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Abstract

In this paper, we investigate an initial-boundary value problem for a chemotaxis-fluid

system in a general bounded regular domain Ω ⊂ R
N (N ∈ {2, 3}), not necessarily being

convex. Thanks to the elementary lemma given by Mizoguchi & Souplet [10], we can

derive a new type of entropy-energy estimate, which enables us to prove the following:

(1) for N = 2, there exists a unique global classical solution to the full chemotaxis-Navier-

Stokes system, which converges to a constant steady state (n∞, 0, 0) as t→ +∞, and (2)

for N = 3, the existence of a global weak solution to the simplified chemotaxis-Stokes

system. Our results generalize the recent work due to Winkler [15, 16], in which the do-

main Ω is essentially assumed to be convex.

Keywords: Chemotaxis, Navier-Stokes equation, global existence, general bounded do-

main.

AMS Subject Classification: 35K55, 35Q92, 35Q35, 92C17.

1 Introduction

In this paper, we study the following initial-boundary value problems for a chemotaxis(-

Navier)-Stokes system [9,14]:



























nt + u · ∇n = ∆n−∇ · (nχ(c)∇c),
ct + u · ∇c = ∆c− nf(c),

ut = ∆u+ κ(u · ∇)u+∇p+ n∇φ,
∇ · u = 0.

(1.1)

The chemotaxis-fluid system (1.1) was recently proposed in [14] to model the motion of

swimming bacteria under the effects of diffusion, oxygen-taxis and transport through an

incompressible fluid. Here, we assume that Ω ⊂ R
N (N ∈ {2, 3}) is a bounded domain with
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smooth boundary ∂Ω. The scalar functions n and c denote the concentration of oxygen and

bacteria, respectively. The vector u stands for the velocity field of the fluid subject to an

incompressible Navier-Stokes type equation with pressure p. The scalar function φ stands

for the gravitational potential, while χ(c) and f(c) are the chemotactic sensitivity and the

per-capita oxygen consumption rate that may depend on c. κ ∈ R is a parameter such that if

κ 6= 0, the fluid motion is governed by the Navier-Stokes equation, while κ = 0, the equation

for u is simplified to be the Stokes equation. We complement system (1.1) with the following

Neumann and no-slip boundary conditions

∂n

∂ν
=
∂c

∂ν
= 0 and u = 0 for x ∈ ∂Ω, t > 0 (1.2)

with ν being the unit outward normal to ∂Ω, and the initial conditions

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x). (1.3)

The chemotaxis-fluid system has recently been extensively studied by many authors. Here,

we only mention some contributions in the literature that are mostly related to our initial

boundary value problem (1.1)–(1.3) in a bounded domain Ω ⊂ R
N . We refer the reader

to [1,2,5,7,11] for the studies on the Cauchy problem in the whole space R
N , and to [4,7,13]

for the case that the linear diffusion term ∆n is replaced by a nonlinear porous medium

type one ∆nm. When the domain Ω is bounded and regular, Lorz [9] proved the existence

of a local weak solution by Schauder’s fixed point theory when N = 3. If the domain Ω is

further assumed to be convex, then using a key observation made in [12] and some delicate

entropy-energy estimates, Winkler [15] established the existence of a unique global classical

solution with large initial data for κ ∈ R when N = 2, and the existence of a global weak

solution for with κ = 0 when N = 3. Later, in [16], the same author further proved that the

global classical solution obtained in [15] in 2D will converge to a constant state (n∞, 0, 0) as

times goes to infinity. The main purpose of this note is to extend the results by Winkler from

the convex domain to the general smooth domain.

Throughout this paper, we denote by Lq(Ω), W k,q(Ω), 1 ≤ q ≤ ∞, k ∈ N the usual

Lebesgue and Sobolev spaces respectively, and as usual, Hk(Ω) = W k,2(Ω). ‖ · ‖B denotes

the norm in the space B; we also use the abbreviation ‖ · ‖ := ‖ · ‖L2(Ω).

