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Abstract

In this paper we study the fluctuations from the limiting behavior

of small noise random perturbations of diffusions with multiple scales.

The result is then applied to the exit problem for multiscale diffusions,

deriving the limiting law of the joint distribution of the exit time and exit

location. We apply our results to the first order Langevin equation in a

rough potential, studying both fluctuations around the typical behavior

and the conditional limiting exit law, conditional on the rare event of

going against the underlying deterministic flow.

1 Introduction

Let T > 0 be given and consider a small random perturbation of dynamical
system by a Wiener process. In particular, consider the d-dimensional process
Xǫ = {Xǫ

t , 0 ≤ t ≤ T } satisfying the stochastic differential equation (SDE)

dXǫ
t = bǫ (Xǫ

t ) dt+
√
ǫσǫ (Xǫ

t ) dWt, Xǫ
0 = x0, (1.1)

where ǫ ↓ 0 and Wt is a standard d-dimensional Wiener process. The functions
bǫ(x), σǫ(x) are assumed to be sufficiently smooth.
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If bǫ(x) → b(x) and σǫ(x) → σ(x) as ǫ ↓ 0, where b(x) and σ(x) are nice func-
tions, then asymptotic behavior such as law of large numbers, central limit the-
orems and large deviations have been extensively studied in the literature,e.g.,
[9, 12] and the references therein. Scaling limits of (1.1) under the effect of dif-
ferent perturbations of the dynamics and of the initial condition are also studied
in the recent article [1].

In this article, we assume that the functions bǫ(x) and σǫ(x) are fast oscillat-
ing, in particular we set bǫ(x) = ǫ

δ b
(

x, x
δ

)

+c
(

x, x
δ

)

and σǫ(x) = σ
(

x, x
δ

)

, where
δ = δ(ǫ) ↓ 0 as ǫ ↓ 0. The functions b(x, y), c(x, y) and σ(x, y) are assumed to be
smooth and periodic with period ρ in every direction with respect to the second
variable. Homogenization of such equations has been studied extensively in the
literature, see for example [2, 17]. Large deviations were studied in [5, 10] and
related importance sampling schemes were developed in [6, 7]. Moreover, special
cases of this general equation (e.g., with b(x, y) = −∇Q(y), c(x, y) = −∇V (x)
and σ(x, y) = constant) have been suggested as models for studying rough
energy landscapes that describe certain proteins and their folding and bind-
ing properties. A representative, but by no means complete, list of references
is [7, 14, 18].

Our goal in this paper is twofold. First, we study scaling limits under dif-
ferent perturbations of the drift and of the initial condition. We are interested
in fluctuations around the typical behavior of Xǫ

t as ǫ, δ ↓ 0 when both the
initial condition and the drift follow a scaling limit in finite time. It turns out
that depending on the scaling and on the order that ǫ and δ go to zero, we
have different limiting behavior. The result is presented in Theorem 3.1. It is
interesting to note that, in contrast to the case without fast oscillations, in the
case considered here, additional drift terms may appear in the equation that
the fluctuation process satisfies, see Remark 3.3. At this point we mention the
articles [5, 9, 10, 13, 15] for some related moderate and large deviations results,
even though the fluctuations analysis done in the current paper is not covered,
as far as the authors know, by the existing literature. The analysis of these
scaling limits is summarized in Theorem 3.1 and allows us then to study the
exit distribution in the limit as ǫ, δ ↓ 0 (see Theorem 4.1) in the case in which
the typical behavior of Xǫ exits the domain transversally in finite time.

Another byproduct of this analysis is the study of the effect that pertur-
bations by small but fast oscillations of small noise dynamical system have on
exit time for such diffusions conditioned on rare events, see Theorem 5.3. We
investigate this question in the case of the first order Langevin equation for both
a periodic and for a random rough potential, see Remark 5.4. It turns out that
the limiting law of the exit time conditioned on the event of going against the
deterministic flow, appropriately normalized, follows Gaussian distribution with
enhanced variance (as compared to the small noise not oscillating case) due to
the fast oscillations, see Remark 5.5.

The rest of the paper is organized as follows. In Section 2 we establish nota-
tion and mention examples and preliminary results that will be used throughout.
Section 3 contains the corresponding central limit theorem, whereas Section 4
contains the analysis of the joint limiting law for the exit time and exit point.
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In Section 5 we apply the results of Sections 3 and 4 to the first order Langevin
equation in a rough environment. In particular, we state the related central
limit theorem and study the conditional exit law of a one dimensional small
noise diffusion process in a rough environment in the limit as the fluctuations
and noise intensity go to zero.

2 The set-up

Let T > 0 be given and consider the d-dimensional process Xǫ .
= {Xǫ

t , 0 ≤ t ≤
T } satisfying the stochastic differential equation (SDE)

dXǫ
t =

[

ǫ

δ
b

(

Xǫ
t ,

Xǫ
t

δ

)

+ c

(

Xǫ
t ,

Xǫ
t

δ

)

+ ǫa1/2Ψǫ

(

Xǫ
t ,

Xǫ
t

δ

)]

dt+
√
ǫσ

(

Xǫ
t ,

Xǫ
t

δ

)

dWt,

(2.1)
with initial condition given by Xǫ

0 = x0+ ǫa2/2ξǫ. Here ξǫ is a family of random
variables that converges in distribution to ξ0 as ǫ → 0, δ = δ(ǫ) → 0 as ǫ → 0
and Wt is a standard d-dimensional Wiener process. Also, we assume that the
functions b, c,Ψǫ and σ satisfy the following conditions:

Condition 2.1. i. The functions b(x, y), c(x, y), σ(x, y), and Ψǫ(x, y) are,
for each ǫ > 0, periodic with period ρ in the second variable, C1(Y) in
y and C2(Rd) in x with all partial derivatives continuous and globally
bounded in both variables. Here Y = T

d denotes the d-dimensional torus.

ii. As ǫ → 0 Ψǫ → Ψ uniformly in each variable and Ψ satisfies the same
regularity conditions as any Ψǫ.

iii. The diffusion matrix σσT is uniformly nondegenerate.

We are interested in the following cases of interaction

lim
ǫ↓0

ǫ

δ
=

{

∞ Regime 1,

γ ∈ (0,∞) Regime 2,
(2.2)

Here γ is taken to be γ = ∞ in Regime 1.
We borrow some notation from [5], where the large deviations principle for

SDE (2.1) was established, in order to present our results.

Definition 2.2. For each one of the Regimes i = 1, 2 defined in (2.2), and
x ∈ R

d, define the operators

L1
x = b(x, ·) · ∇y +

1

2
tr
[

σ(x, ·)σ(x, ·)T∇2
y

]

, and

L2
x = [γb(x, ·) + c(x, ·)] · ∇y + γ

1

2
tr
[

σ(x, ·)σ(x, ·)T∇2
y

]

.

For each x ∈ R
d, the domain of Li

x is given by D(Li
x) = C2(Y), for i = 1, 2.
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Note that the existence of a unique smooth invariant measure for the oper-
ator Li

x, i = 1, 2, is immediately implied by Condition 2.1 (see Theorem 3.3.4
and Section 3.6.1 of [2]). We impose the following condition for the invariant
measure in Regime 1:

Condition 2.3. For each x ∈ R
d, let µi(dy|x) be the unique invariant measure

corresponding to the operator Li
x equipped with periodic boundary conditions in

y.
Under Regime 1, we assume the standard centering condition (see [2]) for

the drift term b:
∫

Y
b(x, y)µ1(dy|x) = 0.

The variable x is being treated as a parameter here.

We note that under Conditions 2.1 and 2.3, for each l ∈ {1, . . . , d}, there is a
unique twice differentiable function χℓ(x, y) that is ρ− periodic in every direction
in y, that solves the following cell problem (for a proof see [2], Theorem 3.3.4):

L1
xχl(x, y) = −bl(x, y),

∫

Y
χl(x, y)µ

1(dy|x) = 0, l = 1, ..., d. (2.3)

We write χ = (χ1, . . . , χd). With this in hand, it will become useful to define a
function λi(x, y), i = 1, 2, as follows:

Definition 2.4. For each one of the Regimes i = 1, 2 defined in (2.2), let
λi : R

d × Y → R
d be given by

λ1(x, y) = (I +∇yχ(x, y)) c(x, y), and

λ2(x, y) = γb(x, y) + c(x, y),

where χ = (χ1, . . . , χd) is defined by (2.3) and I is the identity matrix.
Moreover, let λ̄i : R

d → R
d be given by

λ̄i(x) =

∫

Y
λi(x, y)µ

i(dy|x),

and let X̄ i
s(x) be the flow generated by λ̄i. That is, for each x ∈ R

d, X̄ i
s(x) is

the solution to the ordinary differential equation

X̄ i
t(x) = x+

∫ t

0

λ̄i(X̄
i
s)ds.

