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Abstract

In this paper we investigate the homogenization problem with a non-homogeneous
Dirichlet condition. Our aim is to give error estimates with boundary data in
H1/2(∂Ω). The tools used are those of the unfolding method in periodic homoge-
nization.

1 Introduction

We consider the following homogenization problem:

φε ∈ H1(Ω), −div
(
Aε∇φε) = f in Ω, φε = g on ∂Ω (1.1)

where Aε is a periodic matrix satisfying the usual condition of uniform ellipticity and
where f ∈ L2(Ω) and g ∈ H1/2(∂Ω)1. We know (see e.g. [4], [10], [13]) that the function
φε weakly converges in H1(Ω) towards the solution Φ of the homogenized problem

Φ ∈ H1(Ω), −div
(
A∇Φ) = f in Ω, Φ = g on ∂Ω (1.2)

where A is the homogenized matrix (see (4.4) and (4.5)). Using the results in [10] we
can give an approximation of φε belonging to H1(Ω) and we easily obtain

φε − Φ− ε
n∑

i=1

Qε

( ∂Φ
∂xi

)
χi

( .
ε

)
−→ 0 strongly in H1(Ω)

where Qε is the scale-splitting operator (see [10] or Subsection 2.4) and where the χi are
the correctors (see (4.2)).

One of the aim of this paper is to give error estimates for this homogenization
problem. Obviously, if we have g ∈ H3/2(∂Ω) and the appropriate assumptions on

1The homogenization problem with Lp boundary data is investigated in [3].
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the boundary of the domain then we can apply the results in [4], [13], [14], [15], [16]
and [22] to deduce error estimates. All of them require that the function Φ belongs
at least to H2(Ω). Here, the solution Φ of the homogenized problem (1.2) is only in
H1(Ω) ∩H2

loc(Ω). In this paper we have to deal with this lack of regularity; this is the
main difficulty.

The tools of the unfolding method in periodic homogenization to obtain error esti-
mates (see [14], [15] and [16]) are the projection theorems. This is why we prove two
new projection theorems; the Theorems 3.1 and 3.2. Here, both theorems concern the
functions φ ∈ H1

0 (Ω) satisfying ∇φ/ρ ∈ L2(Ω;Rn) where ρ(x) is the distance between
x and the boundary of Ω. In the first one we give the distance between Tε(φ) (see
[10] or Subsection 2.4.1 for the definition of the unfolding operator Tε) and the space
L2(Ω;H1

per(Y )) in terms of the L2 norms of φ/ρ and ∇φ/ρ and obviously ε. In the
second one we prove an upper bound for the distance between Tε(∇φ) and the space
∇H1(Ω) ⊕ ∇yL

2(Ω;H1
per(Y )); again in terms of the L2 norms of φ/ρ and ∇φ/ρ and ε

(see Section 3). This last theorem is partially a consequence of the first one. In this
paper we derive the new error estimates from the second projection theorem and those
obtained in [16].

Different results are known about the globalH1 error estimate regarding the classical
homogenization problem (1.1) (see e.g. [4], [13]). Those with the minimal assumptions
are given in [15]; if the solution of the homogenized problem (1.2) belongs to H2(Ω)
-see Proposition 4.3 in [15]- (respectively H3/2(Ω); see Theorem 3.3 in [16]) then the H1

global error is of order ε1/2 (resp. ε1/4) while if this solution belongs to H2
loc(Ω)∩W 1,p(Ω)

(p > 2) the obtained H1 global error is smaller and depends on p (see Proposition 4.4 in
[15])2. Here, with a non-homogeneous Dirichlet condition belonging only to H1/2(∂Ω)
we do not obtain a global H1 error estimate. The L2 global error estimate only requires
a boundary of Ω sufficiently smooth (of class C1,1) or a convex open set. Obviously if it
is possible to make use of a global H1 error estimate, the L2 global error will be better
(the reader will be able to compare the Theorem 3.2 in [16] with the Theorem 6.3). The
H1 local error estimate is always linked to the L2 global error and never needs more
assumption (see Theorem 3.2 in [16] or the proof of Theorem 6.1).

The paper is organized as follows. In Section 2 we introduce a few general notations,
then we give some reminds3 on lemmas, definitions and results about the unfolding
method in periodic homogenization (see [10]), then we prove some new results involving
the main operators of this method. Section 3 is devoted to the new projection theorems.
In Section 4, we recall the main results on the classical homogenization problem. In
Section 5 we introduce an operator which allows to lift the distributions belonging to
H−1/2(∂Ω) in functions belonging to L2(Ω); this lifting operator will play an important
role in the case of strongly oscillating boundary data. In Section 6 we derive the error
estimates results (Theorems 6.1 and 6.3) with a non-homogenous Dirichlet condition. We

2These propositions or theorem are proved with a Dirichlet condition, with a non-homogenous
Dirichlet condition belonging to H3/2(∂Ω) the results are obviously the same.

3We want to simplify the reading to a non-familiar reader with the unfolding method

2



end the paper by investigating a case where the boundary data are strongly oscillating
(see Theorem 7.1 in Section 7). A forthcoming paper will be devoted to homogenization
problems with other strongly oscillating boundary data.

As general references on the homogenization theory we refer to [1], [4] and [13]. The
reader is referred to [10], [12] and [13] for an introduction of the unfolding method in
periodic homogenization. The following papers [5], [6], [7], [8], [11], [19], [24] give various
applications of the unfolding method in periodic homogenization. As far as the error
estimates are concerned, we refer to [2], [4], [14], [15], [16], [20], [22] and [23].

Keywords: periodic homogenization, error estimate, non-homogeneous Dirichlet con-
dition, periodic unfolding method.

Mathematics Subject Classification (2000): 35B27, 65M15, 74Q15.

2 Preliminaries

2.1 Notations

• The space R
k (k ≥ 1) is endowed with the standard basis

(
e1, . . . , ek

)
; the euclidian

norm is denoted | · |.
• We denote by Ω a bounded domain in R

n with a Lipschitz boundary.4 Let ρ(x) be
the distance between x ∈ R

n and the boundary of Ω, we set

Ω̃γ =
{
x ∈ Ω | ρ(x) < γ

} ˜̃
Ωγ =

{
x ∈ R

n | ρ(x) < γ
}

γ ∈ R
∗+.

• There exist constants a, A and γ0 strictly positive and M ≥ 1, a finite number N of
local euclidian coordinate systems (Or; e1r, . . . , enr) and mappings fr : [−a, a]n−1 −→ R,
Lipschitz continuous with ratio M , 1 ≤ r ≤ N , such that (see e.g. [17] or [18])

∂Ω =
N⋃

r=1

{
x = x

′

r + xnrenr ∈ R
n | x′

r ∈ ∆a and xnr = fr(x
′

r)
}
,

where x
′

r = x1re1r + . . .+ xn−1ren−1r, ∆a =
{
x

′

r | xir ∈]− a, a[, i ∈ {1, . . . , n− 1}
}

Ω̃γ0 ⊂
N⋃

r=1

Ωr ⊂ Ω, Ωr =
{
x ∈ R

n | x′

r ∈ ∆a and fr(x
′

r) < xnr < fr(x
′

r) + A
}

˜̃
Ωγ0 ⊂

N⋃

r=1

{
x ∈ R

n | x′

r ∈ ∆a and fr(x
′

r)− A < xnr < fr(x
′

r) + A
}

∀r ∈ {1, . . . , N}, ∀x ∈ Ωr we have
1

2M
(xnr − fr(x

′

r)) ≤ ρ(x) ≤ xnr − fr(x
′

r).

(2.1)

4In Section 5 and those which follow, we will assume that Ω is a bounded domain of class C1,1 or an
open bounded convex set.
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• We set
Y =]0, 1[n, Ξε =

{
ξ ∈ Z

n | ε(ξ + Y ) ⊂ Ω
}
,

Ω̂ε = interior
( ⋃

ξ∈Ξε

ε(ξ + Y )
)
, Λε = Ω \ Ω̂ε,

where ε is a strictly positive real.

• We define

⋆ H1
ρ(Ω) =

{
φ ∈ L2(Ω) | ρ∇φ ∈ L2(Ω;Rn)

}
,

⋆ L2
1/ρ(Ω) =

{
φ ∈ L2(Ω) | φ/ρ ∈ L2(Ω)

}
,

⋆ H1
1/ρ(Ω) =

{
φ ∈ H1

0 (Ω) | ∇φ/ρ ∈ L2(Ω;Rn)
}
.

We endow H1
ρ(Ω) (resp. H

1
1/ρ(Ω)) with the norm

∀φ ∈ H1
ρ(Ω), ||φ||ρ = ||φ||L2(Ω) + ||ρ∇φ||L2(Ω;Rn)

( resp. ∀φ ∈ H1
1/ρ(Ω), ||φ||1/ρ =

∥∥∇φ/ρ
∥∥
L2(Ω;Rn)

).

Note that if φ belongs to H1
ρ(Ω) then the function ψ = ρφ is in H1

0 (Ω) and vice versa if
a function ψ belongs to H1

0 (Ω) then φ = ψ/ρ is in H1
ρ(Ω) since we have (see [9] or [21])

∀ψ ∈ H1
0 (Ω),

∥∥ψ/ρ
∥∥
L2(Ω)

≤ C||∇ψ||L2(Ω;Rn). (2.2)

Below we recall a classical extension lemma which is proved for example in [15] or
which can be proved using the local charts (2.1).

Lemma 2.1. Let Ω be a bounded domain with a Lipschitz boundary, there exist c0 ≥
1 (which depends only on the boundary of Ω) and a linear and continuous extension
operator P from L2(Ω) into L2(Rn) which also maps H1(Ω) into H1(Rn) such that

∀φ ∈ L2(Ω), P(φ)|Ω = φ, ||P(φ)||L2(Rn) ≤ C||φ||L2(Ω),

||P(φ)||
L2(

˜̃
Ωγ)

≤ C||φ||L2(Ω̃c0γ)
.

