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Abstract

In this paper, we first obtain the temporal decay estimates for weak solutions to
the three dimensional generalized Navier-Stokes equations. Then, with these estimates
at disposal, we obtain the temporal decay estimates for higher order derivatives of the
smooth solution with small initial data. The decay rates are optimal in the sense that
they coincides with ones of the corresponding generalized heat equation. These results
improve the previous known results to the classical Navier-Stokes equations.
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1 Introduction

The incompressible Navier-Stokes equations can be written as





ut + (u · ∇)u− ν∆u = −∇p,

div u = 0,

u(x, 0) = u0(x),

(1.1)

where x ∈ Rn, n ≥ 2, t > 0, the vector field u = u(x, t) denotes the velocity of the fluid,
p = p(x, t) is the pressure of the fluid and the positive ν is the viscosity coefficient.

Whether or not weak solutions of (1.1) decay to zero in L2 as time tends to infinity
was posed by Leray in his pioneering paper [10, 11]. Kato [7] gave the first affirmative
answer to the strong solutions with small data to system (1.1). Algebraic decay rates for
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11231006 and 11228102) and Project of Beijing Chang Cheng Xue Zhe.
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weak solutions to system (1.1) were first obtained by Schonbek [16], in which the Fourier
splitting method was introduced to prove that there exists a Leray-Hopf weak solution of
(1.1) in three space dimension with arbitrary data in L1 ∩ L2, satisfying

‖u(t)‖2 ≤ C(t+ 1)−
1

4

where the constant C depends only on the L1 and L2 norms of the initial data. Later
the method in [16] was extended by Schonbek [17] (see also Kajikiya and Miyakawa [6],
Wiegner [22] for the case Rn (n=2,3,4)) and it was proved that the decay rate for Leray-
Hopf solutions of (1.1) in three space dimension with large data in Lp ∩ L2 with 1 ≤ p < 2
is same as those for the solution of the heat equation. That is,

‖u(t)‖2 ≤ C(t+ 1)−
3

4
( 2
p
−1)

,

where the constant C only depends on the Lp and L2 norms of the initial data. On the
decay of solutions to the Navier-Stokes equations, it is also referred to [2, 3, 5, 9, 13, 21]
and references therein.

In this paper, we consider the large-time behavior of solutions to the following Cauchy
problem for the incompressible generalized Navier-Stokes equations





ut + (u · ∇)u+ νΛ2αu = −∇p,

div u = 0,

u(x, 0) = u0(x),

(1.2)

where x ∈ Rn, n ≥ 2, t > 0, Λ2α is defined through Fourier transform (see [19])

Λ̂2αf(ξ) = |ξ|2αf̂(ξ), f̂(ξ) =

∫

Rn

f(x)e−2πix·ξdx.

It is known that if (u(x, t), p(x, t)) is a solution to the three-dimensional general-
ized Navier-Stokes equations, then for any λ > 0, the scalings (uλ(x, t), pλ(x, t)) =
(λ2α−1u(λx, λ2αt), λ4α−2p(λx, λ2αt)) also solves the generalized Navier-Stokes equations.
The corresponding energy is

E(uλ) = sup
t

∫

R3

|uλ|
2dx+

∫ ∞

0

∫

R3

|Λαuλ|
2dxdt = λ4α−5E(u).

It follows that E(uλ) → ∞ as λ → ∞ when α < 5
4 . In this sense, we say that the three-

dimensional generalized Navier-Stokes equations (1.2) is supercritical if α < 5
4 , critical

for α = 5
4 and subcritical with α > 5

4 . It has been proved that when α ≥ 5
4 , the three-

dimensional generalized Navier-Stokes equations admits a global and unique regular solution
(see [12], [23] for instance).

In this paper, we are concerned with the asymptotic behavior of solution of (1.2) in
the supercritical case α < 5

4 . Motivated by [16]-[18], we will show that the weak solutions
to (1.2) subject to large initial data decay in L2 at a uniform algebraic rate. The decay
estimates for the higher order derivatives of the smooth solution with small initial data will
also be established in L2. To prove our main results, the Fourier splitting method due to
Schonbek [16] with appropriate modification will be applied. It should be noted that the
decay rates obtained in this paper are optimal in the sense that they coincide with ones of
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the corresponding generalized heat equation vt + νΛ2αv = 0 with the same initial data u0
(see Lemma 3.1 in [15]). Therefore, our results improve ones obtained in [17] in which the
classical Navier-Stokes equations (α = 1 in (1.2)) are investigated. For completeness, the
proof of existence of weak solutions will be sketched in Appendix in the end of the paper.

Throughout the rest of the paper the Lp- norm of a function f is denoted by ‖f‖p and
the Hs- norm by ‖f‖Hs . We will also set ν = 1 for simplicity.