We remark here that under Condition 2.1, the invariant measure µi(dy|x) is
certainly C1 in the x−variable (see Section 3.6.1 in [2]) and consequently λ̄i(·)
is C1. Hence, the ODE for X̄ i is well defined and has unique solution in each
regime. Moreover, Theorem 2.8 in [5] guarantees weak convergence of Xǫ

· to
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X̄ i
· in C([0, T ]) for any T > 0. Further, it is easy to observe that in our case

Theorem 2.8 in [5] implies that for all η > 0 and i = 1, 2, we have

lim
ǫ→0

P

{

sup
0≤t≤T

∣

∣Xǫ
t − X̄ i

t(x0)
∣

∣ > η

}

= 0, T > 0. (2.4)

Our first objective is to understand the limit of the fluctuations process

ηǫt =
Xǫ

t − X̄ i
t

βǫ
, as ǫ ↓ 0,

where βǫ is the appropriate normalization rate. Our second objective is to
prove a limit theorem for an exit problem of Xǫ using the limiting result for the
fluctuations process. That is, for a smooth C2-hypersurface M in R

d, we are
interested in studying the joint distribution of the hitting time

τ ǫ = inf {t ≥ 0 : Xǫ(t) ∈ M} ,

and the exit location Xǫ(τ
ǫ) ∈ M as ǫ → 0 under the assumption that τǫ < ∞

with probability 1. Precise assumptions on the joint geometry of the vector field
λ̄ and the surface M will be given in Section 4.

We conclude this section with a remark for the degenerate case ǫ/δ → 0.

Remark 2.5. In the case ǫ/δ → 0, the results of [5] indicate that the correct
pair (Lx, λ(x, y)) is that of Regime 2 with γ = 0, as long as there is a unique
invariant measure to the corresponding first order operator. Due to the fact that
this operator is first order, the existence and uniqueness of an invariant measure
is a difficult issue and requires additional assumptions on the vector field c(x, y).
For this reason and for the additional technical difficulties in treating the related
Poisson equation (3.1), we decided not to treat this case in the current paper. See
however, Corollary 3.2 for the case γ = 0, in dimension d = 1 when c(x, y) > 0.

3 Analysis of fluctuations

In this section we establish a limit theorem for the correction of Xǫ−X̄ i in each
case. Before stating our results in this direction, we need additional notation.

Let us consider the auxiliary PDE problem

Li
xΞi(x, y) = −

(

λi (x, y)− λ̄i(x)
)

,

∫

Y
Ξi(x, y)µ

i(dy|x) = 0, (3.1)

for i = 1, 2. Since, by definition, the right hand side of the PDE averages to
zero with respect to the corresponding invariant measure µi(dy|x), Fredholm
alternative implies that the function Ξi(x, y) is uniquely defined, ρ−periodic in
y, twice differentiable in both variables and with bounded derivatives (see The-
orem 3.3.4 in [2]). The function Ξi will be used to understand the dependence
of terms like

Iǫ,it =

∫ t

0

(

λi

(

Xǫ
s,

Xǫ
s

δ

)

− λ̄i(X
ǫ
s)

)

ds (3.2)
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on ǫ and δ.
Let us give some preliminary notation. For a function f : Rd × Y → R

d,
denote f̄i : R

d → R
d the average with respect to µi:

f̄i(x) =

∫

Y
f(x, y)µi(dy|x).

Also, define the following functions,

Ψ1(x, y) = (I +∇yχ(x, y))Ψ(x, y),

J1(x, y) = c∇yΞ1(x, y),

q1(x, y) = (I +∇yχ)(x, y)σ(x, y)σ
T (x, y)(I +∇yχ)

T (x, y),

and

Ψ2(x, y) = (I +∇yΞ2(x, y))Ψ(x, y),

J2(x, y) =

(

b(I +∇yΞ2) +
1

2
tr
[

σσT∇y∇yΞ2

]

)

(x, y),

q2(x, y) = (I +∇yΞ2)(x, y)σ(x, y)σ
T (x, y)(I +∇yΞ2)

T (x, y).

Further, for x ∈ R
d, let Φi

x be the linearization of X̄ i along the orbit of x:

d

dt
Φi

x(t) = Dλ̄i(X̄ i
t )Φ

i
x(t), Φi

x(0) = x (3.3)

where Dλ̄i is the Jacobian matrix of λ̄i. We are now ready to state our results.

Theorem 3.1. Let T > 0, and assume Conditions 2.1-2.3. Set θǫ1 = δ
ǫ , θ

ǫ
2 =

ǫ
δ − γ, m = min

{

1
2 ,

α1

2 , α2

2

}

,

ℓi = lim
ǫ→0

ǫm

θǫi
∈ [0,∞],

and

βǫ
i (ℓi) =

{

θǫi , ℓi = 0,

ǫm , ℓi ∈ (0,∞]
.

Let η̄i be a process of the Ornstein-Uhlenbeck type such that

dη̄it = Dλ̄i(X̄
i
t(x0))η̄tdt+

[

ℓ−1
i 1(ℓi ∈ (0,∞]) + 1(ℓi = 0)

]

J̄i(X̄
i
t(x0))dt+

+1 (ℓi 6= 0))
[

1 (m = a1/2) Ψ̄
i
i(X̄

i
t(x0))dt+ 1 (m = 1/2) q̄

1/2
i (X̄ i

t(x0))dWt

]

η̄0 = ξ01 (m = a2/2 and ℓi 6= 0) .

Then, for each ǫ > 0, there is a process ηǫ(ℓi), such that

Xǫ
t = X̄ i

t + βǫ(ℓi)η
ǫ
t (ℓi)

holds with probability 1 for every t > 0, and ηǫ(ℓi) → η̄i(ℓi), as ǫ → 0, in
distribution in C

(

[0, T ];Rd
)

.
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In the case γ = 0 we can give an analogous result for the one dimensional
case:

Corollary 3.2. Let T > 0 and let the dimension be d = 1. Assume that
Condition 2.1 holds, and that c(x, y) > 0 for every x ∈ R, y ∈ Y. Then, in the
case i = 2, and γ = 0, the conclusion of Theorem 3.1 holds by setting in the
corresponding expressions γ = 0.

The proof of this corollary is omitted since, due to periodicity and the con-
dition c(x, y) > 0, the ODE żt = c(x, zt) has a unique invariant measure for any
x ∈ R, which then allows the proof of Regime 2, presented below, to go through
with γ = 0.

Before proceeding with the proof of Theorem 3.1, we mention a useful ob-
servation in the remark below.

Remark 3.3. Notice that the drift term in the effective equation for η̄ has an
extra term J̄i(X̄

i
t), which is present in the case ℓi 6= ∞. This term arises from

the fluctuations associated with the term Iǫ,it in (3.2). Hence, if ℓi 6= ∞, the
contribution of this term is not negligible in the limit.

Proof of Theorem 3.1. For each one of the regimes, the proof goes in three steps.
First, we deduce a convenient expression for the difference ∆ǫ(t) = Xǫ

t −X̄ i
t(x0).

Then, in the second step, we use the expression obtained in the last step to prove
tightness of the process ηǫt = ∆ǫ(t)/βǫ(ℓ). Finally, in the third step, the limit
point for the family of processes (ηǫ)ǫ>0 is obtained by formulating a martingale
problem. We start with Regime 2, and then finalize the proof by proving the
case in which the system is in Regime 1. For notational convenience we omit
the subscripts i, and x0, when no confusion arises, throughout the proof.

Let us first consider Regime 2, i.e., γ ∈ (0,∞). Upon defining ∆ǫ(t) =
Xǫ

t − X̄ i
t(x0), we obtain that ∆ǫ(t) is the solution to the equation

d∆ǫ(t) =

[

ǫ

δ
b

(

Xǫ
t ,

Xǫ
t

δ

)

+ c

(

Xǫ
t ,

Xǫ
t

δ

)

+ ǫα1/2Ψǫ

(

Xǫ
s ,

Xǫ
s

δ

)

− λ̄2(X̄t)

]

dt

+
√
ǫσ

(

Xǫ
t ,

Xǫ
t

δ

)

dWt, (3.4)

with initial condition ∆ǫ(0) = ǫα2/2ξǫ. Let us rewrite this equation in terms of
λ̄ = λ̄2. In order to do so, observe that, since λ̄ is smooth, Taylor’s theorem
implies that

λ̄(x1) = λ̄(x2) +Dxλ̄(x2)(x1 − x2) +Q[λ̄](x1, x2), x1, x2 ∈ R
d,

for some function Q[λ̄] such that |x1 − x2|−2Q[λ̄](x1, x2) is locally bounded.
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Then, rewriting (3.4),

∆ǫ(t) = ǫα2/2ξǫ + θǫ2

∫ t

0

b

(

Xǫ
s,

Xǫ
s

δ

)

ds+

∫ t

0

Dxλ̄(X̄s)∆
ǫ(s)ds

+

∫ t

0

[

λ

(

Xǫ
s,

Xǫ
s

δ

)

− λ̄(Xǫ
s)

]

ds+ ǫα1/2

∫ t

0

Ψǫ

(

Xǫ
s,

Xǫ
s

δ

)

ds

+
√
ǫ

∫ t

0

σ

(

Xǫ
s,

Xǫ
s

δ

)

dWs +

∫ t

0

Q[λ̄]
(

X̄s, X
ǫ
s

)

ds. (3.5)

In order to understand the asymptotics of the right hand side of the last display,
we need to understand the behavior of the integral term

Iǫt =

∫ t

0

[

λ

(

Xǫ
s,

Xǫ
s

δ

)

− λ̄(Xǫ
s)

]

ds.