(2.3)

Moreover we have

∀φ ∈ H1(Ω), ||∇P(φ)||L2(Rn;Rn) ≤ C||∇φ||L2(Ω;Rn).

From now on, if need be, a function φ belonging to L2(Ω) (resp. H1(Ω)) will be
extended to a function belonging to L2(Rn) (resp. H1(Rn)) using the above lemma. The
extension will be still denoted φ.

2.2 A characterization of the functions belonging to H1
1/ρ(Ω)

The two first projection theorems (see [15]) regarded the functions belonging to
H1

0 (Ω) while those in [16] regarded the functions in H1(Ω). In this paper we prove two
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new projection theorems which involve the functions in H1
1/ρ(Ω); this is why we first

give a simple characterization of these functions in the Lemma 2.2 below.

Observe first that if a function φ satisfies φ/ρ ∈ H1
0 (Ω) then φ belongs to H1

1/ρ(Ω).
The reverse is true.

Lemma 2.2. Let Ω be a bounded domain with a Lipschitz boundary, we have

φ ∈ H1
1/ρ(Ω) ⇐⇒ φ/ρ ∈ H1

0 (Ω).

Furthermore there exists a constant which depends only on ∂Ω such that

∀φ ∈ H1
1/ρ(Ω)

∥∥φ/ρ2
∥∥
L2(Ω)

+
∥∥φ/ρ

∥∥
H1(Ω)

≤ C||φ||1/ρ. (2.4)

Proof. Step 1. Let φ be in H1(] − a, a[n−1×]0, A[) (a, A > 0) satisfying
1

xn
∇φ(x) ∈

L2(]− a, a[n−1×]0, A[) and φ(x) = 0 for a.e. x in ]− a, a[n−1×{0}∪]− a, a[n−1×{A}.
We have ∫

]−a,a]n−1×]0,A[

|φ(x)|2
x4n

dx ≤ 1

2

∫

]−a,a]n−1×]0,A[

|∇φ(x)|2
x2n

dx. (2.5)

To prove (2.5), we choose η > 0 and we integrate by parts

∫

]−a,a]n−1×]0,A[

|φ(x)|2
(η + xn)4

dx,

then thanks to the identity relation 2bc ≤ b2 + c2 we obtain

∫

]−a,a]n−1×]0,A[

|φ(x)|2
(η + xn)4

dx ≤ 1

2

∫

]−a,a]n−1×]0,A[

1

(η + xn)2

∣∣∣ ∂φ
∂xn

(x)
∣∣∣
2

dx

≤ 1

2

∫

]−a,a]n−1×]0,A[

|∇φ(x)|2
x2n

dx.

Passing to the limit (η → 0) it leads to (2.5).

Step 2. Let h be in W 1,∞(Ω) such that

∀x ∈ Ω,

h(x) ∈ [0, 1],

h(x) = 1 if ρ(x) ≥ γ0,

h(x) = 0 if ρ(x) ≤ γ0/2.

Let φ be in H1
1/ρ(Ω). The function φh/ρ4 belongs to H1

0 (Ω), therefore as a consequence
of the Poincaré’s inequality we obtain

∫

Ω

|φ(x)h(x)|2
ρ(x)4

dx ≤ C

∫

Ω

∣∣∣∇
(φ(x)h(x)

ρ(x)4

)∣∣∣
2

dx ≤ C

∫

Ω

(
|∇φ(x)|2 + |φ(x)|2

)
dx

≤ C

∫

Ω

|∇φ(x)|2dx ≤ C

∫

Ω

|∇φ(x)|2
ρ(x)2

dx.

(2.6)
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Then using the local chart of Ωr given by (2.1), the inequality (2.5) and thanks to a
simple change of variables we get

∫

Ωr

|φ(x)
(
1− h(x)

)
|2

ρ(x)4
dx ≤ C

∫

Ωr

|∇
(
φ(x)(1− h(x)

)
|2

ρ(x)2
dx ≤ C

∫

Ωr

|∇φ(x)|2 + |φ(x)|2
ρ(x)2

dx.

Since φ ∈ H1
0 (Ω) the function φ/ρ belongs to L2(Ω) and we have (2.2). Hence, adding

these inequalities (r = 1, . . . , N) we obtain

∫

Ω

|φ(x)
(
1− h(x)

)
|2

ρ(x)4
dx ≤ C

∫

Ω

|∇φ(x)|2
ρ(x)2

dx. (2.7)

Finally φ/ρ2 ∈ L2(Ω) and (2.6)-(2.7) lead to
∥∥φ/ρ2

∥∥
L2(Ω)

≤ C||φ||1/ρ and then (2.4).

2.3 Two lemmas

In the Lemma 2.3 we give sharp estimates of a function on the boundary and in a
neighborhood of the boundary of Ω. The second estimate in (2.8) is used to obtain the
L2 global error.

Lemma 2.3. Let Ω be a bounded domain with a Lipschitz boundary, there exists γ0 > 0
(see Subsection 2.2) such that for any γ ∈]0, γ0] and for any φ ∈ H1(Ω) we have

||φ||L2(∂Ω) ≤
C

γ1/2
(
||φ||L2(Ω̃γ )

+ γ||∇φ||L2(Ω̃γ ;Rn)

)
,

||φ||L2(Ω̃γ)
≤ C

(
γ1/2||φ||L2(∂Ω) + γ||∇φ||L2(Ω̃γ ;Rn)

)
.

(2.8)

The constants do not depend on γ.

Proof. Let ψ be in H1(]− a, a[n−1×]0, A[). For η ∈]0, A[ we have

||ψ||2L2(]−a,a[n−1×{0}) ≤
C

η
||ψ||2L2(]−a,a[n−1×]0,η[) + Cη||∇ψ||2L2(]−a,a[n−1×]0,η[;Rn),

||ψ||2L2(]−a,a[n−1×]0,η[) ≤ Cη||ψ||2L2(]−a,a[n−1×{0}) + Cη2||∇ψ||2L2(]−a,a[n−1×]0,η[;Rn).

The constants do not depend on η. Now, let φ be in H1(Ω). We use the above estimates,

the local charts of Ω̃γ0 given by (2.1) and a simple change of variables to obtain (2.8).

In this second lemma we show that a function in H1
0 (Ω) can be approached by

functions vanishing close to the boundary of Ω. Among other things this lemma is used
to give an approximation of φ via the scale-splitting operator Qε (see Lemma 2.6) and
it is also used in the main projection theorem (Theorem 3.2).

6



Lemma 2.4. Let φ be in H1
0 (Ω), there exists φε ∈ H1(Rn) satisfying

φε(x) = 0 for a.e. x 6∈ Ω̃6
√
nε,

||φ− φε||L2(Ω) ≤ Cε||∇φ||L2(Ω;Rn), ||φε||H1(Ω) ≤ C||φ||H1(Ω).
(2.9)

Moreover, if φ ∈ H1
1/ρ(Ω) then we have

∥∥(φ− φε

)
/ρ
∥∥
L2(Ω)

≤ Cε||∇φ||1/ρ, ||φε||1/ρ ≤ C||φ||1/ρ. (2.10)

The constant C is independent of ε.

Proof. Let φ be in H1
0 (Ω). We define φε by

φε(x) =





(ρ(x)− 6
√
nε)+

ρ(x)
φ(x) for a. e. x ∈ Ω,

0 for a. e. x ∈ R
n \ Ω.

where δ+ = max{0, δ}. The above function φε belongs to H1(Rn) and satisfies φε = 0

outside Ω̃6
√
nε. Then due to the fact that φ/ρ belongs to L2(Ω) and verifies ‖φ/ρ‖L2(Ω) ≤

C||∇φ||L2(Ω;Rn) we obtain the estimates in (2.9). If φ ∈ H1
1/ρ(Ω) we use the estimate

(2.4) to obtain (2.10).

2.4 Reminds and complements on the unfolding operators

In the sequel, we will make use of some definitions and results from [10] concerning the
periodic unfolding method. Below we remind them briefly.

2.4.1 Some reminds

For almost every x ∈ R
n, there exists an unique element in Z

n denoted [x] such that

x = [x] + {x}, {x} ∈ Y.

• The unfolding operator Tε.

For any φ ∈ L1(Ω), the function Tε(φ) ∈ L1(Ω× Y ) is given by

Tε(φ)(x, y) =




φ
(
ε
[x
ε

]
+ εy

)
for a.e. (x, y) ∈ Ω̂ε × Y,

0 for a.e. (x, y) ∈ Λε × Y.
(2.11)

Since Λε ⊂ Ω̃√
nε, using Proposition 2.5 in [10] we get

∣∣∣
∫

Ω

φ(x)dx−
∫

Ω×Y

Tε(φ)(x, y)dxdy
∣∣∣ ≤

∫

Λε

|φ(x)|dx ≤ ||φ||L1(Ω̃√
nε)

(2.12)
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For φ ∈ L2(Ω) we have
||Tε(φ)||L2(Ω) ≤ ||φ||L2(Ω). (2.13)

We also have (see Proposition 2.5 in [10]) for φ ∈ H1(Ω) (resp. ψ ∈ H1
0 (Ω))

||Tε(φ)− φ||L2(Ω̂ε×Y ) ≤ Cε||∇φ||L2(Ω;Rn)

( resp. ||Tε(ψ)− ψ||L2(Ω×Y ) ≤ Cε||∇ψ||L2(Ω;Rn) ).
(2.14)

• The local average operator Mε

For φ ∈ L1(Rn), the function Mε(φ) ∈ L∞(Rn) is defined by

Mε(φ)(x) =

∫

Y

φ
(
ε
[x
ε

]
+ εy

)
dy for a.e. x ∈ R

n. (2.15)

The value of Mε(φ) in the cell ε(ξ+Y ) (ξ ∈ Z
n) will be denoted Mε(φ)(εξ). In [10] we

proved the following results:

For φ ∈ L2(Ω) we have

||Mε(φ)||L2(Ω) ≤ C||φ||L2(Ω), ||Mε(φ)− φ||H−1(Ω) ≤ Cε||φ||L2(Ω) (2.16)

and for ψ ∈ H1
0 (Ω) (resp. φ ∈ H1(Ω)) we have

||Mε(ψ)− ψ||L2(Ω) ≤ Cε||∇ψ||L2(Ω;Rn)

(resp. ||Mε(φ)− φ||L2(Ω̂ε)
≤ Cε||∇φ||L2(Ω;Rn) ).