Our main results are listed as follows.

Theorem 1.1. Let 0 < α ≤ 1. Then for divergence-free vector-field u0 ∈ L2(R3) ∩ Lp(R3)
with 1 ≤ p < 2, the system (1.2) admits a weak solution such that

‖u(t)‖22 ≤ C(t+ 1)
− 3

2α
( 2
p
−1)

, (1.3)

where the constant C depends on α, the Lp and L2 norms of the initial data.

Theorem 1.2. Let 1 ≤ α < 5
4 . Then for divergence-free vector-field u0 ∈ L2(R3) ∩ Lp(R3)

with 1
3−2α ≤ p < 2, the system (1.2) admits a weak solution such that

‖u(t)‖22 ≤ C(t+ 1)
− 3

2α
( 2
p
−1)

, (1.4)

where the constant C depends on α, the Lp and L2 norms of the initial data.

The following are decay estimates for the higher order derivatives of the smooth solution,
of which global-in-time existence for sufficiently small initial data is guaranteed in [24].

Theorem 1.3. Let 0 < α ≤ 1 and u0 ∈ L2(R3) ∩ L1(R3) with div u0 = 0. Then, for
m ∈ N (the set of positive integers), there exist T0 > 0 and C > 0 such that the small
global-in-time solution satisfies

‖Dmu(t)‖22 ≤ C(t+ 1)−
3

2α
−m

α

for all t > T0, where the constant C depends on m, α and ‖u0‖L2∩L1 .

Remark 1.1. The following cases can be dealt with in a similar fashion:

(1) If 0 < α ≤ 1
2 and u0 ∈ L2(R3) ∩ Lp(R3) with 1 ≤ p ≤ 6

4α+3 , one has

‖Dmu(t)‖22 ≤ C(t+ 1)
− 3

2α
( 2
p
−1)−m

α .

To prove this result, we just modify the estimate (3.14) as

‖∇u‖∞ ≤ C(t+ 1)−
3

4α
( 2
p
−1)

.

(2) If 1
2 < α ≤ 1 and u0 ∈ L2(R3) ∩ Lp(R3) with 1 ≤ p ≤ 6

4α+1 , one has

‖Dmu(t)‖22 ≤ C(t+ 1)
− 3

2α
( 2
p
−1)−m

α .

To prove this result, we just modify the estimate (3.10) as

‖u‖∞ ≤ C(t+ 1)−
3

4α
( 2
p
−1)

.
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Theorem 1.4. Let 1 ≤ α < 5
4 and u0 ∈ L2(R3)∩Lp(R3) with div u0 = 0 and 1

3−2α ≤ p < 2.
Then, for m ∈ N (the set of positive integers), there exist T0 > 0 and C > 0 such that the
small global-in-time solution satisfies

‖Dmu(t)‖22 ≤ C(t+ 1)−
3

2α
( 2
p
−1)−m

α

for all t > T0, where the constant C depends on m, α and ‖u0‖L2∩Lp .

Remark 1.2. The decay rates for higher order of derivatives of the solutions was studied in
[4] for the classical Navier-Stokes equations and in [18] for the Hall-magnetohydrodynamic
equations.

The paper unfolds as follows: Section 2 is devoted to the proof of Theorem 1.1 and
Theorem 1.2 whereas Section 3 deals with the proof of Theorem 1.3 and Theorem 1.4. The
existence of weak solutions is given in the Appendix in the end of the paper.

2 Proof of Theorem 1.1 and Theorem 1.2

In this section, Theorem 1.1 and Theorem 1.2 will be proved. We start with two key lemmas.

Lemma 2.1. Let u be a smooth solution to system (1.2) with initial data u0 ∈ Lp(R3) ∩
L2(R3), 1 ≤ p < 2. Then there exists a constant C > 0 depending only on ‖u0‖2 such that

|û(ξ, t)| ≤ C(|û0(ξ)|+
1

|ξ|2α−1
). (2.1)

Proof. Taking the Fourier transform of the first equation of (1.2) yields

ût(ξ, t) + |ξ|2αû(ξ, t) = H(ξ, t), (2.2)

where
H(ξ, t) = −û · ∇u(ξ, t) − ∇̂p(ξ, t).

Multiplying (2.2) by e|ξ|
2αt gives

d

dt
(e|ξ|

2αtû(ξ, t)) = e|ξ|
2αtH(ξ, t).