For this purpose, apply Itô’s formula to Ξ(x, x/δ) = (Ξ1(x, x/δ), . . . ,Ξd(x, x/δ))
with x = Xǫ

t . After some algebra, it follows that

δdΞ

(

Xǫ
t ,

Xǫ
t

δ

)

=
[

L2
Xǫ

t
Ξ + ǫα1/2Ψǫ∇yΞ + θǫ2J2

]

(

Xǫ
t ,

Xǫ
t

δ

)

dt

+
√
ǫ [(∇yΞ + δ∇xΞ)σ]

(

Xǫ
t ,

Xǫ
t

δ

)

dWt +Rǫ

(

Xǫ
t ,

Xǫ
t

δ

)

dt,

where, for each (x, y) ∈ R
d × Y, Rǫ is given by

Rǫ(x, y) =

[

ǫb∇xΞ+ δ
(

c+ ǫα1/2Ψǫ
)

∇xΞ + ǫtr

[

σσT

(

∇x∇y +
δ

2
∇x∇x

)

Ξ

]]

(x, y).

Therefore, taking into account the PDE that Ξ satisfies, we get that

Iǫt =

∫ t

0

(

ǫα1/2Ψǫ∇yΞ + θǫ2J2

)

(

Xǫ
s,

Xǫ
s

δ

)

ds

− δ

(

Ξ

(

Xǫ
t ,

Xǫ
t

δ

)

− Ξ

(

Xǫ
0,

Xǫ
0

δ

))

+
√
ǫ

∫ t

0

∇yΞσ

(

Xǫ
s ,

Xǫ
s

δ

)

dWs

+

∫ t

0

Rǫ

(

Xǫ
s,

Xǫ
s

δ

)

ds+ δ
√
ǫ

∫ t

0

∇xΞσ

(

Xǫ
s,

Xǫ
s

δ

)

dWs (3.6)

Using the definition of Ψ2 together with (3.6) in (3.5) it follows that

∆ǫ(t) = ǫα2/2ξǫ +

∫ t

0

Dxλ̄(X̄s)∆
ǫ(s)ds + ǫα1/2

∫ t

0

Ψǫ
2

(

Xǫ
s,

Xǫ
s

δ

)

ds

+ θǫ2

∫ t

0

J2

(

Xǫ
s,

Xǫ
s

δ

)

ds+
√
ǫ

∫ t

0

(I +∇yΞ) σ

(

Xǫ
s,

Xǫ
s

δ

)

dWs

+

∫ t

0

Rǫ

(

Xǫ
s,

Xǫ
s

δ

)

ds− δ

(

Ξ

(

Xǫ
t ,

Xǫ
t

δ

)

− Ξ

(

Xǫ
0,

Xǫ
0

δ

))

+ δ
√
ǫ

∫ t

0

∇xΞσ

(

Xǫ
s,

Xǫ
s

δ

)

dWs +

∫ t

0

Q[λ̄]
(

X̄s, X
ǫ
s

)

ds. (3.7)
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We are now going to use this representation to prove that the family {ηǫ}ǫ>0 =

{∆ǫ/βǫ(ℓ), t ∈ [0, T ]}ǫ>0 is relatively compact in C([0, T ];Rd). To do so we
shall use Theorem 8.7 of [4], which says that the family of processes {ηǫ}ǫ>0 is

relatively compact in C([0, T ];Rd), if there is an ǫ0 such that for every h > 0,

i. there is a Nh < ∞ so that

P

{

sup
t∈[0,T ]

|ηǫt | > Nh

}

< h, ǫ ∈ (0, ǫ0), and

ii. for every M < ∞,

lim
r→0

sup
ǫ∈(0,ǫ0)

P

{

sup
t1,t2∈[0,T ],|t1−t2|<r

|ηǫt1 − ηǫt2 | > h, sup
t∈[0,T ]

|ηǫt | < M

}

= 0.

We will prove these two points for the family ηǫ = ∆ǫ/βǫ.
Before we proceed to prove points (i) and (ii) above, we define some extra

notation. Let

Θǫ
x0
(t) = ǫ

α2
2 −mΦx0(t)ξ

ǫ + ǫ
α1
2 −mΦx0(t)

∫ t

0

[Φx0(s)]
−1 Ψǫ

2

(

Xǫ
s,

Xǫ
s

δ

)

ds

+ ǫ
1
2−mΦx0(t)

∫ t

0

[Φx0(s)]
−1

(I +∇yΞ)σ

(

Xǫ
s,

Xǫ
s

δ

)

dWs, (3.8)

so that Duhamel’s principle implies that

∆ǫ(t) = ǫmΘǫ
x0
(t) + θǫ2Φx0(t)

∫ t

0

[Φx0(s)]
−1

J2

(

Xǫ
s,

Xǫ
s

δ

)

ds

+Rǫ
t [Φ] + Φx0(t)

∫ t

0

[Φx0(s)]
−1 Q[λ̄]

(

X̄s, X
ǫ
s

)

ds. (3.9)

where the term Rǫ
t [Φ] is defined as

Rǫ
t [Φ] = −δΦx0(t)

(

Ξ

(

Xǫ
t ,

Xǫ
t

δ

)

− Ξ

(

Xǫ
0,

Xǫ
0

δ

))

+Φx0(t)

∫ t

0

[Φx0(s)]
−1 Rǫ

(

Xǫ
s,

Xǫ
s

δ

)

ds

+ δ
√
ǫΦx0(t)

∫ t

0

[Φx0(s)]
−1 ∇xΞσ

(

Xǫ
s,

Xǫ
s

δ

)

dWs.

We have now all the elements we need to show that points (i) and (ii) hold for
the family ∆ǫ/βǫ(ℓ), ǫ > 0. First, due to boundedness of the involved functions,
the definition of Rǫ, and Doob’s inequality for the martingale term, it is easy
to see that

lim
ǫ↓0

E

[

sup
0≤t≤T

(

[βǫ
i (ℓ)]

−1
Rǫ

t [Φ]
)2
]

= 0.

9



Likewise, we will show that the family of processes

Λǫ
t =

1

βǫ(ℓ)
Φx0(t)

∫ t

0

[Φx0(s)]
−1

Q[λ̄]
(

X̄s, X
ǫ
s

)

ds.

also converges to 0 uniformly on [0, T ] in probability as ǫ → 0. Once we have
these two facts, points (i) and (ii) follow for ∆ǫ/βǫ(ℓ) due to the definition of
βǫ(ℓ), (3.9), and the boundedness of all functions. Hence, we are just left to
prove that

sup
t≤T

|Λǫ
t |

P−→ 0, ǫ → 0.

Let ν ∈ (1/2, 1) and set

τ ǫ(ν) = inf
{

t :
∣

∣Xǫ
t − X̄t

∣

∣ > (βǫ)ν
}

.

Using the quadratic decay of Q[λ̄], and the fact that 2ν > 1, we see that

lim
ǫ→0

sup
t≤T∧τǫ(ν)

|Λǫ
t| = 0,

with probability 1 . As a consequence, we are left to show that P{T < τ ǫ(ν)} →
1. To do so, note that (3.9) implies that if τ ǫ(ν) < T ,

1 = (βǫ)−ν sup
t≤T∧τǫ(ν)

|∆ǫ(t)|

≤ (βǫ)1−νC1 + C2(β
ǫ)ν ,

for some random variables C1, C2 < ∞, P-a.s. Hence, since the r.h.s of the last
display converges to 0, it follows that limǫ→0 P{τ ǫ(ν) < T } = 0, which implies
the precompactness of the family {ηǫ = ∆ǫ/βǫ(ℓ), ǫ > 0}. Clearly, the tightness
of the family {Xǫ

· , ǫ > 0} implies tightness of the pair {(ηǫ· , Xǫ
· ), ǫ > 0}.

Now that we know that the family {(ηǫ· , Xǫ
· ), ǫ > 0} is precompact, we are left

to identify its limit. We shall use (3.7) and the martingale problem formulation.
An inspection of (3.7) shows that the terms in its third and fourth line are of
lower order compared to the other terms and thus should vanish in the limit.
Let us make this now rigorous.