(2.17)

• The scale-splitting operator Qε.

⋆ For φ ∈ L1(Rn), the function Qε(φ) ∈ W 1,∞(Rn) is given by

Qε(φ)(x) =
∑

ξ∈Zn

Mε(φ)(εξ)Hε,ξ(x) for a.e. x ∈ R
n,

where

Hε,ξ(x) = H
(x− εξ

ε

)
with

H(z) =

{(
1− |z1|

)(
1− |z2|

)
. . .

(
1− |zn|

)
if z ∈ [−1, 1]n,

0 if z ∈ R
n \ [−1, 1]n.

Below, we remind some results about Qε proved in [10] and [16].

⋆ For φ ∈ L2(Rn) we have

||Qε(φ)||L2(Rn) ≤ C||φ||L2(Rn), ||∇Qε(φ)||L2(Rn;Rn) ≤
C

ε
||φ||L2(Rn) (2.18)

and
Qε(φ) −→ φ strongly in L2(Rn).

8



⋆ For φ ∈ H1(Rn) we have

||∇Qε(φ)||L2(Rn;Rn) ≤ C||∇φ||L2(Rn;Rn),

||φ−Qε(φ)||L2(Rn) ≤ Cε||∇φ||L2(Rn;Rn)

(2.19)

and
Qε(φ) −→ φ strongly in H1(Rn). (2.20)

⋆ For φ ∈ L2(Rn) and χ ∈ L2(Y ) we have Qε(φ)χ
({ ·

ε

})
∈ L2(Rn), ∇Qε(φ)χ

({ ·
ε

})
∈

L2(Rn) and ∥∥Qε(φ)χ
({ ·

ε

})∥∥
L2(Rn)

≤ C‖φ‖L2(Rn)‖χ‖L2(Y ),

∥∥Qε(φ)χ
({ ·

ε

})∥∥
L2(Ω̃√

nε)
≤ C‖φ‖

L2(
˜̃
Ω

3
√

nε)
‖χ‖L2(Y ).

(2.21)

Moreover, if φ ∈ H1(Rn) then we have

∥∥(Qε(φ)−Mε(φ)
)
χ
({ ·

ε

})∥∥
L2(Rn)

≤ Cε‖∇φ‖L2(Rn;Rn)‖χ‖L2(Y ),

∥∥∇Qε(φ)χ
({ ·

ε

})∥∥
L2(Rn;Rn)

≤ C‖∇φ‖L2(Rn;Rn)‖χ‖L2(Y ),

∥∥∇Qε(φ)χ
({ ·

ε

})∥∥
L2(Ω̃√

nε;R
n)

≤ C‖∇φ‖
L2(

˜̃
Ω3

√
nε;R

n)
‖χ‖L2(Y ),

(2.22)

2.4.2 Some complements

In this subsection, we extend some results given above to functions belonging to
H1

ρ(Ω). These technical complements intervene in the proofs of the projection theorems
and in the Theorem 6.1.

Lemma 2.5. For φ ∈ H1
ρ(Ω) we have

||ρ
(
Mε(φ)− φ

)
||L2(Ω) ≤ Cε||φ||ρ,

∀i ∈ {1, . . . , n}, ||ρ
(
φ(·+ εei)− φ

)
||L2(Ω) ≤ Cε||φ||ρ,

||ρ
(
Mε(φ)(·+ εei)−Mε(φ)

)
||L2(Ω) ≤ Cε||φ||ρ.

(2.23)

For φ ∈ L2
1/ρ(Ω) we have

||Mε(φ)− φ||(H1
ρ(Ω))′ ≤ Cε||φ/ρ||L2(Ω). (2.24)

The constants do not depend on ε.

Proof. Step 1. We prove (2.23)1.

Let φ be in H1
ρ(Ω) and let ε(ξ + Y ) be a cell included in Ω.

Case 1: ρ(εξ) ≥ 2
√
nε.

9



In this case, observing that

1 ≤ maxz∈ε(ξ+Y ){ρ(z)}
minz∈ε(ξ+Y ){ρ(z)}

≤ 3

and thanks to the Poincaré-Wirtinger’s inequality we obtain
∫

ε(ξ+Y )

[ρ(x)]2|Mε(φ)(εξ)− φ(x)|2dx ≤ [ max
z∈ε(ξ+Y )

{ρ(z)}]2
∫

ε(ξ+Y )

|Mε(φ)(εξ)− φ(x)|2dx

≤ [ max
z∈ε(ξ+Y )

{ρ(z)}]2Cε2
∫

ε(ξ+Y )

|∇φ(x)|2dx

≤ Cε2
∫

ε(ξ+Y )

[ρ(x)]2|∇φ(x)|2dx.

Case 2: ρ(εξ) ≤ 2
√
nε.

In this case we have∫

ε(ξ+Y )

[ρ(x)]2|Mε(φ)(εξ)− φ(x)|2dx ≤ Cε2
∫

ε(ξ+Y )

|φ(x)|2dx.

The cases 1 and 2 lead to∫

Ω̂ε

[ρ(x)]2|Mε(φ)(x)− φ(x)|2dx ≤ Cε2
∫

Ω̂ε

(
[ρ(x)]2|∇φ(x)|2 + |φ(x)|2

)
dx. (2.25)

Since Λε ⊂ Ω̃√
nε and due to Lemma 2.1 we get
∫

Λε

[ρ(x)]2|Mε(φ)(x)− φ(x)|2dx ≤ Cε2
∫

Ω̃c0
√

nε

|φ(x)|2dx

which in turn with (2.25) gives (2.23)1. Proceeding in the same way we obtain (2.23)2
and (2.23)3.

Step 2. We prove (2.24).

Let φ be in L2
1/ρ(Ω) and ψ ∈ H1

ρ(Ω). We have
∫

Ω̂ε

(
Mε(φ)− φ

)
ψ =

∫

Ω̂ε

(
Mε(ψ)− ψ

)
φ.

Consequently we obtain
∣∣∣
∫

Ω

(
Mε(φ)− φ

)
ψ −

∫

Ω

(
Mε(ψ)− ψ

)
φ
∣∣∣ ≤

∫

Λε

∣∣(Mε(φ)− φ
)
ψ
∣∣+

∫

Λε

∣∣(Mε(ψ)− ψ
)
φ
∣∣

≤ C
(
||φ||L2(Λε) + ||Mε(φ)||L2(Λε)

)
||ψ||L2(Ω).

The inclusion Λε ⊂ Ω̃√
nε, the fact that φ ∈ L2

1/ρ(Ω) and the estimates (2.3)1-(2.23)1
lead to ∫

Ω

(
Mε(φ)− φ

)
ψ ≤ Cε||φ/ρ||L2(Ω)||ψ||ρ.

Hence (2.24) is proved.
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Lemma 2.6. For φ ∈ H1
ρ(Ω) we have

||ρ
(
Qε(φ)− φ

)
||L2(Ω) ≤ Cε||φ||ρ (2.26)

For φ ∈ H1
1/ρ(Ω) and φε given by Lemma 2.4 we have

||Qε(φε)||1/ρ ≤ C||φ||1/ρ,
∥∥(φ−Qε(φε)

)
/ρ
∥∥
L2(Ω)

≤ Cε||φ||1/ρ,
∀i = i1e1 + . . .+ inen, (i1, . . . , in) ∈ {0, 1}n∥∥(Mε(φε)(·+ εi)−Mε(φε)

)
/ρ
∥∥
L2(Ω)

≤ Cε||φ||1/ρ.
(2.27)

For φ ∈ L2(Rn) and χ ∈ L2(Y )

∥∥(Mε(ρφ)− ρMε(φ)
)
χ
({ ·

ε

})∥∥
L2(Rn)

≤ Cε‖φ‖L2(Rn)‖χ‖L2(Y ). (2.28)

For φ ∈ H1
ρ(Ω) and χ ∈ L2(Y )

∥∥ρ
(
Qε(φ)−Mε(φ)

)
χ
({ ·

ε

})∥∥
L2(Ω)

≤ Cε‖φ‖ρ‖χ‖L2(Y ),

∥∥ρ∇Qε(φ)χ
({ ·

ε

})∥∥
L2(Ω)

≤ C‖φ‖ρ‖χ‖L2(Y ).
(2.29)

The constants do not depend on ε.

Proof. Step 1. Let φ be in H1
ρ(Ω). We first prove

||ρ
(
Qε(φ)−Mε(φ)

)
||L2(Ω) ≤ Cε||φ||ρ. (2.30)

To do that, we proceed as in the proof of (2.23)1. Let ε(ξ + Y ) be a cell included in Ω.

Case 1: ρ(εξ) ≥ 3
√
nε.

In this case we have

1 ≤ maxz∈ε(ξ+Y ){ρ(z)}
minz∈ε(ξ+2Y ){ρ(z)}

≤ 4 and 1 ≤ maxz∈ε(ξ+2Y ){ρ(z)}
minz∈ε(ξ+Y ){ρ(z)}

≤ 5

2
.

By definition of Qε(φ) we deduce that
∫

ε(ξ+Y )

[ρ(x)]2|Qε(φ)(x)−Mε(φ)(εξ)|2dx ≤ [ max
z∈ε(ξ+Y )

{ρ(z)}]2
∫

ε(ξ+Y )

|Qε(φ)(x)−Mε(φ)(εξ)|2dx

≤ [ max
z∈ε(ξ+Y )

{ρ(z)}]2Cε2
∫

ε(ξ+2Y )

|∇φ(x)|2dx

≤ Cε2
∫

ε(ξ+2Y )

[ρ(x)]2|∇φ(x)|2dx.