We introduce the following assumptions on the initial data as in [15]:















n0 ∈ C0(Ω), n0 > 0 in Ω,

c0 ∈W 1,q(Ω), for some q > N, c0 > 0 in Ω,

u0 ∈ D(Aα), for some α ∈ (N4 , 1),

(1.4)

where A denotes the realization of the Stokes operator in the solenoidal subspace L2
σ(Ω) that

is the closure of {u ∈ (C∞
0 (Ω))N ; ∇ ·u = 0} in (L2(Ω))N (see e.g., [6]). As for the parameter

functions, we suppose that















χ ∈ C2[0,∞), χ > 0 in [0,∞),

f ∈ C2[0,∞), f(0) = 0, f > 0 in (0,∞),

φ ∈ C2(Ω),

(1.5)
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and
(

f

χ

)′

> 0,

(

f

χ

)′′

≤ 0, (χ · f)′ ≥ 0, on [0,∞). (1.6)

Now we state our main result of the paper:

Theorem 1.1. Let Ω ∈ R
N (N ∈ {2, 3}) be a bounded regular domain. Assume that the

assumptions (1.4)–(1.6) are satisfied.

(i) If N = 2 and κ ∈ R, then problem (1.1)–(1.3) admits a unique global classical solution

(n, c, u, p) (up to addition of a constant to the pressure p) such that for any T > 0,


























n ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;C0(Ω)) ∩ C2,1(Ω× (0, T )),

c ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;W 1,q(Ω)) ∩C2,1(Ω× (0, T )),

u ∈ C([0, T ];L2(Ω)) ∩ L∞(0, T ;D(Aα)) ∩ C2,1(Ω × (0, T )),

p ∈ L1(0, T ;H1(Ω)).

Moreover, the global classical solution satisfies

lim
t→+∞

‖n(·, t) − n∞‖L∞(Ω) + ‖c(·, t)‖L∞(Ω) + ‖u(·, t)‖L∞ = 0, (1.7)

where n∞ = 1
|Ω|

∫

Ω n0dx.

(ii) If N = 3 and κ = 0, then there exists at least one global weak solution of (1.1)–(1.3) in

the sense of [15, Definition 5.1].

Before giving the detailed proof, we stress some new features of the present paper. Our

initial boundary problem (1.1) is proposed on any regular bounded domain Ω ⊂ R
N (N ∈

{2, 3}), while in [15] convexity of the domain is essentially used in order to prove the global

existence results. The main difficulty comes from an integration term on the boundary that

takes the following form:
∫

∂Ω

χ(c)

f(c)

∂

∂ν
|∇c|2dS.

If Ω is convex, then the above integrand turns out to be non-positive (cf. [3]) and as a

consequence it can be simply neglected like in [15]. However, if we consider the problem in a

general bounded domain, this integrand fails to have a definite sign and has to be estimated

in a suitable way. To overcome this difficulty, we make use of the elementary lemma due

to Mizoguchi & Souplet [10] together with the trace theorem to control the above boundary

integration. Then by delicate estimates, we are able to derive a new type of entropy-energy

estimate, whose right-hand side terms turns out to be easier to handle (cf. (3.1) below). This

estimate plays a key role in obtaining global existence results for problem (1.1)–(1.3) in a

similar manner as in [15]. Moreover, based on it we can further prove that when N = 2,

the global classical solution will converge to a constant steady state (n∞, 0, 0) as times goes

to infinity. Our work removes the restriction on the convexity of Ω and thus improves the

corresponding results by Winkler [15,16].

The rest of this paper is organized as follows. In Section 2, we handle the above mentioned

boundary integration term with the aid of a gradient estimate result on the boundary from

Mizoguchi & Souplet [10]. In Section 3, we derive the key entropy-energy estimate by using

some delicate calculations and then sketch the proof for Theorem 1.1.
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2 Estimate of Boundary Integration

To begin with, we first state two basic properties of the solutions to problem (1.1)–(1.3)

that have already been obtained in [7, 15,16].

Lemma 2.1. We have
∫

Ω
n(x, t)dx =

∫

Ω
n0dx for all t > 0 (2.1)

and

t 7→ ‖c(·, t)‖L∞(Ω) is non-increasing. (2.2)

In particular,

‖c(·, t)‖L∞(Ω) ≤ ‖c0‖L∞(Ω) for all t > 0. (2.3)

Lemma 2.2. The solution satisfies the identity

d

dt

{
∫

Ω
n log ndx+

1

2

∫

Ω
|∇ψ(c)|2dx

}

+

∫

Ω

|∇n|2
n

dx+

∫

Ω
g(c)|D2ρ(c)|2dx

= −1

2

∫

Ω

g′(c)

g2(c)
|∇c|2(u · ∇c)dx+

∫

Ω

1

g(c)
∆c(u · ∇c)dx

+

∫

Ω
F (n)