Consider, the process

ζǫt = ηǫt + δ (βǫ(ℓ))−1

(

Ξ

(

Xǫ
t ,

Xǫ
t

δ

)

− Ξ

(

Xǫ
0,

Xǫ
0

δ

))

and let φ ∈ C2
b (R

d). We identify the limit using the martingale problem ap-

10



proach. Write for simplicity β = βǫ(ℓ). By Itô formula we have

φ(ζǫt ) = φ(β−1ǫα2/2ξǫ) +

∫ t

0

Dxλ̄(X̄s)η
ǫ(s)∇φ(ζǫs)ds+

θǫ

β

∫ t

0

J

(

Xǫ
s,

Xǫ
s

δ

)

∇φ(ζǫs)ds

+
ǫ

β2

1

2

∫ t

0

tr
[

∇∇φ(ζǫs) (I +∇yΞ) σσ
T (I +∇yΞ)

T
]

(

Xǫ
s,

Xǫ
s

δ

)

ds

+

√
ǫ

β

∫ t

0

∇φ(ζǫs) (I +∇yΞσ)

(

Xǫ
s,

Xǫ
s

δ

)

dWs

+

∫ t

0

[(

ǫα1/2

β
Ψǫ

2 +
1

β
Rǫ

)(

Xǫ
s,

Xǫ
s

δ

)

+
1

β
Q[λ̄]

(

X̄s, X
ǫ
s

)

]

∇φ(ζǫs)ds+

+
δ2ǫ

β2

1

2

∫ t

0

tr

[

∇∇φ(ζǫs)∇xΞσ(∇xΞσ)
T

(

Xǫ
s ,

Xǫ
s

δ

)]

ds

+
δ
√
ǫ

β

∫ t

0

∇φ(ζǫs)∇xΞσ

(

Xǫ
s,

Xǫ
s

δ

)

dWs (3.10)

It is clear from (3.7) that there are different cases to consider, depending
on the order that the different terms go to zero. For the sake of presentation,
we shall only study in detail the case m = 1/2 and ℓ 6= 0. In this case the
limiting process is a solution to a stochastic differential equation. The other
cases follow similarly. Without loss of generality, let us simplify the problem
more and assume that a1, a2 > 1. Then, we actually have β = βǫ(ℓ) =

√
ǫ and

our target is to prove that for any 0 ≤ s ≤ t ≤ T

lim
ǫ↓0

Eηǫ
0

[

φ(ηǫt )− φ(ηǫs)−
∫ t

s

[(

Dxλ̄(X̄r)η
ǫ(r) + ℓ−1J̄ (Xǫ

r)
)

∇φ(ηǫr)

+
1

2
tr [∇∇φ(ηǫr)q (X

ǫ
r)]

]

dr
∣

∣

∣
Fs

]

= 0(3.11)

This follows directly upon rewriting the left hand side of (3.11) using (3.10). In
particular, note that the following holds:

i. Due to boundedness of Ξ

lim
ǫ↓0

δβ−1
E sup

0≤t≤T

∣

∣

∣

∣

Ξ

(

Xǫ
t ,

Xǫ
t

δ

)∣

∣

∣

∣

= 0.

ii. Due to boundedness of the coefficients and the bounds on the derivatives
of the auxiliary function Ξ (see Theorem 3.3.4 in [2]), we have that

lim
ǫ↓0

E sup
0≤t≤T

∫ t

0

∣

∣

∣

∣

[(

ǫα1/2

β
Ψǫ

2 +
1

β
Rǫ

)(

Xǫ
s,

Xǫ
s

δ

)]

∇φ(ζǫs)

∣

∣

∣

∣

ds = 0.

Similarly to the argument used to prove tightness, we also have that

lim
ǫ↓0

E

∫ t

s

(βǫ)−1Q[λ̄]
(

X̄r, X
ǫ
r

)

∇φ(ζǫr)dr = 0.
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Moreover, it is clear that there is also a constant C < ∞ such that for the
remaining Riemann integrals in (3.10)

E sup
0≤t≤T

∫ t

0

∣

∣

∣

∣

Γ

(

Xǫ
s ,

Xǫ
s

δ

)∣

∣

∣

∣

ds ≤ C.

iii. Due to boundedness of the coefficients and the bounds on the derivatives
of the auxiliary function Ξ [2], there is a constant C < ∞ such that, using
Doob’s martingale inequality, for any stochastic integral in (3.10)

E sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

Γ̂

(

Xǫ
s,

Xǫ
s

δ

)

dWs

∣

∣

∣

∣

2

≤ C

iv. By assumption β =
√
ǫ and θ/β → ℓ−1 as ǫ ↓ 0.

The validity of (3.11) together with tightness of the pair {(ηǫ· , Xǫ
· ), ǫ > 0}

and uniqueness of the limiting martingale problem imply the claim.
Let us now concentrate on Regime 1; that is, γ = ∞. Consider the solution

to the cell problem χ = (χ1, . . . , χd), which is periodic in every coordinate
direction in y and satisfies

L1
xχl(x, y) = −bl(x, y),

∫

Y
χl(x, y)µ(dy|x) = 0, l = 1, ..., d.

By applying Itô’s formula to χ(x, x/δ) = (χ1(x, x/δ), . . . , χd(x, x/δ)) with x =
Xǫ

t , we can reduce the problem to the previous case. Indeed, by Itô’s formula,
the cell problem formulation, and Definition 2.4 it follows that

dχ

(

Xǫ
t ,

Xǫ
t

δ

)

=

[

( ǫ

δ
b+ c

)

· ∇x +
1

δ
c · ∇y +

ǫ

2
tr
[

σσT∇2
x

]

+

+
ǫ

δ
tr
[

σσT∇x∇y

]

+ ǫα1/2Ψǫ ·
(

∇x +
1

δ
∇y

)]

χ

(

Xǫ
t ,

Xǫ
t

δ

)

dt

+
ǫ

δ2
L1
Xǫ

t
χ

(

Xǫ
t ,

Xǫ
t

δ

)

dt+
√
ǫ

[(

∇x +
1

δ
∇y

)

σ

]

χ

(

Xǫ
t ,

Xǫ
t

δ

)

dWt

Hence, recalling the cell problem (2.3) we have

ǫ

δ
b

(

Xǫ
t ,

Xǫ
t

δ

)

dt =
[

(ǫb+ δc) · ∇x + c · ∇y +
ǫ

2
δtr
[

σσT∇2
x

]

+

+ǫtr
[

σσT∇x∇y

]

+ δǫα1/2Ψǫ ·
(

∇x +
1

δ
∇y

)]

χ

(

Xǫ
t ,

Xǫ
t

δ

)

dt

+
√
ǫδ

[(

∇x +
1

δ
∇y

)

σ

]

χ

(

Xǫ
t ,

Xǫ
t

δ

)

dWt − dχ

(

Xǫ
t ,

Xǫ
t

δ

)

.
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Using this in (3.4), rearranging terms, and proceeding as in Regime 2, we obtain
(with λ = λ1, λ̄ = λ̄1)

d∆ǫ(t) =

[

Dxλ̄(X̄t)∆
ǫ(t) +

(

λ

(

Xǫ
t ,

Xǫ
t

δ

)

− λ̄ (Xǫ
t )

)

+ ǫα1/2(I +∇yχ)Ψ
ǫ
1

(

Xǫ
t ,

Xǫ
t

δ

)]

dt

+
√
ǫ(I +∇yχ)σ

(

Xǫ
t ,

Xǫ
t

δ

)

dWt + Gǫχ

(

Xǫ
t ,

Xǫ
t

δ

)

dt

+Rǫ
1(X

ǫ
t ,

Xǫ
t

δ
)dWt +Q[λ̄]

(

X̄t, X
ǫ
t

)

dt− δdχ

(

Xǫ
t ,

Xǫ
t

δ

)

,

with ∆ǫ(0) = ǫα2/2ξǫ. Here, we have defined

Gǫχ(x, y) =

[

(ǫb+ δc) · ∇xχ+ ǫtr

[

σσT

(

δ

2
∇x∇x +∇x∇y

)

χ

]

+ δǫα1/2Ψǫ(x, y)∇xχ

]

(x, y)

Rǫ
1(x, y) =

√
ǫδ∇xχ(x, y)σ.

As in Regime 2, we need to understand the behavior of the term

Iǫt =

∫ t

0

[

λ

(

Xǫ
s,

Xǫ
s

δ

)

− λ̄(Xǫ
s)

]

ds.