Case 2: ρ(εξ) ≤ 3
√
nε. Then again by definition of Qε(φ) we get

∫

ε(ξ+Y )

[ρ(x)]2|Qε(φ)(x)−Mε(φ)(εξ)|2dx ≤ Cε2
∫

ε(ξ+2Y )

|φ(x)|2dx.
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As a consequence of both cases we get
∫

Ω̂ε

[ρ(x)]2|Qε(φ)(x)−Mε(φ)(x)|2dx ≤ Cε2
∫

Ω

(
[ρ(x)]2|∇φ(x)|2 + |φ(x)|2

)
dx. (2.31)

Furthermore we have
∫

Λε

[ρ(x)]2|Qε(φ)(x)|2dx ≤ Cε2
∫

Λε

|Qε(φ)(x)|2dx ≤ Cε2
∫

Ω

|φ(x)|2dx

which with (2.31) lead to (2.30). Then as a consequence of (2.23)1 and (2.30) we get
(2.26).

Step 2. We prove (2.27)1.

Let φ be in H1
1/ρ(Ω) and φε given by Lemma 2.4. Due to the fact that φε(x) = 0 for a.e.

x ∈ R
n \ Ω̃6

√
nε, hence Qε(φε)(x) = 0 for every x ∈ Ω such that ρ(x) ≤ 4

√
nε. Again we

take a cell ε(ξ+ Y ) included in Ω such that ρ(εξ) ≥ 3
√
nε. The values taken by Qε(φε)

in the cell ε(ξ + Y ) depend only on the values of φε in ε(ξ + 2Y ). Then we have
∫

ε(ξ+Y )

1

[ρ(x)]2
|∇Qε(φε)(x)|2dx ≤ C

[minx∈ε(ξ+Y ){ρ(x)}]2
∫

ε(ξ+2Y )

|∇φε(x)|2dx

≤ C
[maxx∈ε(ξ+2Y ){ρ(x)}]2
[minx∈ε(ξ+Y ){ρ(x)}]2

∫

ε(ξ+2Y )

1

[ρ(x)]2
|∇φε(x)|2dx ≤ C

∫

ε(ξ+2Y )

1

[ρ(x)]2
|∇φε(x)|2dx.

Adding all these inequalities gives
∫

Ω̃4
√

nε

1

[ρ(x)]2
|∇Qε(φε)(x)|2dx ≤ C

∫

Ω

1

[ρ(x)]2
|∇φε(x)|2dx

Since Qε(φε)(x) = 0 for every x ∈ Ω such that ρ(x) ≤ 4
√
nε, we get ||Qε(φε)||1/ρ ≤

C||φε||1/ρ. We conclude using (2.10)2.

Step 3. Now we prove (2.27)2. Again we consider a cell ε(ξ + Y ) included in Ω such
that ρ(εξ) ≥ 3

√
nε. We have

∫

ε(ξ+Y )

1

[ρ(x)]2
|Qε(φε)(x)− φε(x)|2dx ≤ C

[minx∈ε(ξ+Y ){ρ(x)}]2
∫

ε(ξ+Y )

|Qε(φε)(x)− φε(x)|2dx

≤ C

[minx∈ε(ξ+Y ){ρ(x)}]2
∑

i∈{0,1}n

∫

ε(ξ+i+Y )

|Mε(φε)(εξ + εi)− φε(x)|2dx

≤ Cε2
[maxz∈ε(ξ+2Y ){ρ(z)}]2
[minz∈ε(ξ+Y ){ρ(z)}]2

∫

ε(ξ+2Y )

1

[ρ(x)]2
|∇φε(x)|2dx ≤ Cε2

∫

ε(ξ+2Y )

1

[ρ(x)]2
|∇φε(x)|2dx.

Hence we get
∫

Ω̃4
√

nε

1

[ρ(x)]2
|Qε(φε)(x)− φε(x)|2dx ≤ Cε2

∫

Ω

1

[ρ(x)]2
|∇φε(x)|2dx
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The above estimate and the fact that Qε(φε)(x) − φε(x) = 0 for a.e. x ∈ Ω such
that ρ(x) ≤ 4

√
nε yield ||(φε −Qε(φε))/ρ||L2(Ω) ≤ Cε||φε||1/ρ. We conclude using both

estimates in (2.10).

Proceeding as in the Steps 2 and 3 we obtain (2.27)3, (2.28) and (2.29).

3 Two new projection theorems

Theorem 3.1. Let φ be in H1
1/ρ(Ω). There exists φ̂ε ∈ H1

per(Y ;L2(Ω)) such that

{
||φ̂ε||H1(Y ;L2(Ω)) ≤ C

{
||φ||L2(Ω) + ε||∇φ||[L2(Ω)]n

}

||Tε(φ)− φ̂ε||H1(Y ;(H1
ρ(Ω))

′
) ≤ Cε

(
||φ/ρ||L2(Ω) + ε||φ||1/ρ

)
.

(3.1)

The constants depend only on n and ∂Ω.

Proof. Here, we proceed as in the proof of Proposition 3.3 in [15]. We first reintroduce

the open sets Ω̂ε,i and the ”double” unfolding operators Tε,i. We set

Ω̂ε,i = Ω̂ε ∩
(
Ω̂ε − εei

)
, Ki = interior

(
Y ∪ (ei + Y )

)
, i ∈ {1, . . . , n}.

The unfolding operator Tε,i from L2(Ω) into L2(Ω×Ki) is defined by

∀ψ ∈ L2(Ω), Tε,i(ψ)(x, y) =




ψ
(
ε
[x
ε

]
Y
+ εy

)
for x ∈ Ω̂ε,i and for a.e. y ∈ Ki,

0 for x ∈ Ω \ Ω̂ε,i and for a.e. y ∈ Ki.

The restriction of Tε,i(ψ) to Ω̂ε,i × Y is equal to Tε(ψ).

Step 1. Let us first take φ ∈ L2
1/ρ(Ω). We set ψ =

1

ρ
φ and we evaluate the difference

Tε,i(φ)(., ..+ ei)− Tε,i(φ) in L
2(Y ; (H1

ρ(Ω))
′
). For any Ψ ∈ H1

ρ(Ω) a change of variables

gives for a. e. y ∈ Y

∫

Ω

Tε,i(φ)(x, y + ei)Ψ(x)dx =

∫

Ω̂ε,i

Tε(φ)(x+ εei, y)Ψ(x)dx

=

∫

Ω̂ε,i+εei

Tε(φ)(x, y)Ψ(x− εei)dx.

Then we obtain for a. e. y ∈ Y

∣∣∣
∫

Ω

{
Tε,i(φ)(., y + ei)− Tε,i(φ)(., y)

}
Ψ−

∫

Ω̂ε,i

Tε(ψ)(., y)ρ
{
Ψ(.− εei)−Ψ

}∣∣∣

≤
∣∣∣
∫

Ω̂ε,i

Tε(ψ)(., y)
(
Tε(ρ)− ρ

){
Ψ(.− εei)−Ψ

}∣∣∣+ C||Tε(φ)(., y)||L2(Ω̃2
√

nε)
||Ψ||L2(Ω̃2

√
nε)
.
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Estimate (2.23)2 leads to

||ρ
(
Ψ(.− εei)−Ψ

)
||L2(Ω̂ε,i)

≤ Cε||Ψ||ρ ∀i ∈ {1, . . . , n}.

We have
||Tε(ρ)− ρ||L∞(Ω) ≤ Cε. (3.2)

The above inequalities imply

< Tε,i(φ)(., y + ei)− Tε,i(φ)(., y) , Ψ >(H1
ρ(Ω))′ ,H1

ρ(Ω)

=

∫

Ω

{
Tε,i(φ)(x, y + ei)− Tε,i(φ)(x, y)

}
Ψ(x)dx

≤Cε||Ψ||ρ‖Tε(ψ)(., y)‖L2(Ω) + Cε||Ψ||L2(Ω)‖Tε(ψ)(., y)‖L2(Ω)

+C||Tε(φ)(., y)||L2(Ω̃2
√

nε)
||Ψ||L2(Ω̃2

√
nε)
.

Therefore, for a.e. y ∈ Y we have

||Tε,i(φ)(., y + ei)− Tε,i(φ)(., y)||(H1
ρ(Ω))′ ≤ Cε‖Tε(ψ)(., y)‖L2(Ω) + C||Tε(φ)(., y)||L2(Ω̃2

√
nε)

which leads to the following estimate of the difference between Tε,i(φ)|Ω×Y
and one of its

translated :

||Tε,i(φ)(., ..+ ei)− Tε,i(φ)||L2(Y ;(H1
ρ(Ω))′ ) ≤ Cε||φ/ρ||L2(Ω) + C||φ||L2(Ω̃2

√
nε)

≤ Cε||φ/ρ||L2(Ω).
(3.3)

The constant depends only on the boundary of Ω.

Step 2. Let φ ∈ H1
1/ρ(Ω). The above estimate (3.3) applied to φ and its partial

derivatives give

||Tε,i(φ)(., ..+ ei)− Tε,i(φ)||L2(Y ;(H1
ρ(Ω))′ ) ≤ Cε||φ/ρ||L2(Ω)

||Tε,i(∇φ)(., ..+ ei)− Tε,i(∇φ)||[L2(Y ;(H1
ρ(Ω))

′
]n) ≤ Cε||φ||1/ρ.

which in turn lead to (we recall that ∇y

(
Tε,i(φ)

)
= εTε,i(∇φ)).

||Tε,i(φ)(., ..+ ei)− Tε,i(φ)||H1(Y ;(H1
ρ(Ω))′ ) ≤ Cε

(
||φ/ρ||L2(Ω) + ε||φ||1/ρ

)
.