(

f(c)g′(c)

2g2(c)
− f ′(c)

g(c)

)

|∇c|2dx

+
1

2

∫

Ω

g′′(c)

g2(c)
|∇c|4dx+

1

2

∫

∂Ω

1

g(c)

∂

∂ν
|∇c|2dx

(2.4)

for all t ∈ (0, Tmax), where D
2ρ denotes the Hessian of ρ and we have set

g(s) :=
f(s)

χ(s)
, ψ(s) :=

∫ s

1

dσ
√

g(σ)
and ρ(s) :=

∫ s

1

dσ

g(σ)
for s > 0, (2.5)

and F ∈ C2([0,+∞)) is a nonnegative function satisfying 0 ≤ F ′(s) ≤ 1 for all s ≥ 0.

Therefore, if the domain Ω is convex and ∂c
∂ν

= 0 on ∂Ω, then ∂
∂ν
|∇c|2 ≤ 0 (cf. [3]). This

implies that the boundary integration term on the right-hand side of (2.4) is non-positive

and hence can be simply neglected as in [15]. However, for general bounded domains, it fails

to have a definite sign and thus needs to be estimated in a suitable way.

For this purpose, we introduce a lemma by Mizoguchi & Souplet [10, Lemma 4.2], which

enables us to deal with the boundary integration in (2.4).

Lemma 2.3. For the bounded domain Ω and w ∈ C2(Ω) satisfying ∂w
∂ν

= 0 on ∂Ω. We have

∂|∇w|2
∂ν

≤ 2κ|∇w|2 on ∂Ω, (2.6)

where κ = κ(Ω) > 0 is an upper bound for the curvatures of ∂Ω.

Then we can prove the following boundary estimate:
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Lemma 2.4. Suppose that the assumptions of Theorem 1.1 hold, and let g, ψ and ρ be defined

as in (2.5). Then for any ǫ ∈ (0, 1), the following estimate holds

1

2

∣

∣

∣

∣

∫

∂Ω

1

g(c)

∂

∂ν
|∇c|2dS

∣

∣

∣

∣

≤ ǫ

∫

Ω
g(c)|∆ρ(c)|2dx+ ǫ

∫

Ω

|g′(c)|2|∇c|4
g(c)3

dx+ Cǫ‖ψ(c)‖2,
(2.7)

where Cǫ is a constant that may depend on Ω, κ and ǫ, but not on c.

Proof. Thanks to Lemma 2.3, we can control the boundary integration term as follows

1

2

∣

∣

∣

∣

∫

∂Ω

1

g(c)

∂

∂ν
|∇c|2dS

∣

∣

∣

∣

≤ κ(Ω)

∫

∂Ω

|∇c|2
g(c)

dS = κ(Ω)

∫

∂Ω
|∇ψ(c)|2dS. (2.8)

On the other hand, by the trace theorem [8, Theorem I.9.4], it holds

∫

∂Ω
|∇ψ(c)|2dS ≤ C‖ψ(c)‖2

H
3+s

2 (Ω)
, ∀ s ∈ (0,

1

2
). (2.9)

where C > 0 depends only on Ω. Then we infer from the interpolation inequality (see

e.g., [8, Remark I.9.6]) that

‖ψ(c)‖2
H

3+s

2 (Ω)
≤ C‖ψ(c)‖

3+s

2

H2(Ω)
‖ψ(c)‖ 1−s

2

≤ C‖∆ψ(c)‖ 3+s

2 ‖ψ(c)‖ 1−s

2 + C‖ψ(c)‖2
(2.10)

By direct calculations, we have

∆ψ(c) =
∆c

√

g(c)
− 1

2

g′(c)|∇c|2

(g(c))
3

2

(2.11)

and

∆ρ(c) =
∆c

g(c)
− g′(c)|∇c|2

g(c)2
,

which yield that

√

g(c)∆ρ(c) =
∆c

√

g(c)
− g′(c)|∇c|2

(g(c))
3

2

= ∆ψ(c) − 1

2

g′(c)|∇c|2

(g(c))
3

2

. (2.12)