For this purpose, apply Itô’s formula to Ξ(x, x/δ) = (Ξ1(x, x/δ), . . . ,Ξd(x, x/δ))
with x = Xǫ

t . Taking into account the PDE that Ξ satisfies, we get
∫ t

0

[

λ

(

Xǫ
s ,

Xǫ
s

δ

)

− λ̄(Xǫ
s)

]

ds =
δ

ǫ

∫ t

0

c∇yΞ

(

Xǫ
s,

Xǫ
s

δ

)

ds+Rǫ
2(t)

− δ2

ǫ

(

Ξ

(

Xǫ
t ,

Xǫ
t

δ

)

− Ξ

(

Xǫ
0,

Xǫ
0

δ

))

where the lower order term Rǫ
2(t) is

Rǫ
2(t) =

δ2

ǫ

∫ t

0

(

c+ ǫα1/2Ψǫ
)

∇xΞ

(

Xǫ
s,

Xǫ
s

δ

)

ds+
δ

ǫ
ǫα1/2

∫ t

0

Ψǫ∇yΞ

(

Xǫ
s,

Xǫ
s

δ

)

ds

+ δ

∫ t

0

(

b∇xΞ+ tr
[

σσT∇x∇yΞ
])

(

Xǫ
s,

Xǫ
s

δ

)

ds+ δ2
1

2

∫ t

0

tr
[

σσT∇x∇xΞ
]

(

Xǫ
s,

Xǫ
s

δ

)

ds

+
δ2

ǫ

√
ǫ

∫ t

0

∇xΞσ

(

Xǫ
s,

Xǫ
s

δ

)

dWs +
δ

ǫ

√
ǫ

∫ t

0

∇yΞσ

(

Xǫ
s ,

Xǫ
s

δ

)

dWs

Hence, we get that

∆ǫ(t) = ǫα2/2ξǫ +

∫ t

0

Dxλ̄(X̄s)∆
ǫ(s)ds+

δ

ǫ

∫ t

0

c∇yΞ

(

Xǫ
s,

Xǫ
s

δ

)

ds

+ ǫα1/2

∫ t

0

(I +∇yχ)Ψ
ǫ

(

Xǫ
s,

Xǫ
s

δ

)

ds+
√
ǫ

∫ t

0

(I +∇yχ)σ

(

Xǫ
s,

Xǫ
s

δ

)

dWs

+

∫ t

0

Gǫχ

(

Xǫ
s,

Xǫ
s

δ

)

ds+

∫ t

0

Rǫ
1(x

ǫ
s,
xǫ
s

δ
)dWs +Rǫ

2(t) +

∫ t

0

Q[λ̄]
(

X̄s, X
ǫ
s

)

ds

− δ

[

χ

(

Xǫ
t ,

Xǫ
t

δ

)

− χ

(

X0,
X0

δ

)]

− δ2

ǫ

(

Ξ

(

Xǫ
t ,

Xǫ
t

δ

)

− Ξ

(

Xǫ
0,

Xǫ
0

δ

))

,
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Using these expressions, tightness follows after using Duhamel principle using
the same arguments as for Regime 2. The identification and uniqueness of the
limiting point follows by the martingale problem by considering the process

ζǫt = ηǫt+
δ2

ǫ
β−1

(

Ξ

(

Xǫ
t ,

Xǫ
t

δ

)

− Ξ

(

Xǫ
0,

Xǫ
0

δ

))

+δβ−1

(

χ

(

Xǫ
t ,

Xǫ
t

δ

)

− χ

(

Xǫ
0,

Xǫ
0

δ

))

and we applying Itô formula to a test function φ ∈ C2
b (R

d) with stochastic
process ζǫt . Using the resulting expression, the claim follows by the martingale
problem formulation as in Regime 2. Thus, the details are omitted.

4 On Asymptotics for the Exit Time and Exit

Location

Let us state the main result in regards with the correction to the exit. First
we describe our assumptions on the joint geometry of the vector field λ̄ and the
surface M . We define

T i = inf
{

t > 0 : X̄ i
t(x0) ∈ M

}

,

and assume that 0 < T i < ∞, for each i = 1, 2. Also, for each i = 1, 2,
we denote zi = X̄ i

T i(x0) ∈ M and assume that λ̄i(z) does not belong to the
tangent hyperplane TziM of M at zi. In other words, we assume that the
positive orbit of x0 under the vector field λ̄i crosses M transversally.

Let us introduce a local basis around the exit point zi in order to express
the correction. Given z ∈ R

d, let TzM be the tangent space of M at z. For
i = 1, 2, define the projections πi : Rd → R and πi

M : Rd → TzM by

v = πiv · λ̄i(z) + πi
Mv, v ∈ R

d.

That is, πi is the (algebraic) projection onto span(λ̄i(z
i)) along T iM and πi

M

is the (geometric) projection onto TziM along span(λ̄i(z
i)).

We have now all the elements necessary to state the main theorem:

Theorem 4.1. With the notation of Theorem 3.1, let ℓi < ∞ and assume
additionally that ǫ−ζθǫi → 1, for some ζ > 0, as ǫ, δ ↓ 0. Then, in the setting
introduced above and under these assumptions, for i = 1, 2,

1

βǫ(ℓ)
(τ ǫ − T i, Xǫ

τǫ − zi)→
(

−πiη̄iT (ℓ), π
i
M η̄iT (ℓ)

)

. (4.1)

in distribution as ǫ → 0.

4.1 Proof of Theorem 4.1

The proof will be given in several steps. We use some of the ideas of the proof
of Theorem 1 in [1], even though, due to the averaging effects, several new
ingredients are needed.
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Under the assumptions of the theorem, note that βǫ(ℓ) = ǫβ, where

β = ζ1(ℓ = 0) +m1(ℓ 6= 0).

It follows that in Regime i = 2, β = min {ζ, 1/2, α1/2, α2/2}.
The following corollary of Theorem 3.1 is essential in our proof. After the

proof of this corollary, we will restate Theorem 3.1 in a more convenient way
for the propose of this proof. Let us start with the corollary:

Corollary 4.2. Under the same assumptions as in Theorem 3.1, if, as ǫ → 0,
tǫ → 0, tǫ(ǫ/δ − γ)ǫ−m → 0, and m = α2/2, then

sup
t≤tǫ

∣

∣ǫ−m
(

Xǫ
t − X̄ i

t

)

− ξ0
∣

∣

P−→ 0, ǫ → 0. (4.2)

Proof. First, let us focus on the case i = 2. In this case, observe that, since
m = α/2, from (3.8) we have

ǫmΘǫ
x0
(t) = ǫmΦx0(t)ξ

ǫ + ǫmrǫx0
(t),

where rǫx0
is a process such that for any family (sǫ)ǫ>0 such that sǫ → 0, it

follows that
sup

t∈[0,sǫ]

|rǫx0
(t)| P−→ 0, ǫ → 0.

Hence, from (3.9) it follows that

ǫ−m∆ǫ(t) = Φx0(t)ξ
ǫ + rǫx0

(t)

+ ǫ−mθǫΦx0(t)

∫ t

0

[Φx0(s)]
−1

(

b(I +∇yΞ) +
1

2
tr
[

σσT∇y∇yΞ
]

)(

Xǫ
s,

Xǫ
s

δ

)

ds

+ ǫ−mRǫ
t [Φ] + ǫ−mΦx0(t)

∫ t

0

[Φx0(s)]
−1

Q[λ̄]
(

X̄s, X
ǫ
s

)

ds,

which implies the result since θǫtǫ/ǫm → 0, and, as in the proof of Theorem 3.1,
Rǫ[Φ] is of order ǫ, and Q[λ̄] of order (βǫ)2 as ǫ → 0. For Regime 1, the result
follows analogously from the expression obtained for ∆ǫ in this case.

We now give a useful restatement of Theorem 3.1. Before doing so, some
additional notation is needed. For i = 1, 2, let

Θi
x0
(t) = 1(m = α2/2)Φ

i
x0
(t)ξ0

+ 1(m = α1/2)Φ
i
x0
(t)

∫ t

0

[

Φi
x0
(s)
]−1

Ψ̄i
i

(

X̄ i
s

)

ds

+ 1(m = 1/2)Φi
x0
(t)

∫ t

0

[

Φi
x0
(s)
]−1

q̄
1/2
i (X̄ i

s)dWs, t ≥ 0. (4.3)

and

Hi
x0
(t) = Φi

x0
(t)

∫ t

0

[

Φi
x0
(s)
]−1

J̄i
(

X̄ i
s

)

ds.

We have the following result:
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Theorem 4.3. Assume Regime i = 1, 2 and let Conditions 2.1-2.3 holding.
Consider the stochastic process

η̄it(ℓi) = Θi
x0
(t)1 (ℓi 6= 0) +Hi

x0
(t)
[

ℓ−1
i 1(ℓi ∈ (0,∞]) + 1(ℓi = 0)

]

. (4.4)

Then, for each ǫ > 0, there is a process ηǫ(ℓi), such that

Xǫ
t = X̄ i

t + βǫ(ℓi)η
ǫ
t (ℓi)

holds a.e. t > 0 with probability 1, and ηǫ(ℓi) → η̄i(ℓi), as ǫ → 0, in distribution
in C

(

[0, T ];Rd
)

.

The proof of Theorem 4.3 follows essentially by Theorem 3.1 and Duhamel’s
principle. The details are omitted.

The following Lemma 4.4, allows us to rewriteXǫ
T−t andXǫ

T+t in appropriate
forms.