Integrating with respect to time from 0 to t, we have

û(ξ, t) = e−|ξ|2αtû0(ξ) +

∫ t

0
e−|ξ|2α(t−s)H(ξ, s)ds. (2.3)

Hence

|û(ξ, t)| ≤ |û0(ξ)| +

∫ t

0
e−|ξ|2α(t−s)|H(ξ, s)|ds. (2.4)

To complete the proof we need to establish an estimate forH(ξ, s). Taking the divergence
operator on the first equation of (1.2) yields

−∆p =
3∑

i,j=1

∂2

∂xi∂xj
(uiuj).
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Since the Fourier transform is a bounded map from L1 into L∞, it follows that

|∇̂p(ξ, t)| ≤|ξ||p̂(ξ, t)|

≤

3∑

i,j=1

|ξiξj |

|ξ|
|ûiuj(ξ, t)|

≤C|ξ|‖u(t)u(t)‖1

≤C|ξ|‖u(t)‖22.

Similarly, for the convection term, using the divergence free condition, we have

|û · ∇u(ξ, t)| ≤

3∑

i

|ξ||ûiu(ξ, t)|

≤C|ξ|‖u(t)u(t)‖1

≤C|ξ|‖u(t)‖22.

Combing the above two estimates, we obtain

|H(ξ, t)| ≤ C|ξ|‖u(t)‖22. (2.5)

Inserting (2.5) into (2.4) and using the boundedness of the L2 norm of the solution lead to

|û(ξ, t)| ≤|û0(ξ)|+
C

|ξ|2α−1
‖u0‖

2
2(1− e−|ξ|2αt)

≤C(|û0(ξ)|+
1

|ξ|2α−1
).

The proof of the lemma is finished.

Lemma 2.2. Let u0 ∈ Lp(R3) with 1 ≤ p ≤ 2. Then
∫

S(t)
|û0(ξ)|

2dξ ≤ C(t+ 1)
− 3

2α
( 2
p
−1)

, (2.6)

where
S(t) = {ξ ∈ R3 : |ξ| ≤ g(t)}, g(t) = (

γ

t+ 1
)

1

2α , (2.7)

the constant C depends on γ and the Lp norm of u0.

Proof. Denote F the Fourier transform. By Riesz theorem, if 1 ≤ p ≤ 2, the Fourier
transform F : Lp → Lq is bounded, and

‖Fu0‖q ≤ C‖u0‖p, (2.8)

where 1
p + 1

q = 1. Consequently, one has
∫

S(t)
|û0|

2dξ ≤ (

∫

S(t)
|û0|

qdξ)
2

q (

∫

S(t)
dξ)

1− 2

q . (2.9)

Thanks to (2.8) and noting that the volume |S(t)| = Cg3(t), we get
∫

S(t)
|û0(ξ)|

2dξ ≤ C(t+ 1)−
3

2α
( 2
p
−1)

.

The proof of the lemma is finished.
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In the rest of this section, we first present a formal argument by the Fourier splitting
method (see [16]).

Proof of Theorem 1.1. By taking L2-inner product on both sides of the first equation of
(1.2) with u, we get

d

dt
‖u(t)‖22 = −2‖Λαu(t)‖22.

Applying the Plancherel theorem, one has

d

dt

∫

R3

|û(ξ)|2dξ = −2

∫

R3

|ξ|2α|û(ξ)|2dξ.

Let
S(t) = {ξ ∈ R3 : |ξ| ≤ g(t)}, g(t) = (

γ

t+ 1
)

1

2α , (2.10)

where γ is a constant to be determined. Then

d

dt

∫

R3

|û(ξ)|2dξ ≤− g2α(t)

∫

|ξ|≥g(t)
|û(ξ)|2dξ −

∫

|ξ|≤g(t)
|ξ|2α|û(ξ)|2dξ

≤− g2α(t)

∫

R3

|û(ξ)|2dξ + g2α(t)

∫

|ξ|≤g(t)
|û(ξ)|2dξ.

(2.11)

Multiplying (2.11) by G(t) = e
∫ t

0
g2α(τ)dτ yields

d

dt
(G(t)‖u(t)‖22) ≤ g2α(t)G(t)

∫

|ξ|≤g(t)
|û(ξ)|2dξ.

Note that G(t) = (t+ 1)γ by (2.10). It follows that

d

dt
((t+ 1)γ‖u(t)‖22) ≤ γ(t+ 1)γ−1

∫

|ξ|≤g(t)
|û(ξ)|2dξ. (2.12)

To complete the proof we will use Lemma 2.1 and 2.2 to estimate the right hand of
(2.12). Indeed, by plugging (2.1) into the right hand of (2.12) and using (2.6), we have

d

dt
((t+ 1)γ‖u(t)‖22) ≤C(t+ 1)γ−1

∫

|ξ|≤g(t)
|û0(ξ)|

2dξ + C(t+ 1)γ−1

∫

|ξ|≤g(t)

1

|ξ|2(2α−1)
dξ

≤C(t+ 1)γ−1− 3

2α
( 2
p
−1) + C(t+ 1)γ−1− 5−4α

2α .

