
O by -y Qg(%)xi<g) —5 0 strongly in H(Q). (6.18)
i=1 v

Moreover, if
g- — g strongly in  HY*(0Q) (6.19)

then we have
¢°— ¢y — 5Zn: Q. <%)Xi(;> — 0 strongly in ~ H'(). (6.20)

g i—1 81’7, 3

Proof. Thanks to (6.2)), the sequence (¢5)6>0 is uniformly bounded in H*(€2). Then due
to Lemma [5.1] and Remark 5.8 we get

H¢g - ¢95Hp <Cllg - g:—:HH*W(aQ)

which with (62), (resp. ([62),) give the convergence (GI8), (resp. (6I8),).

Under the assumption (6.19]), we use (5.2)) and we proceed as in the proof of the Theorem
6.1 of [10] in order to obtain the strong convergence (G.20). O
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Theorem 6.3. Let ¢° be the solution of the following homogenization problem:

—div(AEngE) =f in €, o°=g on 00
where f € L*(Q) and g € HY?(0Q). We have
67 — @|[r2(0) < C{€||f||L2 + &gl 200}

Jo(vo 902 (5) v ()
where ® is the solution of the homogenized problem

—dw(AV(I)):f in €, =g on 0N

L2(Q;Rn)

Moreover we have
¢ — D — EZ": Q (0_(1)) (—) — 0 strongly in  H'(Q)
2502 gly :
Proof. Let 55 be the solution of the homogenization problem
¢ € Hi(Q),  —div(AV¢)=f i Q
and @ the solution of the homogenized problem
e HYQ), —div(AV®)=f in Q.
The Theorem 3.2 in [I6] gives the following estimate:

o oo (-5 $0 (B ()
while the Theorem 4.1 in [15] gives
o=@ =30 (5 ()l
The function ¢° — 5‘3 satisfies

div(A€V(qz5€ — 55)) =0 in €, o — 5‘5 =g on S

< (Ce
sy < Cellfllzz

< C"?||f|l 120y

HY(Q)

< C{el|fllr2) + 51/2||9||H1/2(ag)}

(6.21)

(6.22)

(6.23)

Thanks to the inequalities (6.2)) and (6.22]) we deduce the estimates of the theorem. The
strong convergence (6.21]) is a consequence of (6.23)) and the strong convergence (6.20)

after having observed that ® — ® = ¢,.

0

Remark 6.4. In Theorem 6.3, if g € H*?(09) then in the estimates therein, we can
replace €2 g|| 1200y with €g]|ga2(any.  Moreover we have the following H'-global

error estimate:

’ - _5296(&,;2) ()’

H(Q)
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7 A first result with strongly oscillating boundary
data

In this section we consider the solution ¢° of the homogenization problem
div(A.V¢T) =0 in Q

1
O° = g. on 0f2 (7.1)

where g. € HY?(9%). As a consequence of the Theorem we obtain the following
result:

Theorem 7.1. Let ¢° be the solution of the problem ([1)). If we have
ge = ¢ weakly in  H™V(0Q)

and
e2g. — 0 strongly in  HY*(0Q) (7.2)

then
¢° — ¢y weakly in H;(Q). (7.3)

Furthermore, if we have
ge — g strongly in  H™Y?(0Q)
then

(2

— ¢y, —¢ ZX:; Q. (aaigs )Xl<g) — 0 strongly in H)(). (7.4)

Proof. Due to (6.3) the sequence (¢5)5>0 is uniformly bounded in H;(Q). From the
estimates (6.2), and (6.4]), we get

a¢gs )
o —ou—=3- 2.5 )
Then using the variational problem (5.5) and estimate (6.4]), we obtain
¢g. = ¢y weakly in  H)().

a¢g e
ox;

< C’al/zngHHl/z(aQ)'

Hy ()

Since the sequence e Z Q€< ) xz( ) is uniformly bounded in H;(Q) and strongly

converges to 0 in L?(Q2), we have € Z QE< ¢gf) (g) — 0 weakly in H}(€2). Therefore

the weak convergence (7.3)) is proved
In the case g. — g strongly in H~Y/2(99), the estimates (5.4) and (5.8) lead to

||¢gs ¢g||H1 < CHga 9||H*1/2(89)-
Hence with (2.29), they yield (7.4). O
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In a forthcoming paper we will show that in both cases (weak or strong convergence of
the sequence (g.).o towards g in H~'/2(9€)) the assumption (7.2) is essential in order
to obtain at least (T.3]).
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