Lemma 4.4. Let ω ∈ (β/2, β). Then, for each i = 1, 2, there are two a.s.-
continuous stochastic processes Υǫ,±,i such that

sup
t∈[0,ǫω]

|Υǫ,±,i
t | P−→ 0, ǫ → 0,

and a.e. t ∈ [0, ǫω] a.s

Xǫ
T i−t = zi − tλ̄i(z

i) + ǫβ
(

ηǫT−t(ℓ) + Υǫ,−,i
t

)

(4.5)

and
X̃ǫ

T i+t = zi + tλ̄i(z
i) + ǫβ

(

η̃ǫt (ℓ) + Υǫ,+,i
t

)

, (4.6)

where η̃ǫ(ℓ) is a stochastic process such that for any ω ∈ (β/2, β), ℓ ∈ [0,∞], it
follows that

η̃ǫ· (ℓ) → η̄i· (ℓ), ǫ → 0, in distribution in C([0, S];Rd) for any S > 0. (4.7)

Proof. We will omit reference to the regime i when no confusion arises. Let
X̄t(x) ( X̄−t(x)) be the positive (negative) orbit of x0 under the flow λ̄. Note,
in particular, that

d

dt
X̄ i

±t(x) = ±λ̄i(X̄
i
±t(x)), X̄ i

0(x) = x,

for every x ∈ R
d.

Due to Strong Markov property and Lemma 4.3 the process X̃ǫ
t = Xǫ

t+T

satisfies the SDE (2.1) with respect to the Brownian Motion W̃ (t) = W (t+T )−
W (T ) and initial condition X̃ǫ

0 = z + ǫβηǫT (ℓ). Hence, we can apply Lemma 4.3
to this shifted equation, to obtain

X̃ǫ
t = X̄ i

t(z
i) + ǫβ̃ η̃ǫt (ℓ),

16



where β̃ = ζ if i = 2, m̃ = min{β, 1/2, α1/2} > ζ, and β̃ = m̃ in other case. The
process η̃ǫ is such that η̃ǫ(ℓ) → ˜̃ηi(ℓ), as ǫ → 0, in distribution in C([0, S];Rd)
for any S > 0, where η̃i is defined by

η̃it(ℓ) = Θ̃i
z(t)1 (ℓ 6= 0) +

[

ℓ−11(ℓ ∈ (0,∞)) + 1(ℓ = 0)
]

Hi
z(t), (4.8)

where

Θ̃i
z(t) = Φi

z(t)η
i
T (ℓ)

+ 1(m̃ = α1/2)Φ
i
z(t)

∫ t

0

[

Φi
z(s)

]−1
Ψ̄
(

X̄ i
s(z)

)

ds

+ 1(m̃ = 1/2)Φi
z(t)

∫ t

0

[

Φi
z(s)

]−1
q
1/2
i (X̄ i

s(z))dWs,

and ℓ = limǫ→0 ǫ
m̃(ǫ/δ − γ)

−1
. Note that ℓ = 0 if and only if m > ζ. In this

case, β = ζ ≤ m ≤ min{1/2, α1/2}. Hence, in any case, m̃ = β, and, from the
definition of β̃, β̃ = β.

Using these results, it follows that

Xǫ
T+t = zi + tλ̄(zi) + ǫβ

(

η̃ǫt (ℓ) + Υǫ,+,i
t

)

,

where Υǫ,+,i
t = ǫ−β

(

X̄ i
t(z

i)−
(

zi + tλ̄(zi)
))

. Hence to show that (4.6) follows,
we have to prove the convergence of Υǫ,+,i towards zero and (4.7). Let us start
with the former, to show that Υǫ,+,i converges towards 0, use Lemma 6 in [1]
to find two positive constants C1 and C2 such that for any t > 0, and x ∈ R

d,

sup
s≤t

∣

∣X̄ i
±t(x)−

(

zi ± tλ̄(z)
)∣

∣ ≤ C1e
C2t(t|x− zi|+ t2). (4.9)

This implies the convergence to 0 of Υǫ,+,i. We are left to prove (4.7). In order
to so, recall that m̃ = β, and Corollary 4.2 implies (4.7).

To get (4.5), note that, for t ∈ [0, T ], Lemma 4.3, Equation (4.9), and the
fact that X̄ i

T−t(x0) = X̄ i
−t(z

i) imply that

Xǫ
T−t = X̄ i

T−t(x0) + ǫβηǫT−t(ℓ)

= X̄ i
−t(z

i) + ǫβηǫT−t(ℓ)

= zi − tλ̄i(z
i) + ǫβ

(

ηǫT−t(ℓ) + Υǫ,−,i
t

)

,

where Υǫ,−,i
t = ǫ−β

(

X̄ i
−t(z

i)−
(

zi − tλ̄i(z
i)
))

converges to 0 due to (4.9).

Using Lemma 4.4 we can write now an alternative characterization of the
time τ ǫ that will be used to explicitly write out the correction Xǫ

τǫ − zi.
Parameterize the hypersurface M as a graph of a C2-function F i over TzM ,

i.e., y 7→ zi + y + F i(y) · λ̄i(z) gives a C2-parametrization of a neighborhood
of zi in M by a neighborhood of 0 in TzM . Moreover, DF (0) = 0 so that
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|F (y)| = O(|y|2), y → 0. With this definition, it is clear that, for w ∈ R
d with

w−z small enough, w ∈ M if and only if πb(w−z) = F (πM (w−z)). Moreover,
Lemma 4.4 and a direct application of Lemma 8 from [1] gives that for every
ω ∈ (β/2, β),

lim
ǫ→0

P
({

τ ǫ = τ̃ ǫ} ∩
{

|τ ǫ − T i| ≤ ǫω
})

= 1,

where τ̃ ǫ = inf{t ≥ 0 : πi
(

Xǫ
t − zi

)

= F
(

πi
M

(

Xǫ
t − zi

))

}
}

. Hence, from
now on, we fix ω ∈ (β/2, β) and condition on the intersection of the events
Ωǫ

1 =
{

τ̃ ǫ = τ ǫ
}

and Ωǫ
2 =

{

|τ ǫ − T i| ≤ ǫω
}

.
Let τ̂ ǫ = T i − τ ǫ, so that τ ǫ = T i − τ̂ ǫ, and (since we are conditioning in Ωǫ

2

) |τ̂ ǫ| < ǫω. In case τ̂ ǫ > 0, the conditioning on Ωǫ
1, and (4.5) imply that

−τ̂ ǫ + ǫβπi
(

ηǫT i−τ̂ǫ(ℓ) + Υǫ,−,i
τ̂ǫ

)

= F
(

Dǫ,+
)

,

where Dǫ,+ = −τ̂ ǫπi
M λ̄i(z) + ǫβπi

M

(

ηǫT i−τ̂ǫ(ℓ) + Υǫ,−,i
τ̂ǫ

)

. Hence, since 2ω > β,

it follows that

1
(

{T i > τǫ} ∩Ωǫ
1 ∩ Ωǫ

2

)

ǫ−β
(

(τ ǫ − T i)− πiηǫT i−τ̂ǫ(ℓ)
)

P−→ 0, ǫ → 0. (4.10)

In the case τ̂ ǫ < 0, the reasoning is completely analogous. Indeed, using (4.6),
we can get that

1
(

{T i ≤ τǫ} ∩ Ωǫ
1 ∩ Ωǫ

2

)

ǫ−β
(

(τ ǫ − T i)− πiη̃ǫ−τ̂ǫ(ℓ)
)

P−→ 0, ǫ → 0. (4.11)

By adding up (4.10),and (4.11), and using (4.7) in (4.10) it follows that

ǫ−β
(

τ ǫ − T i
)

→ πiηiT (ℓ), in distribution, as ǫ → 0.

These computations give us the convergence of the time component. Once
we have the time component, the spatial component and the joint convergence
follows as in [1]. This completes the proof of Theorem 4.1.

5 First Order Langevin Equation in a Rough

Potential

In this section we apply Theorems 3.1 and 4.1 to a small noise diffusion process
in a rough environment in Regime 1, i.e. we assume that δ goes to zero faster
than ǫ does. We change the notation to include the dependence on δ.

To be precise, we consider the first order Langevin equation in a rough
potential, defined as

dXǫ,δ
t =

[

− ǫ

δ
∇Q

(

Xǫ,δ
t

δ

)

−∇V
(

Xǫ,δ
t

)

]

dt+
√
2ǫDdWt, Xǫ

0 = xǫ
0. (5.1)

where xǫ
0 → x0 as ǫ ↓ 0. Note that the rough potential V ǫ,δ

(

x, x
δ

)

= ǫQ(x/δ) +
V (x) is composed by a large scale smooth part , V (x), and by a smaller scale
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fast oscillating part, ǫQ(x/δ). We assume that V is a C3(Rd) function while Q
is C2(Rd) with period ρ.

By (2.4) we know that Xǫ,δ converges in probability, uniformly in t ∈ [0, T ],
as ǫ/δ ↑ ∞, to X̄ where X̄ is the solution to the ODE

˙̄Xt = λ̄
(

X̄t

)

, X̄0 = x0,

driven by the vector field λ̄ defined in Definition 2.4. In this case is easy to see
that the invariant measure µ(dy) of L = −∇Q∂x +D∂2

x is given by the Gibbs

distribution µ(dy) = K−1e−
Q(y)
D dy, where

K =

∫

Y
e−

Q(y)
D dy.