From these inequalities for i ∈ {1, . . . , n} we deduce the estimate of the difference of the
traces of the function y −→ Tε(φ)(., y) on the faces Yi

.
= {y ∈ Y | yi = 0} and ei + Yi

||Tε(φ)(., ..+ ei)− Tε(φ)||H1/2(Yi;(H1
ρ(Ω))′ ) ≤ Cε

(
||φ/ρ||L2(Ω) + ε||φ||1/ρ

)
. (3.4)

These estimates (i ∈ {1, . . . , n}) give a measure of the periodic defect of the function
y −→ Tε(φ)(., y) (see [15]).
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Then we decompose Tε(φ) into the sum of an element belonging to H1
per(Y ;L

2(Ω)) and

one to
(
H1(Y ;L2(Ω))

)⊥
(the orthogonal of H1

per(Y ;L
2(Ω)) in H1(Y ;L2(Ω)), see [15])

Tε(φ) = φ̂ε + φε, φ̂ε ∈ H1
per(Y ;L

2(Ω)), φε ∈
(
H1(Y ;L2(Ω))

)⊥
. (3.5)

The function y −→ Tε(φ)(., y) takes its values in a finite dimensional space,

φε(., ..) =
∑

ξ∈Ξε

φε,ξ(..)χε,ξ(.)

where χε,ξ(.) is the characteristic function of the cell ε(ξ + Y ) and where φε,ξ(..) ∈(
H1(Y )

)⊥
(the orthogonal of H1

per(Y ) in H
1(Y ), see [15]). The decomposition (3.5) is

the same in H1(Y ; (H1
ρ(Ω))

′
) and we have

||φ̂ε||2H1(Y ;L2(Ω)) + ||φε||2H1(Y ;L2(Ω)) = ||Tε(φ)||2H1(Y ;L2(Ω)) ≤ C
{
||φ||L2(Ω) + ε||∇φ||[L2(Ω)]n

}2
.

It gives the first inequality in (3.1) and the estimate of φε in H1(Y ;L2(Ω)). From
Theorem 2.2 in [15] and (3.4) we obtain a finer estimate of φε in H

1(Y ; (H1
ρ(Ω))

′
)

||φε||H1(Y ;(H1
ρ(Ω))′ ) ≤ Cε

(
||φ/ρ||L2(Ω) + ε||φ||1/ρ

)
.

It is the second inequality in (3.1).

Theorem 3.2. For φ ∈ H1
1/ρ(Ω), there exists φ̂ε ∈ H1

per(Y ;L
2(Ω)) such that

||φ̂ε||H1(Y ;L2(Ω)) ≤ C||∇φ||[L2(Ω)]n ,

||Tε(∇φ)−∇φ−∇yφ̂ε||[L2(Y ;(H1
ρ(Ω))′ )]n ≤ Cε||φ||1/ρ.

(3.6)

The constants depend only on ∂Ω.

Proof. Let φ be in H1
1/ρ(Ω) and ψ = φ/ρ ∈ H1

0 (Ω). The function φ is extended by 0
outside of Ω. We decompose φ as

φ = Φ+ εφ, where Φ = Qε(φε) and φ =
1

ε

(
φ−Qε(φε)

)

where φε is given by Lemma 2.4. We have Φ and φ ∈ H1
0 (Ω) and due to (2.27) we get

the following estimates:

||Φ||1/ρ + ε||φ||1/ρ + ||φ/ρ||L2(Ω) ≤ C||φ||1/ρ. (3.7)

The projection Theorem 3.1 applied to φ ∈ H1
1/ρ(Ω) gives an element φ̂ε inH

1
per(Y ;L

2(Ω))
such that

||φ̂ε||H1(Y ;L2(Ω)) ≤ C||φ||1/ρ,
||Tε(φ)− φ̂ε||H1(Y ;(H1

ρ(Ω))′ ) ≤ Cε||φ||1/ρ.
(3.8)
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Now we evaluate ||Tε(∇Φ)−∇Φ||[L2(Y ;(H1
ρ(Ω))′ )]n.

From (2.24), (2.27)1 and (3.7) we get

‖∇Φ−Mε(∇Φ)‖(H1
ρ (Ω;Rn))′ ≤ Cε‖φ‖1/ρ. (3.9)

We set

H(1)(z) =

{(
1− |z2|

)
(1− |z3|

)
. . .

(
1− |zn|

)
if z = (z1, z2, . . . , zn) ∈ [−1, 1]n,

0 if z ∈ R
n \ [−1, 1]n.

I =
{
i | i = i2e2 + . . .+ inen, (i2, . . . , in) ∈ {0, 1}n−1

}

For ξ ∈ Z
n and for every (x, y) ∈ ε(ξ + Y )× Y we have

Tε

( ∂Φ
∂x1

)
(x, y) =

∑

i∈I

Mε(φε)
(
ε(ξ + e1 + i)

)
−Mε(φε)

(
ε(ξ + i)

)

ε
H(1)(y − i)

Mε

( ∂Φ
∂x1

)
(εξ) =

1

2n−1

∑

i∈I

Mε(φε)
(
ε(ξ + e1 + i)

)
−Mε(φε)

(
ε(ξ + i)

)

ε
.

Now, let us take ψ ∈ H1
ρ(Ω). We recall that φε(x) = 0 for a.e. x ∈ R

n \ Ω̃6
√
nε, hence

Φ(x) = 0 for x ∈ R
n \ Ω̃3

√
nε; as a first consequence Mε

( ∂Φ
∂x1

)
= 0 in Λε.

For y ∈ Y we have

< Tε

( ∂Φ
∂x1

)
(., y)−Mε

( ∂Φ
∂x1

)
, ψ >(H1

ρ(Ω))′ ,H1
ρ(Ω) =

∫

Ω

{
Tε

( ∂Φ
∂x1

)
(x, y)−Mε

( ∂Φ
∂x1

)
(x)

}
ψ(x)dx

=

∫

Ω̂ε

{
Tε

( ∂Φ
∂x1

)
(x, y)−Mε

( ∂Φ
∂x1

)
(x)

}
Mε(ψ)(x)dx.

Besides we have
∫

Ω̂ε

Mε

( ∂Φ
∂x1

)
(x)Mε(ψ)(x)dx = εn

∑

ξ∈Zn

Mε

( ∂Φ
∂x1

)
(εξ)Mε(ψ)(εξ)

=
εn

2n−1

∑

ξ∈Zn

∑

i∈I

Mε(φε)
(
ε(ξ + e1 + i)

)
−Mε(φε)

(
ε(ξ + i)

)

ε
Mε(ψ)(εξ)

=
εn

2n−1

∑

ξ∈Zn

∑

i∈I

Mε(ψ)
(
ε(ξ − e1)

)
−Mε(ψ)

(
εξ
)

ε
Mε(φε)(ε(ξ + i))
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and
∫

Ω̂ε

Tε

( ∂Φ
∂x1

)
(x, y)Mε(ψ)(x)dx

=εn
∑

ξ∈Zn

∑

i∈I

[Mε(φε)
(
ε(ξ + e1 + i)

)
−Mε(φε)

(
ε(ξ + i)

)

ε

]
H(1)(y − i)Mε(ψ)(εξ)

=εn
∑

ξ∈Zn

∑

i∈I

Mε(ψ)
(
ε(ξ − e1)

)
−Mε(ψ)

(
εξ)

)

ε
H(1)(y − i)Mε(φε)(ε(ξ + i))

Due to the fact that φε(x) = 0 for a.e. x ∈ R
n \ Ω̃6

√
nε, in the above summations we

only take the ξ’s belonging to Ξε and satisfying ρ(εξ) ≥ 3
√
nε. Hence

< Tε

( ∂Φ
∂x1

)
(., y)−Mε

( ∂Φ
∂x1

)
, ψ >(H1

ρ(Ω))′ ,H1
ρ(Ω)

=εn
∑

ξ∈Zn

Mε(ψ)
(
ε(ξ − e1)

)
−Mε(ψ)

(
εξ)

)

ε

∑

i∈I

[
H(1)(y − i)− 1

2n−1

]
Mε(φε)(ε(ξ + i)).

Thanks to the identity relation
∑

i∈I

[
H(1)(y − i)− 1

2n−1

]
= 0 we obtain that

∣∣∣
∑

i∈I

[
H(1)(y − i)− 1

2n−1

]
Mε(φε)(ε(ξ + i))

∣∣∣ ≤
∑

i∈I

∣∣Mε(φε)(ε(ξ + i))−Mε(φε)(εξ)
∣∣.

Taking into account the last equality and inequality above we deduce that

< Tε

( ∂Φ
∂x1

)
(., y)−Mε

( ∂Φ
∂x1

)
, ψ >(H1

ρ(Ω))′ ,H1
ρ(Ω)

=εn
∑

ξ∈Zn

∑

i∈I

∣∣∣
Mε(ψ)

(
ε(ξ − e1)

)
−Mε(ψ)

(
εξ)

)

ε

∣∣∣
∣∣Mε(φε)(ε(ξ + i))−Mε(φε)(εξ)

∣∣

=
1

ε

∑

i∈I

∫

Ω

∣∣Mε(ψ)(· − εe1)−Mε(ψ)
∣∣ ∣∣Mε(φε)(·+ εi)−Mε(φε)

∣∣

≤C
ε

∑

i∈I

∥∥ρ
(
Mε(ψ)(· − εe1)−Mε(ψ)

)∥∥
L2(Ω)

∥∥∥1
ρ

(
Mε(φε)(·+ εi)−Mε(φε)

)∥∥∥
L2(Ω)

.

Due to (2.23)3 and (2.27)3 we finally get

< Tε

( ∂Φ
∂x1

)
(., y)−Mε

( ∂Φ
∂x1

)
, ψ >(H1

ρ(Ω))′ ,H1
ρ(Ω)≤ Cε||φε||1/ρ||ψ||ρ.