Integrating in time from 0 to t yields

‖u(t)‖22 ≤ C((t+ 1)−γ + (t+ 1)
− 3

2α
( 2
p
−1)

+ (t+ 1)−
5−4α
2α ). (2.13)

When 0 < α ≤ 1
2 and p ≥ 1 ≥ 3

4−2α , we have 3
2α (

2
p − 1) ≤ 5−4α

2α . Hence, by choosing

γ = 3
2α , we obtain

‖u(t)‖22 ≤ C(t+ 1)
− 3

2α
( 2
p
−1)

.

When 1
2 < α ≤ 1, two cases will be considered respectively. In case of 1 ≤ p < 3

4−2α ,

one has 3
2α(

2
p − 1) > 5−4α

2α . Hence, by choosing γ = 3, we have

‖u(t)‖22 ≤ C(t+ 1)−
5−4α
2α . (2.14)
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In case of 3
4−2α ≤ p < 2, one has 3

2α (
2
p − 1) ≤ 5−4α

2α . Hence, by choosing γ = 3
2α , we have

‖u(t)‖22 ≤ C(t+ 1)
− 3

2α
( 2
p
−1)

. (2.15)

Now we improve the decay rate in (2.14). We will use (2.14) to show that

|û(ξ, t)| ≤ |û0(ξ)|+ C for ξ ∈ S(t).

Then a bootstrap-type argument will lead to a better decay rate. Using (2.5) and (2.14),
for 1

2 < α ≤ 1 and α 6= 5
6 , we have

∫ t

0
e−|ξ|2α(t−s)|H(ξ, s)|ds ≤C|ξ|

∫ t

0
(s+ 1)−

5−4α
2α ds

≤C
2α

6α− 5
|ξ|((t+ 1)

6α−5

2α − 1)

≤C
2α

6α− 5
(t+ 1)−

1

2α ((t+ 1)
6α−5

2α − 1)

≤C.

(2.16)

If α = 5
6 , we have

∫ t

0
e−|ξ|2α(t−s)|H(ξ, s)|ds ≤C|ξ|

∫ t

0
(s + 1)−1ds

≤C(t+ 1)−
3

5 ln(t+ 1)

≤C.

(2.17)

Hence by (2.3), (2.16) and (2.17)

|û(ξ, t)| ≤ |û0(ξ)|+ C, for ξ ∈ S(t).

This, combined with (2.12), yields

d

dt
((t+ 1)γ‖u(t)‖22) ≤C(t+ 1)γ−1

∫

|ξ|≤g(t)
|û0(ξ)|

2dξ + C(t+ 1)γ−1

∫

|ξ|≤g(t)
dξ

≤C(t+ 1)γ−1− 3

2α
( 2
p
−1) + C(t+ 1)γ−1− 3

2α .

Integrating with respect to time yields

‖u(t)‖22 ≤C((t+ 1)−γ + (t+ 1)
− 3

2α
( 2
p
−1)

+ (t+ 1)−
3

2α )

≤C((t+ 1)−γ + (t+ 1)
− 3

2α
( 2
p
−1)

).

By choosing γ suitably large, we have

‖u(t)‖22 ≤ C(t+ 1)−
3

2α
( 2
p
−1)

.
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Proof of Theorem 1.2. Two cases will be considered respectively.

Case I. When 1 ≤ α < 5
4 and 3

4−2α ≤ p < 2, similar to the proof of (2.12), (2.13) and
(2.15), one has

‖u(t)‖22 ≤ C(t+ 1)−
3

2α
( 2
p
−1)

.

Case II. When 1 ≤ α < 5
4 and 1 ≤ 1

3−2α ≤ p < 3
4−2α , similar to the proof of (2.12),

(2.13) and (2.14), one has

‖u(t)‖22 ≤ C(t+ 1)−
5−4α
2α . (2.18)

It follows from (2.5) and (2.18) that

∫ t

0
e−|ξ|2α(t−s)|H(ξ, s)|ds ≤C|ξ|

∫ t

0
(s+ 1)−

5−4α
2α ds

≤C
2α

6α− 5
|ξ|((t+ 1)

6α−5

2α − 1)

≤C
2α

6α− 5
(t+ 1)−

1

2α ((t+ 1)
6α−5

2α − 1)

≤C(t+ 1)
3α−3

α .