In dimension d = 1, after some algebra, we get that

λ̄(x) = − ρ2

KK̂
V ′(x),

where K̂ =
∫

T
e

Q(y)
D dy.

Let us first see how the central limit type of Theorem 3.1 translates in
this special case of interest. In many problems of interest, one is interested in
understanding the behavior of the process starting within the neighborhood of
a stable point of V (x), assume that such a point is x = x0. In Figure 1, we see a
simple example of such a potential function. To account for this fact we assume
that xǫ

0 = x0 + ǫa2/2ξǫ, where the random variable ξǫ → ξ0 in distribution as
ǫ ↓ 0.

The following proposition states the central limit theorem in this particular
case. We point out the presence of the additional drift term J̄1(X̄t).

Proposition 5.1. Consider the solution to the SDE (5.1) in t ∈ [0, T ] where
ǫ/δ ↑ ∞. Under the setup of Theorem 3.1 we have that the process ηǫt (ℓ) =
Xǫ

t−X̄t

βǫ(ℓ) converges in distribution in the space of continuous functions in C
(

[0, T ];Rd
)

to the process η̄t which is as follows.

i. If ℓ = 0, then η̄ satisfies the ODE

dη̄t =
[

Dλ̄(X̄t)η̄t + J̄1(X̄t)
]

dt, η̄0 = 0

.

ii. If ℓ ∈ (0,∞], then η̄ is solution to the Ornstein-Uhlenbeck process

dη̄t =
[

Dλ̄(X̄t)η̄t + ℓ−1J̄1(X̄t)
]

dt+1{m = 1/2}q̄1/21 dWt, η̄0 = ξ01{m = a2/2}.

In dimension d = 1, we have that λ̄(x) = − ρ2

KK̂
V ′(x) and q̄1 = − ρ22D

KK̂
and

J̄1(x) = − ρ

KK̂D
|V ′(x)|2

∫

T

[

(

1− ρ

K̂
e

Q(y)
D

)
∫

T
⋂
{z≤y}

(

1− ρ

K
e−

Q(z)
D

)

dz

]

dy.
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Figure 1: Q(x/δ) = cos(x/δ) + sin(x/δ), V (x) = 1
2x

2 with ǫ = 0.1, δ = 0.01.

The proof is a straightforward application of Theorem 3.1 and thus omitted.
Notice that unlessQ = 0 or ℓ = ∞, the term J̄1(x) 6= 0 has non zero contribution
in the limiting fluctuation process.

Next, we study the related conditional exit law, the result is in Theorem
5.3. From now on we assume that the initial point is xǫ

0 = x0 and restrict the
analysis to dimension d = 1 and to taking first δ ↓ 0 with ǫ fixed and then taking
ǫ ↓ 0. Essentially, this corresponds to the case ℓ = ∞.

Let us assume for concreteness that V (x) is strictly convex, has unique
minimum at x = z0 such that V (z0) = V ′(z0) = 0, V (x) > 0 for x 6= z0 and
V ′(x) 6= 0 for x 6= z0. Without loss of generality we assume that z0 = 0.
Consider an interval I = [x−, x+] containing x0 and assume that 0 < x−. In
Figure 1, we see a simple example of such a potential function.

Let us define the exit time

τ ǫ,δ = inf
{

t ≥ 0 : Xǫ,δ(t) /∈ (x−, x+)
}

,

and consider the event Bǫ,δ =
{

Xǫ,δ
τǫ,δ = x−

}

. From the assumptions of V , it

follows that limǫ→0 P
{

Bǫ,δ
}

= 0. Large deviations for such and more general
processes of similar structure have been studied in [5]. Our goal in this section is
to study the behavior of the exit problem from I for this process conditioned on
the rare event Bǫ,δ when δ goes to zero much faster than ǫ and provide a limit
theorem using Theorem 4.1. With some abuse of notation, we shall denote this
process as Xǫ,δ|Bǫ,δ . In Remark 5.4 we discuss the case when Q is a stationary
and ergodic random field.
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We investigate how the fast oscillations of the small perturbation function
Q(y) affect the conditional exit law. We first derive the process to which
Xǫ,δ|Bǫ,δ converges to by first taking δ ↓ 0 with ǫ fixed and then taking ǫ ↓ 0. We
do this using the Feller characterization of one-dimensional diffusion processes
given in [8] and the related weak convergence results of [11]. These results are
recalled for the convenience of the reader in Appendix A.

In order to formulate our results we need to introduce some more notation.
Let us define the 1-dimensional torus that the fast motion takes place as T

1.
We shall use the notation,

〈g〉 = 1

ρ

∫

T1

g(z)dz (5.2)

for the mean value of a periodic function g with period ρ.

Theorem 5.2. Let S > 0 be given. Given the assumptions made on the func-
tions Q(y) and V (x) above, we have that conditioned on Bǫ,δ, the process Xǫ,δ

converges weakly, as δ ↓ 0 with ǫ fixed, in the space of continuous function
C ([0, S];R) to a process which at least up to the time that it exits the interval
I = [x−, x+], satisfies

dX̂ǫ
t =





V ′
(

X̂ǫ
t

)

〈

e−
Q
D

〉〈

e
Q
D

〉 +Ψǫ(X̂ǫ
t )



 dt+
√
ǫ

√
2D

√

〈

e−
Q
D

〉〈

e
Q
D

〉

dWt, X̂0 = x0

(5.3)
where the function Ψǫ(x) = o(ǫ) as ǫ ↓ 0 uniformly in x.

The proof of this theorem is deferred to the end of this section. With this
result at hand, Theorem 4.1, implies the following result for the limiting distri-
bution of the conditional exit time τ ǫ,δ.

Theorem 5.3. Let

T (x0) =
〈

e−
Q
D

〉〈

e
Q
D

〉

∫ x−

x0

dy

V ′(y)
< ∞.

Given the assumptions made on the functions Q(y) and V (x) above, we have
that conditioned on Bǫ,δ, the distribution of 1√

ǫ
(τ ǫ,δ − T (x0)) converges weakly,

as first δ ↓ 0 and then ǫ ↓ 0 to a Gaussian random variablee with mean zero and
variance given by

2D
∣

∣

∣

〈

e−
Q
D

〉〈

e
Q
D

〉∣

∣

∣

2
∫ x+

x0

1

(V ′(z))3
dz. (5.4)

Proof. We only give a sketch of the main arguments, since based on Theorems
5.2 and 4.1, the proof follows along the lines of Theorem 2 in [1]. For notational
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convenience let us define

σ̄ =

√
2D

√

〈

e−
Q
D

〉〈

e
Q
D

〉

and recall that

λ̄(x) = −
V ′
(

X̂ǫ
t

)

〈

e−
Q
D

〉〈

e
Q
D

〉 .

Let us define X̂t to be the solution to the ODE

d

dt
X̂t = −λ̄

(

X̂t

)

, X̂0 = x0

and let Φ̂x0(t) solving the ODE

d

dt
Φ̂x0(t) = −λ̄

′

(

X̂t

)

Φ̂x0(t), Φ̂x0(0) = 1

By Theorem 5.2 and applying Theorem 4.1 for i = 1, we obtain that

1√
ǫ
(τ ǫ,δ − T (x0)) → − 1

λ̄(x+)
Φ̂x0 (T (x0))

∫ T (x0)

0

Φ̂−1
x0

(s) σ̄dŴs,

weakly, as first δ ↓ 0 and then ǫ ↓ 0. Thus, the limit is a centered Gaussian
random variable. The rest of the proof amounts to proving that the variance of
this Gaussian random variable reduces to (5.4); this is done in a similar situation
in the proof of Theorem 2 of [1] and thus omitted. This concludes the sketch of
the proof of the theorem.

The results hold in the case of a random environment. In particular we have
the following remark.

Remark 5.4. Even though we have stated Theorems 5.2 and 5.3 only for a
periodic function Q(y), the proof of Theorem 5.2 below immediately shows that
the statements are true also when Q(y) is a stationary, ergodic random field
defined on some probability space (Ψ,G, ν). For every ω ∈ Ψ, Q(y, ω) is C2(R) in
y with bounded and Lipschitz continuous derivatives up to order 2. In particular,
in this case we have

〈

e−
Q
D

〉

= Eν
[

e−
Q(y)
D

]

,
〈

e
Q
D

〉

= Eν
[

e
Q(y)
D

]

where Eν is expectation under the random environment. In the case of Theorem
5.3, it seems plausible to prove that the convergence is weak in C ([0, T ];R), in
probability with respect to ν.