It leads to ∥∥∥Tε

( ∂Φ
∂x1

)
−Mε

( ∂Φ
∂x1

)∥∥∥
L∞(Y ;(H1

ρ(Ω))′ )
≤ Cε||φε||1/ρ. (3.10)
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Besides we have
∫

Ω

∂φ

∂x1
(x)ψ(x)dx = −

∫

Ω

φ(x)
∂ψ

∂x1
(x)dx ≤ C||φ/ρ||L2(Ω)||ψ||ρ ≤ C||φ||1/ρ||ψ||ρ.

Hence
∥∥∥ε

∂φ

∂x1

∥∥∥
(H1

ρ(Ω;Rn))′
≤ Cε||φ||1/ρ. This last estimate with (2.10)2, (3.9) and (3.10)

yield ∥∥∥Tε

( ∂Φ
∂x1

)
− ∂φ

∂x1

∥∥∥
L∞(Y ;(H1

ρ(Ω))′ )
≤ Cε||φε||1/ρ.

In the same way we prove the estimates for the partial derivatives of Φ with respect
to xi, i ∈ {2, . . . , n}. Hence we get ‖Tε(∇Φ) −∇φ‖[L∞(Y ;(H1

ρ(Ω))′ )]n ≤ Cε||φε||1/ρ. Then

thanks to (3.8) the second estimate in (3.6) is proved.

4 Reminds about the classical periodic homogeniza-

tion problem

We consider the homogenization problem

φε ∈ H1
0 (Ω),

∫

Ω

Aε(x)∇φε(x)∇ψ(x)dx =

∫

Ω

f(x)ψ(x)dx, ∀ψ ∈ H1
0 (Ω), (4.1)

where

• Aε(x) = A
({x

ε

})
for a.e. x ∈ Ω, where A is a square matrix belonging to

L∞(Y ;Rn×n) and satisfying the condition of uniform ellipticity c|ξ|2 ≤ A(y)ξ · ξ for a.e.
y ∈ Y , with c a strictly positive constant,

• f ∈ L2(Ω).

We showed in [10] that

Tε(∇φε) −→ ∇Φ +∇yφ̂ strongly in L2(Ω× Y ;Rn)

where (Φ, φ̂) ∈ H1
0 (Ω) × L2(Ω;H1

per(Y )) is the solution of the problem of unfolding
homogenization

∀(Ψ, ψ̂) ∈ H1
0 (Ω)× L2(Ω;H1

per(Y ))∫

Ω

∫

Y

A(y)
{
∇Φ(x) +∇yφ̂(x, y)

}{
∇Ψ(x) +∇yψ̂(x, y)

}
dxdy =

∫

Ω

f(x)Ψ(x)dx.

The correctors χi, i ∈ {1, . . . , n}, are the solutions of the variational problems

χi ∈ H1
per(Y ),

∫

Y

χi = 0,
∫

Y

A(y)∇y

(
χi(y) + yi

)
∇yψ(y)dy = 0, ∀ψ ∈ H1

per(Y ).

(4.2)
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They allow to express φ̂ in terms of the partial derivatives of Φ

φ̂ =
n∑

i=1

∂Φ

∂xi
χi (4.3)

and to give the homogenized problem satisfied by Φ

Φ ∈ H1
0 (Ω),

∫

Ω

A∇Φ(x)∇Ψ(x)dx =

∫

Ω

f(x)Ψ(x)dx, ∀Ψ ∈ H1
0 (Ω) (4.4)

where (see [10])

Aij =
n∑

k,l=1

∫

Y

akl(y)
∂(yj + χj(y))

∂yl

∂(yi + χi(y))

∂yk
dy. (4.5)

5 An operator from H−1/2(∂Ω) into L2(Ω)

From now on, Ω is a bounded domain with a C1,1 boundary or an open bounded
convex set.

In this section we first introduce a lifting operatorT (defined by (5.1)) fromH1/2(∂Ω)
into H1(Ω). This operator and the estimate (5.2) are in fact sufficient to obtain the error
estimates with a non-homogeneous Dirichlet condition (Theorem 6.3); one of the aim
of this paper. Then we extend this operator. The extension of T from H−1/2(∂Ω) into
H1

ρ(Ω) is essential in order to get a sharper estimate (6.3) than (6.2)1. In Theorem
7.1 we give an application based on (6.3), in this theorem we investigate a first case of
strongly oscillating boundary data.

Let g be in H1/2(∂Ω), there exists one φg ∈ H1(Ω) such that

div(A∇φg) = 0 in Ω, φg = g on ∂Ω (5.1)

where A is the matrix given by (4.5). We have

||φg||H1(Ω) ≤ C||g||H1/2(∂Ω). (5.2)

We denote by T the operator from H1/2(∂Ω) into H1(Ω) which associates to g ∈
H1/2(∂Ω) the function φg ∈ H1(Ω).

Now, let (ψ,Ψ) be a couple in [C∞(Ω)]2, integrating by parts over Ω gives
∫

Ω

A∇ψ(x)∇Ψ(x)dx = −
∫

Ω

ψ(x)div(AT∇Ψ)(x)dx+

∫

∂Ω

ψ(x)(AT∇Ψ)(x)dx · ν(x)dσ.

The space C∞(Ω) being dense in H1(Ω) and H2(Ω), hence the above equality holds true
for any ψ ∈ H1(Ω) and any Ψ ∈ H2(Ω). Hence, for Ψ ∈ H1

0 (Ω) ∩H2(Ω) and φg defined
by (5.1) we get

∫

Ω

φg(x)div(AT∇Ψ)(x)dx =

∫

∂Ω

g(x) (AT∇Ψ)(x) · ν(x)dσ. (5.3)
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Under the assumption on Ω the function Ψ(g) defined by

Ψ(g) ∈ H1
0 (Ω), div(AT∇Ψ(g)) = φg in Ω

belongs to H1
0 (Ω) ∩H2(Ω) and satisfies

||Ψ(g)||H2(Ω) ≤ C||φg||L2(Ω).

Taking Ψ = Ψ(g) in the above equality (5.3) we obtain
∫

Ω

|φg(x)|2dx =

∫

∂Ω

g(x) (AT∇Ψ(g)(x)) · ν(x)dσ ≤ ||g||H−1/2(∂Ω)||(AT∇Ψ(g)) · ν||H1/2(∂Ω)

≤ C||g||H−1/2(∂Ω)||Ψ(g)||H2(Ω).

This leads to
||φg||L2(Ω) ≤ C||g||H−1/2(∂Ω). (5.4)

Due to (5.4), the operator T admits an extension (still denoted T) from H−1/2(∂Ω)
into L2(Ω) and we have

∀g ∈ H−1/2(∂Ω), ||T(g)||L2(Ω) ≤ C||g||H−1/2(∂Ω).

For g ∈ H−1/2(∂Ω), we also denote φg = T(g). This function is the ”very weak” solution
of the problem

φg ∈ L2(Ω), div(A∇φg) = 0 in Ω, φg = g on ∂Ω

or the solution of the following:

φg ∈ L2(Ω),∫

Ω

φg(x) div(AT∇ψ(x))dx =< g, (AT∇ψ) · ν >H−1/2(∂Ω),H1/2(∂Ω),

∀ψ ∈ H1
0(Ω) ∩H2(Ω).

(5.5)

Lemma 5.1. The operator T is a bicontinuous linear operator from H−1/2(∂Ω) onto

H =
{
φ ∈ L2(Ω) | div(A∇φ) = 0 in Ω

}
.

There exists a constant C ≥ 1 such that

∀g ∈ H−1/2(∂Ω),
1

C
||g||H−1/2(∂Ω) ≤ ||T(g)||L2(Ω) ≤ C||g||H−1/2(∂Ω). (5.6)

Proof. Let φ be in H we are going to prove that there exists an element g ∈ H−1/2(∂Ω)
such that T(g) = φ. To do that, we consider a continuous linear lifting operator R from
H1/2(∂Ω) into H1

0 (Ω) ∩H2(Ω) satisfying for any h ∈ H1/2(∂Ω)

R(h) ∈ H1
0 (Ω) ∩H2(Ω),

AT∇R(h)|∂Ω · ν = h on ∂Ω,

||R(h)||H2(Ω) ≤ C||h||H1/2(∂Ω).
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The map h 7−→
∫

Ω

φ div(AT∇R(h)) is a continuous linear form defined over H1/2(∂Ω).

Thus, there exists g ∈ H−1/2(∂Ω) such that

∫

Ω

φ div(AT∇R(h)) =< g, h >H−1/2(∂Ω),H1/2(∂Ω) . (5.7)

Since φ ∈ H, we deduce that for any ψ ∈ C∞
0 (Ω) we have

∫

Ω

φ div(AT∇ψ) = 0. There-

fore, for any ψ ∈ H2
0 (Ω) we have

∫

Ω

φ div(AT∇ψ) = 0. Taking into account (5.7) we

get

∫

Ω

φ div(AT∇ψ) =< g, (AT∇ψ) · ν >H−1/2(∂Ω),H1/2(∂Ω), ∀ψ ∈ H1
0 (Ω) ∩H2(Ω).

It yields φ = φg and then (5.6).