(2.19)

Thanks to (2.3), we have |û(ξ, t)| ≤ C(|û0(ξ)|+(t+1)
3α−3

α ). Applying (2.12) again leads to

d

dt
((t+ 1)γ‖u(t)‖22) ≤C(t+ 1)

γ−1− 3

2α
( 2
p
−1)

+ C(t+ 1)γ−1− 3

2α
+ 6α−6

α .

Integrating with respect to time and choosing γ suitably yield

‖u(t)‖22 ≤ C(t+ 1)−
3

2α
( 2
p
−1)

.

The proof of Theorem 1.2 is finished.

Remark 2.1. The proof of Theorems 1.1 and 1.2 is formal and we assume that all the calculus
in the proof make sense. To make it more rigorous, we apply the a prior estimates to the
approximate solutions constructed in the Appendix. Let us recall that uN is a solution of
the approximate equation





∂tuN + PJN (uN · ∇uN ) + Λ2αuN = 0,

div uN = 0,

uN (x, 0) = JNu0,

where JN is the spectral cutoff defined by

ĴNf(ξ) = 1[0,N ](|ξ|)f̂ (ξ)

and P is the Leray projector over divergence-free vector-fields.

It is shown that the uN converges strongly in L2(0, T ;L2
loc(R

3)) to a weak solution of
the generalized three-dimensional Navier-Stokes equation (1.2) in the Appendix. Hence the
L2 decay of uN will imply the L2 decay of the weak solution of (1.2).
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3 Proof of Theorem 1.3 and Theorem 1.4

In this section, we will give the proof of Theorem 1.3 and Theorem 1.4. Before that, we
recall the following result established in [24].

Theorem 3.1. Let s ≥ 5
2 −2α with 0 < α < 5

4 . Suppose that u0 ∈ Hs(R3) with div u0 = 0
and there exists a constant ǫ such that ‖u0‖Hs ≤ ǫ. Then there exists a unique solution
u ∈ L∞(0,+∞;Hs) satisfying

d

dt
‖u‖2Hs ≤ −‖Λαu‖2Hs . (3.1)

Lemma 3.2. Let 1 ≤ p < 2. Suppose that u0 ∈ Lp(R3) ∩ L2(R3) with div u0 = 0. Then,
for any |ξ| ≤ 1 and j ≥ 0, we have

|Λ̂ju(ξ, t)| ≤ C(|û0(ξ)|+
1

|ξ|2α−1
), (3.2)

where C depends only on ‖u0‖Lp∩L2 .

Proof. Since |ξ| ≤ 1, we have

|Λ̂ju(ξ, t)| ≤ |ξ|j |û(ξ, t)| ≤ |û(ξ, t)|.

Using Lemma 2.1 leads to the desired (3.2).

The following are decay estimates for high order derivatives of the smooth solution.

Theorem 3.3. Let 0 < α ≤ 1. Suppose that u0 ∈ Lp(R3) ∩Hs(R3) with 1 ≤ p < 2 and
s ≥ 5

2 − 2α, satisfying div u0 = 0. Then, there exists a T0 > 0 such that for any t > T0 the
global-in-time solution established in Theorem 3.1 satisfies

‖u(t)‖2Hs ≤ C(t+ 1)−
3

2α
( 2
p
−1)

, (3.3)

where C depends on α and ‖u0‖Hs∩Lp .

Theorem 3.4. Let 1 ≤ α < 5
4 . Suppose that u0 ∈ Lp(R3) ∩Hs(R3) with s ≥ 5

2 − 2α and
1

3−2α ≤ p < 2, satisfying div u0 = 0. Then, there exists a T0 > 0 such that for any t > T0

the global-in-time solution established in Theorem 3.1 satisfies

‖u(t)‖2Hs ≤ C(t+ 1)−
3

2α
( 2
p
−1)

, (3.4)

where C depends on α and ‖u0‖Hs∩Lp .

Proof of Theorem 3.3 and 3.4. We adopt to the Fourier splitting method again. It
follows from (3.1) that

d

dt

∫

R3

|û(ξ, t)|2 + |Λ̂su(ξ, t)|2dξ ≤−

∫

R3

|ξ|2α(|û(ξ, t)|2 + |Λ̂su(ξ, t)|2)dξ.

Similar to the proof of Theorem 1.1 and Theorem 1.2, we have

d

dt
((t+ 1)γ

∫

R3

|û(ξ, t)|2 + |Λ̂su(ξ, t)|2dξ) ≤γ(t+ 1)γ−1

∫

|ξ|≤g(t)
|û(ξ, t)|2 + |Λ̂su(ξ, t)|2dξ.
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Similar to (1.3) and (1.4), using Lemma 3.2, we get

‖u(t)‖2Hs ≤ C(t+ 1)−
3

2α
( 2
p
−1)

for any t > T0. The proof of Theorem 3.3 and 3.4 are finished.