From Theorems 5.2 and 5.3, we can get some interesting conclusions on the
effect of the small but fast oscillations ǫQ(x/δ) on the underlying potential V (x).
We have the following remark
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Remark 5.5. Theorem 5.3 gives a second order approximation for τ ǫ,δ con-
ditioned on Bǫ,δ when ǫ, δ are small. We notice that compared to the process
without any fast oscillations (i.e. take Q(y) = 0), the standardized limiting con-

ditional exit law has variance multiplied by the constant
∣

∣

∣

〈

e−
Q
D

〉〈

e
Q
D

〉
∣

∣

∣

2

. By

Hölder’s inequality, it is easy to see that

〈

e−
Q
D

〉〈

e
Q
D

〉

≥ 1

Therefore, the limiting conditional variance has been enhanced by the factor
∣

∣

∣

〈

e−
Q
D

〉〈

e
Q
D

〉∣

∣

∣

2

due to the fast oscillations.

We conclude this section with the proof of Theorem 5.2.

Proof of Theorem 5.2. By Lemma 3 in [1] we know that conditioned on Bǫ,δ,
Xǫ,δ behaves, for each ǫ, δ > 0, as a diffusion process with infinitesimal generator
L̃ǫ,δ given by

L̃ǫ,δ = bǫ,δ
(

x,
x

δ

)

∂x + ǫD∂2
x,

where

bǫ,δ
(

x,
x

δ

)

= − ǫ

δ
Q′
(x

δ

)

− V ′ (x) + 2ǫD
hǫ,δ(x)

∫ x

0 hǫ,δ(y)dy

and

hǫ,δ(x) = exp

{

1

ǫD

∫ x

0

[ ǫ

δ
Q′
(y

δ

)

+ V ′ (y)
]

dy

}

.

Then, as it is ease to see, the operator L̃ǫ,δ can be equivalently written in
the Dvǫ,δDuǫ,δ characterization of Feller [8] (see Appendix A for some related
results from the literature). In this case, the corresponding uǫ,δ(x) and vǫ,δ(x)
functions are defined as

uǫ,δ(x) =

∫ x

0

exp

{

− 1

ǫD

∫ y

0

bǫ,δ(z,
z

δ
)dz

}

dy, and

vǫ,δ(x) =

∫ x

0

1

ǫD
exp

{

1

ǫD

∫ y

0

bǫ,δ(z,
z

δ
)dz

}

dy.

By [11], we know that if uǫ(x), vǫ(x) are the limits of uǫ,δ(x), vǫ,δ(x) as δ ↓ 0,
then the process corresponding to the operator Dvǫ,δDuǫ,δ will converge weakly
in C ([0, S];R) to the process corresponding to the operator DvǫDuǫ . Our task
now is to investigate these limits.

Let us first investigate uǫ,δ(x). To simplify notation, denote Φ(x) = −Q′(x)
D ,
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Ψ(x) = −V ′(x)
D and ζ(y) =

∫ y

0
Φ(ρ)dρ. With this notation at hand, we have

uǫ,δ(x) =

∫ x

0

exp

{

− 1

ǫD

∫ y

0

bǫ,δ(z,
z

δ
)dz

}

dy

=

∫ x

0

exp

{

−ζ
(y

δ

)

− 1

ǫ

∫ y

0

Ψ(z)dz

}

exp

{

−2

∫ y

0

hǫ,δ(z)
∫ z

0 hǫ,δ(w)dw
dz

}

dy

=

∫ x

0

exp

{

−ζ
(y

δ

)

− 1

ǫ

∫ y

0

Ψ(z)dz

}

× exp

{

−2

∫ y

0

exp
{

−ζ
(

z
δ

)

− 1
ǫ

∫ z

0
Ψ(ρ) dρ

}

∫ z

0 exp
{

−ζ
(

w
δ

)

− 1
ǫ

∫ w

0 Ψ(ρ) dρ
}

dw
dz

}

dy. (5.5)

By the mean value theorem we know that for a periodic function g ∈ La(Y), for
a ≥ 1, we have that g

(

x
δ

)

⇀ 〈g〉 in La
loc(R) as δ ↓ 0. The convergence is in the

weak sense in the spaces of functions for any arbitrary bounded interval in R.
Using this on (5.5), we have that as δ ↓ 0, uǫ,δ(x) → uǫ(x), where

uǫ(x) =

∫ x

0

〈

e−ζ
〉

exp

{

−1

ǫ

∫ y

0

Ψ(z)dz

}

exp

{

−2

∫ y

0

〈

e−ζ
〉

e−
1
ǫ

∫
y

0
Ψ(z)dz

∫ z

0
〈e−ζ〉 e− 1

ǫ

∫
w

0
Ψ(ρ)dρdw

dz

}

dy

=

∫ x

0

〈

e−ζ
〉

exp

{

−1

ǫ

∫ y

0

Ψ(z)dz

}

exp
{

−2 ln
∣

∣

∣
e−

1
ǫ

∫
y

0
Ψ(z)dz − 1

∣

∣

∣

}

dy.

(5.6)

Due to our assumptions, we have that
∫ y

0 Ψ(z)dz < 0 for y ≥ 0. Thus, it is
easy to see that as ǫ ↓ 0

ln
(

e−
1
ǫ

∫
y

0
Ψ(z)dz − 1

)

= −1

ǫ

∫ y

0

Ψ(z)dz +
1

2ǫ
Ψǫ(y)

where Ψǫ(y) = o(ǫ) uniformly in y. Hence, this and (5.6) implies that as ǫ ↓ 0
we have

uǫ(x) =
〈

e−ζ
〉

∫ x

0

exp

{

−1

ǫ

∫ y

0

Ψ(z)dz

}

exp
{

−2 ln
(

e−
1
ǫ

∫
y

0
Ψ(z)dz − 1

)}

dy

=
〈

e−ζ
〉

∫ x

0

exp

{

−1

ǫ

∫ y

0

Ψ(z)dz

}

exp

{

−2

(

−1

ǫ

∫ y

0

Ψ(z)dz +
1

2ǫ
Ψǫ(y)

)}

dy

=
〈

e−ζ
〉

∫ x

0

exp

{

−1

ǫ

(

−
∫ y

0

Ψ(z) dz +Ψǫ(y)

)}

dy

On the other hand, in exactly the same way we get that vǫ,δ(x) → vǫ(x),
δ ↓ 0, where

vǫ(x) =

〈

eζ

ǫD

〉
∫ x

0

exp

{

1

ǫ

(

−
∫ y

0

Ψ(z) dz +Ψǫ(y)

)}

dy

with the same Ψǫ(y) = o(ǫ) as ǫ ↓ 0.
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The limiting uǫ(x) and vǫ(x) correspond to a process characterized by the
generator (see Remark A.1)

L̂ǫ =
(

b̂(x) + Ψǫ(x)
)

∂x + ǫα̂∂2
x

where

α̂ =
2D

〈

e−
Q
D

〉〈

e
Q
D

〉

b̂(x) =
V ′ (x)

〈

e−
Q
D

〉〈

e
Q
D

〉

which concludes the proof of the theorem.

A Feller’s Characterization of One Dimensional

Diffusions

Consider a stochastic process in one-dimensional characterized by its generator

Lf(x) =
1

2
α(x)

d2f

dx2
+ b(x)

df

dx
(A.1)

with smooth enough coefficients a(x) > 0 and b(x). For the convenience of
the reader, we briefly recall the Feller characterization of all one-dimensional
Markov processes, that are continuous with probability one (for more details
see [8]; also [16]). All one-dimensional strong Markov processes that are contin-
uous with probability one, can be characterized (under some minimal regularity
conditions) by a generalized second order differential operator DvDuf with re-
spect to two increasing functions u(x) and v(x) and its domain of definition. In
particular, u(x) is continuous and v(x) is right continuous. In addition, Du, Dv

are differentiation operators with respect to u(x) and v(x) respectively, which
are defined as follows:

Duf(x) exists if D+
u f(x) = D−

u f(x), where the left derivative of f with
respect to u is defined as follows:

D−
u f(x) = lim

h↓0

f(x− h)− f(x)

u(x− h)− u(x)
provided the limit exists.

The right derivative D+
u f(x) is defined similarly. If v is discontinuous at y then

Dvf(y) = lim
h↓0

f(y + h)− f(y − h)

v(y + h)− v(y − h)
.

Remark A.1. For example, it is easy to see that the operator L in (A.1) can
be written as a DvDu operator with u and v as follows:

u(x) =

∫ x

0

e−
∫

y

0
2b(z)
a(z)

dzdy and v(x) =

∫ x

0

2

a(y)
e
∫

y

0
2b(z)
a(z)

dzdy. (A.2)
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The representation of u(x) and v(x) in (A.2) is unique up to multiplicative and
additive constants. One can multiply one of these functions by some constant
and divide the other function by the same constant or add a constant to either
of them.

Another useful result in this direction is that of [11], where it is proven that
if we have a sequence of operators {DvǫDuǫ , ǫ > 0} uniquely characterizing a
sequence of Markov processes {Xǫ, ǫ > 0} such that uǫ(x) → u(x) and vǫ(x) →
v(x) as ǫ ↓ 0, such thatDvDu corresponds to a strongly continuous homogeneous
Markov processX , then Xǫ

· → X· as ǫ ↓ 0 in distribution in C([0, T ];R) for every
T > 0.
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