Remark 5.2. It is well known (see e.g. [18]) that every function φ ∈ H also belongs to
H1

ρ(Ω) and verifies
||φ||ρ ≤ C||φ||L2(Ω). (5.8)

6 Error estimates with a non-homogeneous Dirich-

let condition

Theorem 6.1. Let
(
φε
)
ε>0

be a sequence of functions belonging to H1(Ω) such that

div
(
Aε∇φε

)
= 0 in Ω. (6.1)

Setting gε = φε
|∂Ω and φgε = T(gε) ∈ H1(Ω), there exists ε0 > 0 such that for every

ε ≤ ε0 we have

||φε||H1(Ω) ≤ C||gε||H1/2(∂Ω), ||φε − φgε||L2(Ω) ≤ Cε1/2||gε||H1/2(∂Ω),
∥∥∥ρ

(
∇φε −∇φgε −

n∑

i=1

Qε

(∂φgε

∂xi

)
∇yχi

( .
ε

))∥∥∥
L2(Ω;Rn)

≤ Cε1/2||gε||H1/2(∂Ω).
(6.2)

Moreover we have

||φε||ρ ≤ C
(
ε1/2||gε||H1/2(∂Ω) + ||gε||H−1/2(∂Ω)

)
. (6.3)

The χi’s are the correctors introduced in Section 4 and T is the operator defined in
Section 5.
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Proof. Step 1. We prove the first estimate in (6.2). From Section 5 we get

||φgε||H1(Ω) ≤ C||gε||H1/2(∂Ω) ||φgε||ρ ≤ C||gε||H−1/2(∂Ω). (6.4)

We write (6.1) in the following weak form:

φε = φ̌ε + φgε, φ̌ε ∈ H1
0 (Ω)∫

Ω

Aε∇φ̌ε∇v = −
∫

Ω

Aε∇φgε∇v ∀v ∈ H1
0 (Ω).

(6.5)

The solution φ̌ε of the above variational problem satisfies

||φ̌ε||H1(Ω) ≤ C||∇φgε||L2(Ω;Rn).

Hence, from (6.4)1 and the above estimate we get the first inequality in (6.2).

Step 2. We prove the second estimate in (6.2).

For every test function v ∈ H1
0 (Ω) we have

∫

Ω

Aε∇φε∇v = 0. (6.6)

Now, in order to obtain the L2 error estimate we proceed as in the proof of the Theorem
3.2 in [16]. We first recall that for any φ ∈ H1(Ω) we have (see Lemma 2.3) for every
ε ≤ ε0

.
= γ0/3

√
n

||φ||L2(Ω̃3c0
√
nε)

≤ Cε1/2||φ||H1(Ω).

Let U be a test function belonging to H1
0 (Ω) ∩H2(Ω). The above estimate yields

||∇U ||L2(Ω̃3c0
√
nε;R

n) ≤ Cε1/2||U ||H2(Ω) (6.7)

which in turn with (2.12)-(2.13)-(2.14)1 and (6.2)1-(6.6) lead to

∣∣∣
∫

Ω×Y

A(y)Tε(∇φε)(x, y)∇U(x)dxdy
∣∣∣ ≤ Cε1/2||gε||H1/2(∂Ω)||U ||H2(Ω). (6.8)

The Theorem 2.3 in [16] gives an element φ̂ε ∈ L2(Ω;H1
per(Y )) such that

||T (∇φε)−∇φε −∇yφ̂ε||[L2(Y ;(H1(Ω))
′
)]n ≤ Cε1/2||∇φε||L2(Ω;Rn)

≤ Cε1/2||gε||H1/2(∂Ω).
(6.9)

The above inequalities (6.8) and (6.9) yield

∣∣∣
∫

Ω×Y

A
(
∇φε +∇yφ̂ε

)
∇U

∣∣∣ ≤ Cε1/2||gε||H1/2(∂Ω)||U ||H2(Ω). (6.10)
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We set

∀x ∈ R
n, ρε(x) = inf

{
1,
ρ(x)

ε

}
.

Now, we take χ ∈ H1
per(Y ) and we consider the test function uε ∈ H1

0 (Ω) defined for
a.e. x ∈ Ω by

uε(x) = ερε(x)Qε

(∂U
∂xi

)
(x)χ

(x
ε

)
.

Due to (2.21)2 and (6.7) we get

∥∥∥Qε

(∂U
∂xi

)
∇yχ

( ·
ε

)∥∥∥
L2(Ω̃√

nε;R
n)

≤ Cε1/2||U ||H2(Ω)||χ||H1(Y ) (6.11)

Then by a straightforward calculation and thanks to (2.21)2-(2.22)2 and (6.7)-(6.11) we
obtain ∥∥∥∇uε −Qε

(∂U
∂xi

)
∇yχ

( ·
ε

)∥∥∥
L2(Ω;Rn)

≤ Cε1/2||U ||H2(Ω)||χ||H1(Y )

which in turn with again (6.11) give

‖∇uε‖L2(Ω̃√
nε;R

n) ≤ Cε1/2||U ||H2(Ω)||χ||H1(Y ) (6.12)

and then with (2.22)1 they lead to

∥∥∥∇uε −Mε

(∂U
∂xi

)
∇yχ

( ·
ε

)∥∥∥
L2(Ω;Rn)

≤ Cε1/2||U ||H2(Ω)||χ||H1(Y ).

In (6.6) we replace ∇uε with Mε

(∂U
∂xi

)
∇yχ

( ·
ε

)
; we continue using (2.12)-(2.13) and

(6.2)1-(6.12) to obtain

∣∣∣
∫

Ω×Y

A(y)Tε(∇φε)(x, y)Mε

(∂U
∂xi

)
(x)∇yχ(y)dxdy

∣∣∣ ≤ Cε1/2||gε||H1/2(∂Ω)||U ||H2(Ω)||χ||H1(Y )

which with (2.17)2 and then (6.9) give

∣∣∣
∫

Ω×Y

A(y)
(
∇φε(x)+∇yφ̂ε(x, y)

)∂U
∂xi

(x)∇yχ(y)dx dy
∣∣∣ ≤ Cε1/2||gε||H1/2(∂Ω)||U ||H2(Ω)||χ||H1(Y ).

(6.13)
As in [16] we introduce the adjoint correctors χi ∈ H1

per(Y ), i ∈ {1, . . . , n}, defined by

∫

Y

A(y)∇yψ(y)∇y(χi(y) + yi)dy = 0 ∀ψ ∈ H1
per(Y ). (6.14)

From (6.13) we get

∣∣∣
∫

Ω×Y

A
(
∇φε +∇yφ̂ε

)
∇y

( n∑

i=1

∂U

∂xi
χi

)∣∣∣ ≤ Cε1/2||gε||H1/2(∂Ω)||U ||H2(Ω)
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and from the definition (4.2) of the correctors χi we have

∫

Ω×Y

A
(
∇φε +

n∑

i=1

∂φε

∂xi
∇yχi

)
∇y

( n∑

j=1

∂U

∂xj
χj

)
= 0.

Thus

∣∣∣
∫

Ω×Y

A∇y

(
φ̂ε −

n∑

i=1

∂φε

∂xi
χi

)
∇y

( n∑

j=1

∂U

∂xj
χj

)∣∣∣ ≤ Cε1/2||gε||H1/2(∂Ω)||U ||H2(Ω)

and thanks to (6.14) we obtain

∣∣∣
∫

Ω×Y

A∇y

(
φ̂ε −

n∑

i=1

∂φε

∂xi
χi

)
∇U

∣∣∣ ≤ Cε1/2||gε||H1/2(∂Ω)||U ||H2(Ω).

The above estimate, (6.10) and the expression (4.5) of the matrix A yield

∣∣∣
∫

Ω

A∇φε∇U
∣∣∣ ≤ Cε1/2||gε||H1/2(∂Ω)||U ||H2(Ω).

Finally, since we have

∫

Ω

A∇φgε∇v = 0 for any v ∈ H1
0 (Ω), we deduce that

∀U ∈ H1
0 (Ω) ∩H2(Ω),

∣∣∣
∫

Ω

A∇(φε − φgε)∇U
∣∣∣ ≤ Cε1/2||gε||H1/2(∂Ω)||U ||H2(Ω).

Now, let Uε ∈ H1
0 (Ω) be the solution of the following variational problem:

∫

Ω

A∇v∇Uε =

∫

Ω

v(φε − φgε), ∀v ∈ H1
0 (Ω).

Under the assumption on the boundary of Ω, we know that Uε belongs to H
1
0 (Ω)∩H2(Ω)

and satisfies ||Uε||H2(Ω) ≤ C||φε−φgε ||L2(Ω) (the constant do not depend on ε). Therefore,
the second estimate in (6.2) is proved.

Step 3. We prove the third estimate in (6.2) and (6.3). The partial derivative
∂φgε

∂xi
satisfies

div
(
A∇

(∂φgε

∂xi

))
= 0 in Ω,

∂φgε

∂xi
∈ L2(Ω).

Thus, from Remark 5.8 and estimate (6.4)2 we get

∥∥∥ρ∇
(∂φgε

∂xi

)∥∥∥
L2(Ω;Rn)

≤ C
∥∥∥∂φgε

∂xi

∥∥∥
L2(Ω)

≤ C||gε||H1/2(∂Ω). (6.15)

Now, let U be in H1
0 (Ω), the function ρU belongs to H1

1/ρ(Ω). Applying the Theorem

3.2 with the function ρU , there exists ûε ∈ L2(Ω;H1
per(Y )) such that

||Tε(∇(ρU))−∇(ρU)−∇yûε||L2(Y ;(H1
ρ(Ω;Rn))

′
) ≤ Cε||ρU ||H1

1/ρ
(Ω) ≤ Cε||U ||H1(Ω). (6.16)
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The above estimates (6.15) and (6.16) lead to

∣∣∣
∫

Ω×Y

A
(
∇φgε+

n∑

i=1

∂φgε

∂xi
∇yχi

)(
Tε

(
∇(ρU)

)
−∇(ρU)−∇yûε

)∣∣∣ ≤ Cε||U ||H1(Ω)||gε||H1/2(∂Ω)

By definition of the correctors χi we have

∫

Ω×Y

A
(
∇φgε +

n∑

i=1

∂φgε

∂xi
∇yχi

)
∇yûε = 0.

Besides, from the definitions of the function φgε and the homogenized matrix A we have

0 =

∫

Ω

A∇φgε∇(ρU) =

∫

Ω×Y

A
(
∇φgε +

n∑

i=1

∂φgε

∂xi
∇yχi

)
∇(ρU).