Then it follows that

‖∆ψ(c)‖2 ≤ 2

∫

Ω
g(c)|∆ρ(c)|2dx+

1

2

∫

Ω

|g′(c)|2|∇c|4
g(c)3

dx. (2.13)

Using the estimates (2.8)–(2.10), (2.13) and Young’s inequality, we can conclude (2.7). The

proof is complete.
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3 Proof of Theorem 1.1

Lemma 2.4 enables us to prove the following entropy-energy type estimate for problem

(1.1)–(1.3):

Lemma 3.1. Suppose that the assumptions of Theorem 1.1 hold, and let g, ψ and ρ be defined

as in (2.5). Then the smooth solution to problem (1.1)–(1.3) satisfies

d

dt

{
∫

Ω
n log ndx+

1

2

∫

Ω
|∇ψ(c)|2dx

}

+

∫

Ω

|∇n|2
n

dx+
1

2

∫

Ω
g(c)|D2ρ(c)|2dx

≤ C‖∇u‖2 + C‖ψ(c)‖2 for all t ∈ (0, Tmax),

(3.1)

where C > 0 is independent of t, Tmax.

Proof. We proceed to estimate the right-hand side of (2.4) term by term. First, applying [15,

Lemma 3.3], we obtain that
∫

Ω

g′(c)

g(c)3
|∇c|4dx ≤ (2 +

√
N)2

∫

Ω

g(c)

g′(c)
|D2ρ(c)|2dx. (3.2)

Since g′ > 0 on [0,+∞) and 0 ≤ c ≤ K := ‖c0‖L∞ (see Lemma 2.1), there exist constants

C1 := inf
s∈(0,K)

g′(s) > 0, and C2 = sup
s∈(0,K)

g′(s) > 0

such that C1 ≤ g′(c) ≤ C2 in Ω× (0, Tmax). Hence, it follows from (3.2) that

∫

Ω

|g′(c)|2
g(c)3

|∇c|4dx ≤ C2

C1
(2 +

√
N)2

∫

Ω
g(c)|D2ρ(c)|2dx. (3.3)

Then for the first two terms on the right-hand side of (2.4), using (2.11), after integration

by parts, and using the boundary conditions (1.2), we deduce from (3.3) that

− 1

2

∫

Ω

g′(c)

g(c)2
|∇c|2(u · ∇c)dx+

∫

Ω

1

g(c)
∆c(u · ∇c)dx

=

∫

Ω

1
√

g(c)
∆ψ(c)(u · ∇c)dx

=

∫

Ω
∆ψ(c)(u · ∇ψ(c))dx

= −
∫

Ω
(∇ψ(c)⊗∇ψ(c)) : ∇udx

≤ C1

4C2(2 +
√
N)2

∫

Ω

g′(c)

g(c)3
|∇c|4dx+

C2(2 +
√
N)2

C1

∫

Ω

g(c)

g′(c)
|∇u|2dx

≤ 1

4

∫

Ω
g(c)|D2ρ(c)|2dx+

C2(2 +
√
N)2

C1

∫

Ω

g(c)

g′(c)
|∇u|2dx,

(3.4)

where we have also used the incompressibility of the fluid as well as Young’s inequality. Here,

the notion A : B denotes Tr(AB) = AijBji for two N ×N matrices A,B.

As in [15], it follows from the assumption (1.6) that g′′ ≤ 0 in [0,+∞) and fg′

2g2
− f ′

g
=

− (χf)′

2f ≤ 0 on [0,+∞). Then the third term on the right-hand side of (2.4) is indeed non-

positive and can simply be neglected.
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Next, we infer from Lemma 2.4 that the last boundary integration term on the right-

hand side of (2.4) can be estimated by using (2.7). In view of the pointwise inequality

|∆z|2 ≤ N |D2z|2 for z ∈ C2(Ω), the first term on the right-hand side of (2.7) can be

estimated as follows:
∫

Ω
g(c)|∆ρ(c)|2dx ≤ N

∫

Ω
g(c)|D2ρ(c)|2dx. (3.5)

As a consequence, it follows from (2.7), (3.3) and (3.5) that

1

2

∣

∣

∣

∣

∫

∂Ω

1

g(c)

∂

∂ν
|∇c|2dS

∣

∣

∣

∣

≤ ǫ

(

N +
C2

C1
(2 +

√
N)2

)
∫

Ω
g(c)|D2ρ(c)|2dx+ Cǫ‖ψ(c)‖2.