To prove Theorem 1.3 and 1.4, we first present the following commutator estimate.

Lemma 3.5. Let s > 0 and 1 < p < ∞. Then

‖Λs(fg)‖p ≤ C‖Λsf‖p1‖g‖p2 + ‖Λsg‖q1‖f‖q2 , (3.5)

‖Λs(fg)− fΛsg‖p ≤ C‖Λsf‖p1‖g‖p2 + ‖∇f‖q1‖Λ
s−1g‖q2 , (3.6)

where 1
p = 1

p1
+ 1

p2
= 1

q1
+ 1

q2
.

The proof is referred to [8] and the details are omitted here .

Now we give the proof of Theorem 1.3 and 1.4.

Proof of Theorems 1.3. For any m ∈ N, applying Λm on both sides of the first equation
of (1.2), multiplying the resulting equation by Λmu and integrating by parts, we obtain

d

dt
‖Λmu‖22 + ‖Λm+αu‖22 = −

∫

R3

Λmu · Λm(u · ∇u)dx. (3.7)

By (3.5), we have

d

dt
‖Λmu‖22 + ‖Λm+αu‖22 ≤C‖Λm+αu‖2‖Λ

m−α+1(u⊗ u)‖2

≤‖Λm+αu‖2‖Λ
m−α+1u‖2‖u‖∞.

(3.8)

Since

‖Λm−α+1u‖2 ≤ C‖Λm+αu‖
1

α
−1

2 ‖Λmu‖
2− 1

α

2 ,
1

2
≤ α ≤ 1,

one has

d

dt
‖Λmu‖22 + ‖Λm+αu‖22 ≤‖Λm+αu‖

1

α

2 ‖Λ
mu‖

2− 1

α

2 ‖u‖∞

≤
1

4
‖Λm+αu‖22 + C‖u‖

2α
2α−1
∞ ‖Λmu‖22.

(3.9)

Using Theorem 1.1 and Theorem 3.3 yields

‖u‖∞ ≤ C‖u‖
1

2

2 ‖Λ
3u‖

1

2

2 ≤ C(t+ 1)−
3

4α (3.10)

for any t > T0 and 1
2 ≤ α ≤ 1. Putting (3.10) into (3.9), one has

d

dt
‖Λmu‖22 + ‖Λm+αu‖22 ≤C(t+ 1)−

3

4α−2 ‖Λmu‖22

≤C(t+ 1)−1‖Λmu‖22

(3.11)
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for 1
2 < α ≤ 1. In the case of 0 < α ≤ 1

2 , we can also establish the similar estimate as in
(3.11). Indeed, by divergence free condition, (3.7) can be rewritten as

d

dt
‖Λmu‖22 + ‖Λm+αu‖22 = −

∫

R3

Λmu · (Λm(u · ∇u)− u · ∇Λmu)dx. (3.12)

Use the commutator estimate (3.6) to get

d

dt
‖Λmu‖22 + ‖Λm+αu‖22 ≤C‖∇u‖∞‖Λmu‖22. (3.13)

It follows from Theorem 1.1 and Theorem 3.3 that, for any t > T0 and 0 < α ≤ 1
2 ,

‖∇u‖∞ ≤C‖u‖
1

6

2 ‖Λ
3u‖

5

6

2 ≤ C(t+ 1)−
3

4α

≤C(t+ 1)−1.
(3.14)

Hence, we obtain that, for 0 < α ≤ 1,

d

dt
‖Λmu‖22 + ‖Λm+αu‖22 ≤ C(t+ 1)−1‖Λmu‖22.

Let

Di(t) = {ξ ∈ R3 : |ξ| ≤ fi(t)}, l >
3

2α
+

m

α
, fi(t) = (

l + i

t+ 1
)

1

2α . i = 0, 1.

Then

‖Λm+αu‖22 =

∫

R3

|ξ|2α|Λ̂mu(ξ, t)|2dξ

≥

∫

|ξ|≥fi(t)
|ξ|2α|Λ̂mu(ξ, t)|2dξ

≥f2α
i (t)‖Λmu‖22 − f2α+2

i (t)

∫

|ξ|≤fi(t)
|Λ̂m−1u(ξ, t)|2dξ

≥f2α
i (t)‖Λmu‖22 − f2α+2

i (t)

∫

R3

|Λ̂m−1u(ξ, t)|2dξ,

(3.15)

where i = 0, 1. Inserting (3.15) with i = 1 into (3.11), we get

d

dt
‖Λmu‖22 +

l

t+ 1
‖Λmu‖22 ≤ C(

l + 1

t+ 1
)
2α+2

2α ‖Λm−1u‖22. (3.16)

To complete the proof, we use the inductions for m. The case m = 0 has been proved in
Theorem 1.1. Assume that

‖Λm−1u‖22 ≤ Cm−1(t+ 1)−ρm−1 , ρm−1 =
3

2α
+

m− 1

α
.