The above inequality and equalities yield

∣∣∣
∫

Ω×Y

A
(
∇φgε +

n∑

i=1

∂φgε

∂xi
∇yχi

)
Tε

(
∇(ρU)

)∣∣∣ ≤ Cε||∇U ||L2(Ω;Rn)||gε||H1/2(∂Ω). (6.17)

We have

∇(ρU) = ρ
(
∇U +∇ρU

ρ

)
.

Then since U/ρ ∈ L2(Ω) and ||U/ρ||L2(Ω) ≤ C||∇U ||L2(Ω;Rn) and due to (3.2) we get

∥∥∥Tε

(
∇(ρU)

)
− ρTε

(
∇U +∇ρU

ρ

)∥∥∥
L2(Ω;Rn)

≤ Cε
∥∥∥∇U +∇ρU

ρ

∥∥∥
L2(Ω;Rn)

≤ Cε||U ||H1(Ω).

From (6.17) and the above inequalities we deduce that

∣∣∣
∫

Ω×Y

A
(
ρ∇φgε +

n∑

i=1

ρ
∂φgε

∂xi
∇yχi

)
Tε

(
∇U +∇ρU

ρ

)∣∣∣ ≤ Cε||∇U ||L2(Ω;Rn)||gε||H1/2(∂Ω).

We recall that ρ∇φgε ∈ H1
0 (Ω;R

n), hence from (2.14)2, (2.17)1 and (6.15) we get

∣∣∣
∫

Ω×Y

A
(
ρ∇φgε +

n∑

i=1

ρ
∂φgε

∂xi
∇yχi

)
Tε

(
∇U +∇ρU

ρ

)

−
∫

Ω×Y

A
(
Tε(ρ∇φgε) +

n∑

i=1

Mε

(
ρ
∂φgε

∂xi

)
∇yχi

)
Tε

(
∇U +∇ρU

ρ

)∣∣∣ ≤ Cε||∇U ||L2(Ω;Rn)||gε||H1/2(∂Ω).

Then transforming by inverse unfolding we obtain

∣∣∣
∫

Ω̂ε

Aε

(
ρ∇φgε +

n∑

i=1

Mε

(
ρ
∂φgε

∂xi

)
∇yχi

( ·
ε

))(
∇U +∇ρU

ρ

)∣∣∣ ≤ Cε||∇U ||L2(Ω;Rn)||gε||H1/2(∂Ω).
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Now, thanks to (2.28) and (6.15) we get

∣∣∣
∫

Ω

Aερ
(
∇φgε+

n∑

i=1

Mε

(∂φgε

∂xi

)
∇yχi

( ·
ε

))(
∇U+∇ρU

ρ

)∣∣∣ ≤ Cε||∇U ||L2(Ω;Rn)||gε||H1/2(∂Ω).

Then using (2.29)1 it leads to

∣∣∣
∫

Ω

Aε

(
∇φgε +

n∑

i=1

Qε

(∂φgε

∂xi

)
∇yχi

( ·
ε

))
∇(ρU)

∣∣∣ ≤ Cε||∇U ||L2(Ω;Rn)||gε||H1/2(∂Ω).

We recall that

∫

Ω

Aε∇φε∇(ρU) = 0. We choose U = ρ
(
φε−φgε−ε

n∑

i=1

Qε

(∂φgε

∂xi

)
χi

( ·
ε

))

which belongs to H1
0(Ω). Due to the second estimate in (6.2), the third one in (6.2)

follows immediately.

The estimate (6.3) is the consequence of (2.29)2, (6.2)2, (6.2)3, (6.4)2 and (6.15).

Corollary 6.2. Let
(
φε
)
ε>0

be a sequence of functions belonging to H1(Ω) and satisfying
(6.1). We set gε = φε

|∂Ω, if we have

gε ⇀ g weakly in H1/2(∂Ω)

then we obtain

φε ⇀ φg weakly in H1(Ω),

φε − φg − ε
n∑

i=1

Qε

(∂φg

∂xi

)
χi

( .
ε

)
−→ 0 strongly in H1

ρ(Ω).
(6.18)

Moreover, if
gε −→ g strongly in H1/2(∂Ω) (6.19)

then we have

φε − φg − ε
n∑

i=1

Qε

(∂φg

∂xi

)
χi

( .
ε

)
−→ 0 strongly in H1(Ω). (6.20)

Proof. Thanks to (6.2)1 the sequence
(
φε
)
ε>0

is uniformly bounded in H1(Ω). Then due
to Lemma 5.1 and Remark 5.8 we get

||φg − φgε||ρ ≤ C||g − gε||H−1/2(∂Ω)

which with (6.2)2 (resp. (6.2)3) give the convergence (6.18)1 (resp. (6.18)2).

Under the assumption (6.19), we use (5.2) and we proceed as in the proof of the Theorem
6.1 of [10] in order to obtain the strong convergence (6.20).
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Theorem 6.3. Let φε be the solution of the following homogenization problem:

−div
(
Aε∇φε) = f in Ω, φε = g on ∂Ω

where f ∈ L2(Ω) and g ∈ H1/2(∂Ω). We have

||φε − Φ||L2(Ω) ≤ C
{
ε||f ||L2(Ω) + ε1/2||g||H1/2(∂Ω)

}
,

∥∥∥ρ
(
∇φε −∇Φ−

n∑

i=1

Qε

( ∂Φ
∂xi

)
∇yχi

( .
ε

))∥∥∥
L2(Ω;Rn)

≤ C
{
ε||f ||L2(Ω) + ε1/2||g||H1/2(∂Ω)

}

where Φ is the solution of the homogenized problem

−div
(
A∇Φ

)
= f in Ω, Φ = g on ∂Ω.

Moreover we have

φε − Φ− ε

n∑

i=1

Qε

( ∂Φ
∂xi

)
χi

( .
ε

)
−→ 0 strongly in H1(Ω). (6.21)

Proof. Let φ̃ε be the solution of the homogenization problem

φ̃ε ∈ H1
0 (Ω), −div

(
Aε∇φ̃ε

)
= f in Ω

and Φ̃ the solution of the homogenized problem

Φ̃ ∈ H1
0 (Ω), −div

(
A∇Φ̃

)
= f in Ω.

The Theorem 3.2 in [16] gives the following estimate:

||φ̃ε − Φ̃||L2(Ω) +
∥∥∥ρ∇

(
φ̃ε − Φ̃− ε

n∑

i=1

Qε

( ∂Φ̃
∂xi

)
χi

( .
ε

))∥∥∥
L2(Ω;Rn)

≤ Cε||f ||L2(Ω) (6.22)

while the Theorem 4.1 in [15] gives

∥∥∥φ̃ε − Φ̃− ε

n∑

i=1

Qε

( ∂Φ̃
∂xi

)
χi

( .
ε

)∥∥∥
H1(Ω)

≤ Cε1/2||f ||L2(Ω). (6.23)

The function φε − φ̃ε satisfies

div
(
Aε∇(φε − φ̃ε)

)
= 0 in Ω, φε − φ̃ε = g on ∂Ω.

Thanks to the inequalities (6.2) and (6.22) we deduce the estimates of the theorem. The
strong convergence (6.21) is a consequence of (6.23) and the strong convergence (6.20)

after having observed that Φ− Φ̃ = φg.

Remark 6.4. In Theorem 6.3, if g ∈ H3/2(∂Ω) then in the estimates therein, we can
replace ε1/2||g||H1/2(∂Ω) with ε||g||H3/2(∂Ω). Moreover we have the following H1-global
error estimate:

∥∥∥φε − Φ− ε
n∑

i=1

Qε

( ∂Φ
∂xi

)
χi

( .
ε

)∥∥∥
H1(Ω)

≤ Cε1/2
{
||f ||L2(Ω) + ||g||H3/2(∂Ω)

}
.
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7 A first result with strongly oscillating boundary

data

In this section we consider the solution φε of the homogenization problem

div
(
Aε∇φε) = 0 in Ω

φε = gε on ∂Ω
(7.1)

where gε ∈ H1/2(∂Ω). As a consequence of the Theorem 6.1 we obtain the following
result:

Theorem 7.1. Let φε be the solution of the problem (7.1). If we have

gε ⇀ g weakly in H−1/2(∂Ω)

and
ε1/2gε −→ 0 strongly in H1/2(∂Ω) (7.2)

then
φε ⇀ φg weakly in H1

ρ(Ω). (7.3)

Furthermore, if we have

gε −→ g strongly in H−1/2(∂Ω)

then

φε − φg − ε
n∑

i=1

Qε

(∂φgε

∂xi

)
χi

( ·
ε

)
−→ 0 strongly in H1

ρ(Ω). (7.4)

Proof. Due to (6.3) the sequence
(
φε)ε>0 is uniformly bounded in H1

ρ(Ω). From the
estimates (6.2)3 and (6.4)2 we get

∥∥∥φε − φgε − ε
n∑

i=1

Qε

(∂φgε

∂xi

)
χi

( ·
ε

)∥∥∥
H1

ρ(Ω)
≤ Cε1/2||gε||H1/2(∂Ω).

Then using the variational problem (5.5) and estimate (6.4)2 we obtain

φgε ⇀ φg weakly in H1
ρ(Ω).

Since the sequence ε

n∑

i=1

Qε

(∂φgε

∂xi

)
χi

( ·
ε

)
is uniformly bounded in H1

ρ(Ω) and strongly

converges to 0 in L2(Ω), we have ε

n∑

i=1

Qε

(∂φgε

∂xi

)
χi

( ·
ε

)
⇀ 0 weakly in H1

ρ(Ω). Therefore

the weak convergence (7.3) is proved.

In the case gε −→ g strongly in H−1/2(∂Ω), the estimates (5.4) and (5.8) lead to

||φgε − φg||H1
ρ(Ω) ≤ C||gε − g||H−1/2(∂Ω).

Hence with (2.29)2 they yield (7.4).
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In a forthcoming paper we will show that in both cases (weak or strong convergence of
the sequence (gε)ε>0 towards g in H−1/2(∂Ω)) the assumption (7.2) is essential in order
to obtain at least (7.3).
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