(3.6)

Taking ǫ > 0 sufficiently small such that ǫ
(

N + C2

C1
(2 +

√
N)2

)

≤ 1
4 in (3.6), we can deduce

from (2.4), (3.4) and (3.6) that the inequality (3.1) holds. The proof is complete.

Besides, we can derive the following estimates on the velocity field u:

Lemma 3.2. Under the assumptions of Theorem 1.1, we have the following estimate

‖u‖2 +
∫ T

0
‖∇u‖2dt ≤ C

(
∫ T

0

∫

Ω

|∇n|2
n

dx+ 1

)

N

6

, for any 0 < T < Tmax, (3.7)

where the constant C depends on T and
∫

Ω n0dx.

Proof. Multiplying the third equation in (1.1) by u, integrating over Ω, using the Hölder

inequality and the Sobolev embedding theorem, we obtain that

1

2

d

dt

∫

Ω
|u|2dx+

∫

Ω
|∇u|2dx =

∫

Ω
n∇φ · udx

≤ ‖u‖L6‖∇φ‖L∞‖n‖
L

6
5

≤ 1

2
‖∇u‖2 + C‖∇φ‖2L∞‖n‖2

L
6
5

.

(3.8)

On the other hand, we infer from [15, Lemma 4.1] that

∫ T

0
‖n‖2

L
6
5

dt ≤ C(T,

∫

Ω
n0dx)

(
∫ T

0

∫

Ω

|∇n|2
n

dxdt+ 1

)

N

6

. (3.9)

Then integrating (3.8) with respect to time, we conclude from (3.9) that the assertion (3.7)

follows.

As a consequence of the above lemmas, we can obtain the following a priori estimates on

solutions to problem (1.1)–(1.3):

Lemma 3.3. Under the same assumptions of Theorem 1.1, for any 0 < T < Tmax, we have

the following estimates
∫

Ω
n log ndx+

∫

Ω
|∇ψ(c)|2dx+

∫

Ω
|u|2dx ≤ C, (3.10)
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∫ T

0

∫

Ω

|∇n|2
n

dxdt+

∫ T

0

∫

Ω
g(c)|D2ρ(c)|2dxdt+

∫ T

0

∫

Ω
|∇u|2dxdt ≤ C, (3.11)

and
∫ T

0

∫

Ω
|∇c|4dxdt ≤ C. (3.12)

Proof. The estimates (3.10)–(3.11) easily follow from (3.1) and (3.7) together with an ap-

plication of Young’s inequality. Then the estimate (3.12) can be derived in the same way as

in [15, Corollary 4.4, Corollary 5.3].

After the previous preparations, we can proceed to prove our main result.

Proof of Theorem 1.1. The proof for the existence of global solutions follows a similar

argument like in [15]. First, since the proof in [15] for the local existence and uniqueness of

classical solutions to problem (1.1)–(1.3) does not rely on the fact that Ω is convex, then for

the current case with general domain Ω, we can still apply the same fixed point argument

to prove the local wellposeness result. Then by the a priori estimates in Lemma 3.3, we are

able to prove the existence of global classical solutions for N = 2 and global weak solutions

for N = 3 in the same way as in [15, Section 4, Section 5]. Therefore, the details are omitted

here.

Concerning the asymptotic behavior for N = 2, we notice that in our new entropy-

energy inequality (3.1), the right-hand side terms now become C‖∇u‖2 + C‖ψ(c)‖2 instead

of C
∫

Ω |u|4dx as in [15, (3.11)] (see also [16, (2.15)]). In [16] this (worse) term
∫

Ω |u|4dx is

estimated by using the Sobolev embedding theorem and Poincaré’s inequality such that

‖u‖4L4(Ω) ≤ C‖∇u‖2‖u‖2,

which is a higher-order nonlinearity than ‖∇u‖2. Since the current right-hand side of (3.1)

is simpler and the second term ‖ψ(c)‖2 is uniformly bounded in time due to the definition of

ψ (cf. (2.5)) and Lemma 2.1, one can check that all the arguments in [16] can pass through.

As a consequence, we can conclude the convergence result (1.7).

Hence, Theorem 1.1 is proved.
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