Then, thanks to (3.16), we have

d

dt
((t+ 1)l‖Λmu‖22) ≤ Cm−1(t+ 1)l−ρm−1−

α+1

α . (3.17)

Integrating (3.17) in time from T0 to t yields

(t+ 1)l‖Λmu(t)‖22 ≤ (T0 + 1)l‖Λmu(T0)‖
2
2 + Cm−1(t+ 1)l−ρm−1−

1

α ,

11



which implies

‖Λmu(t)‖22 ≤Cm(t+ 1)−ρm−1−
1

α

≤Cm(t+ 1)−
3

2α
−m

α .

The proof of Theorems 1.3 is finished.

Proof of Theorems 1.4. In case of 1 ≤ α < 5
4 , since

5
2 − 2α ∈ (0, 12), we obtain that, for

any m ∈ N, m ≥ 5
2 − 2α. Therefore, Theorem 3.1 implies

d

dt
‖Λmu‖22 ≤ −‖Λm+αu‖22. (3.18)

Inserting (3.15) with i = 0 into (3.18) yields

d

dt
‖Λmu‖22 +

l

t+ 1
‖Λmu‖22 ≤ C(

l

t+ 1
)
2α+2

2α ‖Λm−1u‖22. (3.19)

Adopting to similar procedure in the proof of Theorem 1.3, we finish the proof of Theorem
1.4.

A Existence of weak solutions

In this section we show that the generalized Navier-Stokes equations with α > 0 have a
global weak solution corresponding to any prescribed L2 initial data.

We start with a definition of weak solutions for (1.2) with L2 initial data u0. Let T > 0
be arbitrarily fixed.

Definition D.1. The function pair (u(x, t), p(x, t)) is called a weak solution of the problem
(1.2) if the following conditions are satisfied:

(1) u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;Hα(R3)),

(2) for any Φ ∈ C∞
0 ([0, T ) ×R3) with Φ(·, T ) = 0, we have

∫ T

0
〈u,Φt〉 − 〈Λαu,ΛαΦ〉 − 〈u · ∇u,Φ〉dt = −〈u(0),Φ(0)〉,

(3) div u(x, t) = 0 for a.e. (x, t) ∈ R3 × [0, T ).

The following theorem states that there exists global-in-time weak solutions of (1.2).

Theorem D.1. Let T > 0 be fixed and α > 0. Assume that u0 ∈ L2(R3). Then the system
(1.2) possess a weak solution obeying Definition D.1 over [0, T ].

We will use the Friedrichs method to prove Theorem (D.1). Before that, let us recall
the following Picard theorem [14] and Bernstein inequality [1].
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Theorem D.2. (Picard Theorem on a Banach Space). Let O ⊆ B be an open subset of a
Banach Space B and let F : O → B be a mapping that satisfies the following parameters:

(i) F (X) maps O to B.

(ii) F is locally Lipschitz continuous, i.e., for any X ∈ O there exists L > 0 and an open
neighborhood UX of X such that

‖F (X̃)− F (X̂)‖B ≤ L‖X̃ − X̂‖B , for all X̃, X̂ ∈ UX .

Then, for any X0 ∈ O, there exists a time T such that the ODE

dX

dt
= F (X),X|t=0 = X0 ∈ O

has a unique (local) solution X ∈ C1[(−T, T );O]. In addition, the unique solution X(t)
either exists globally in time, or T < ∞ and X(t) leaves the open set O as t ր T .

Proposition D.3. (Bernstein inequality). Let B be a ball of Rd. Then, there exists a
positive constant C such that for all integer k ≥ 0, all b ≥ a ≥ 1 and u ∈ La, the following
estimates are satisfied:

sup
|α|=k

‖∂αu‖b ≤ Ck+1λk+d( 1
a
− 1

b
)‖u‖a, suppû ⊂ λB.

Proof of Theorems D.1. For N ≥ 1, let JN be the spectral cutoff defined by

ĴNf(ξ) = 1[0,N ](|ξ|)f̂(ξ).

Let P denote the Leray projector over divergence-free vector-fields. Consider the following
ODE in the space L2

N = {f ∈ L2(R3) : suppf̂(ξ) ⊂ B(0, N)},
{
ut + PJN (PJNu · PJN∇u) + PJNΛ2αu = 0,

u(x, 0) = JNu0.
(4.1)

We shall apply Picard Theorem to show the existence (local) and uniqueness of solution to
(4.1). We write

du

dt
= −PJN (PJNu · PJN∇u)− PJNΛ2αu , F (u).

Then F satisfies the local Lipschitz condition. In fact, for any u, v ∈ L2
N , by the Hölder

inequality and the Bernstein inequality, we get

‖PJN (PJNu · PJN∇u)− PJN (PJNv · PJN∇v)‖2

≤‖PJN (PJN (u− v) · ∇PJNu)‖2 + ‖PJN (PJNv · ∇PJN (u− v))‖2

≤‖PJN (u− v)‖2‖∇PJNu‖∞ + ‖∇PJN (u− v))‖2‖PJNv‖∞

≤N
5

2 (‖u‖2 + ‖v‖2)‖u− v‖2.

By the Bernstein inequality, it follows that

‖PJNΛ2αu− PJNΛ2αv‖2

≤‖JNΛ2α(u− v)‖2

≤N2α‖u− v‖2.

13



Consequently,

‖F (u)− F (v)‖2 ≤ (N
5

2 (‖u‖2 + ‖v‖2) +N2α)‖u− v‖2.

Picard Theorem implies that (4.1) has a unique local (in time) solution uN ∈
C1([0, TN );L2

N ). Recall that P 2 = P , J2
N = JN and PJN = JNP , it is easy to check that

PuN and JNuN are also solutions of (4.1). By the uniqueness, PuN = uN (i.e. divuN = 0)
and JNuN = uN . Then (4.1) can be simplified as





∂tuN + PJN (uN · ∇uN ) + Λ2αuN = 0,

div uN = 0,

uN (x, 0) = JNu0.

(4.2)

Multiplying the first equation of(4.2) by uN and integrating by parts, we obtain

1

2

d

dt
‖uN (t)‖22 + ‖ΛαuN (t)‖22 = 0,

which implies that

‖uN (t)‖22 + 2

∫ t

0
‖ΛαuN (s)‖22 ds = ‖uN (0)‖22 ≤ ‖u0‖

2
2. (4.3)

This implies that uN remains bounded in L2
N for finite time, whence TN = T .

Next, we will use Aubin-Lions lemma [20] to prove the strong convergence of uN (or its
subsequence) in L2(0, T ;L2(Ω)) for any Ω ⊂ R3. In fact, for any h ∈ L2(0, T ;H3(R3)) and
α ≤ 5

2 , we obtain

∫ T

0
〈PJN (uN (s) · ∇uN (s)), h(s)〉 ds ≤

∫ T

0
‖uN (s)‖2‖uN (s)‖ 6

3−2α
‖∇h(s)‖ 3

α
ds

≤ C

∫ T

0
‖uN (s)‖2‖Λ

αuN (s)‖2‖∇
3h(s)‖

5−2α
6

2 ‖h(s)‖
1+2α

6

2 ds

≤ C‖uN‖L∞(0,T ;L2(R3))‖Λ
αuN‖L2(0,T ;L2(R3))‖h‖L2(0, T ;H3(R3))

≤ C‖u0‖
2
2‖h‖L2(0,T ;H3(R3)),

(4.4)
where the Hölder inequality and the Gagliardo-Nirenberg inequality have been used. The
Hölder inequality and Sobolev embedding H3(R3) →֒ Hα(R3), α ≤ 5

2 yield that

∫ T

0
〈Λ2αuN (s), h(s)〉 ds ≤

∫ T

0
‖ΛαuN (s)‖2‖Λ

αh(s)‖2 ds

≤
(∫ T

0
‖ΛαuN (s)‖22 ds

)1/2( ∫ T

0
‖Λαh(s)‖22 ds

)1/2

≤ ‖u0‖2‖h‖L2(0,T ;H3(R3)).

Combining these estimates with the first equation of (4.2), we obtain

∂tuN ∈ L2(0, T ; H−3(R3)), (4.5)

which together with (4.3) yields that

uN → u in L2(0, T ;L2(Ω)) for any Ω ⊂ R3.
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We choose Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ ... with smooth boundary satisfying ∪∞
i=1Ωi = R3. For

any fixed i = 1, 2, ..., we obtain that there exists a subsequence of {uN}∞N=1 still denote
by itself, such that uN strongly converges u in L2(0, T ;L2(Ωi)). By the diagonal principle,
there exists a subsequence {uNj

}∞j=1 of {uN}∞N=1 such that uNj
strongly converges u in

L2(0, T ;L2(Ωi)) for any i = 1, 2, ... and hence in L2(0, T ;L2
loc(R

3)). These convergence
guarantee that u(x, t) is a weak solution of (1.2).

When α > 5
2 , it can be proved in a similar way that system (1.2) possess a weak solution

obeying Definition D.1. The proof of the Theorem is finished.
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