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DIFFUSION LIMIT FOR THE RADIATIVE TRANSFER EQUATION

PERTURBED BY A MARKOVIAN PROCESS

A. Debussche∗, S. De Moor∗ and J. Vovelle†

Abstract

We study the stochastic diffusive limit of a kinetic radiative transfer equation, which is non

linear, involving a small parameter and perturbed by a smooth random term. Under an appropri-

ate scaling for the small parameter, using a generalization of the perturbed test-functions method,

we show the convergence in law to a stochastic non linear fluid limit.

Keywords: Kinetic equations, non-linear, diffusion limit, stochastic partial differential equations,

perturbed test functions, Rosseland approximation, radiative transfer.

1 Introduction

In this paper, we are interested in the following non-linear equation





∂tf
ε +

1

ε
a(v) · ∇xf

ε =
1

ε2
σ(f ε)L(f ε) +

1

ε
f εmε,

f ε(0) = f ε
0 , t ∈ [0, T ], x ∈ T

N , v ∈ V.
(1.1)

where (V, µ) is a measured space, a : V → R
N , σ : R → R . The notation f stands for the

average over the velocity space V of the function f , that is

f =

∫

V

f dµ(v).

The operator L is a linear operator of relaxation which acts on the velocity variable v ∈ V
only. It is given by

L(f) := fF − f, (1.2)

where v 7→ F (v) is a velocity equilibrium function such that

F > 0 a.s., F = 1, sup
v∈V

F (v) <∞. (1.3)

The term mε is a random process depending on (t, x) ∈ R
+×R

N (see section 2.2). The precise
description of the problem setting will be given in the next section. In this paper, we study
the behaviour in the limit ε→ 0 of the solution fε of (1.1).

Concerning the physical background in the deterministic case (mε ≡ 0), equation (1.1) de-
scribes the interaction between a surrounding continuous medium and a flux of photons ra-
diating through it in the absence of hydrodynamical motion. The unknown f ε(t, x, v) then
stands for a distribution function of photons having position x and velocity v at time t. The
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function σ is the opacity of the matter. When the surrounding medium becomes very large
compared to the mean free paths ε of photons, the solution f ε to (1.1) is known to behave like
ρF where ρ is the solution of the Rosseland equation

∂tρ− divx(σ(ρ)
−1K∇xρ) = 0, (t, x) ∈ [0, T ]× T

N ,

and F is the velocity equilibrium defined above. This is what we call the Rosseland approx-
imation. In this paper, we investigate such an approximation where we have perturbed the
deterministic equation by a smooth multiplicative random noise. To do so, we use the method
of perturbed test-functions. This method provides an elegant way of deriving stochastic diffu-
sive limit from random kinetic systems; it was first introduced by Papanicolaou, Stroock and
Varadhan [11]. The book of Fouque, Garnier, Papanicolaou and Solna [9] presents many appli-
cations to this method. A generalization in infinite dimension of the perturbed test-functions
method arose in recent papers of Debussche and Vovelle [7] and de Bouard and Gazeau [6].

In the deterministic case (that is when mε ≡ 0), the Rosseland approximation has been widely
studied. In the paper of Bardos, Golse and Perthame [1], they derive the Rosseland approxima-
tion on a slightly more general equation of radiative transfer type than (1.1) where the solution
also depends on the frequency variable ν. Using the so-called Hilbert’s expansion method, they
prove a strong convergence of the solution of the radiative transfer equation to the solution of
the Rosseland equation. In [2], the Rosseland approximation is proved in a weaker sense with
weakened hypothesis on the various parameters of the radiative transfer equation, in particular
on the opacity function σ.

In the stochastic setting, the case where σ ≡ σ0 is constant has been studied in the paper of
Debussche and Vovelle [7] where they prove the convergence in law of the solution of (1.1) to
a limit stochastic fluid equation by mean of a generalization of the perturbed test-functions
method. Thus the radiative transfer equation (1.1) is a first step in studying approximation
diffusion on non-linear stochastic kinetic equations since the operator σ(f )Lf stands for a
simple non-linear perturbation of the classical linear relaxation operator L.

As expected, we have to handle some difficulties caused by this non-linearity. In the paper
of Debussche and Vovelle [7] is proved the tightness of the family of processes (ρε)ε>0 in the
space of time-continuous function with values in some negative Sobolev space H−η(TN ). In
our non-linear setting, this is not any more sufficient to succeed in passing to the limit as ε
goes to 0. As a consequence, the main step to overcome this difficulty is to prove the tightness
of the family of processes (ρε)ε>0 in the space L2(0, T ;L2(TN )). This is made using averaging
lemmas in the L2 setting with a slight adaptation to our stochastic context. The main results
about deterministic averaging lemmas that we will use in the sequel can be found in the paper
of Jabin [10]. We point out that, thanks to this additional tightness result, we could handle
the case of a more general and non-linear noise term in (1.1) of the form 1

ε
mελ(f ε)f ε where

λ : R → R is a bounded and continuous function. In particular, this remains valid in the linear
case σ ≡ 1 studied in the paper [7] of Debussche and Vovelle so that this paper can provide
some improvements to their result.

Aknowledgements: This work is partially supported by the french government thanks to the
ANR program Stosymap. It also benefit from the support of the french government “Investisse-
ments d’Avenir” program ANR-11-LABX-0020-01.
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2 Preliminaries and main result

2.1 Notations and hypothesis

Let us now introduce the precise setting of equation (1.1). We work on a finite-time interval
[0, T ] where T > 0 and consider periodic boundary conditions for the space variable: x ∈ T

N

where T
N is the N -dimensional torus. Regarding the velocity space V , we assume that (V, µ)

is a measured space.

In the sequel, L2
F−1 denotes the F−1 weighted L2(TN × V ) space equipped with the norm

‖f‖2 :=

∫

TN

∫

V

|f(x, v)|2

F (v)
dµ(v)dx.

We denote its scalar product by (., .). We also need to work in the space L2(TN ), which will
be often written L2 for short when the context is clear. In what follows, we will often use the
inequality

‖f‖L2
x
≤ ‖f‖,

which is just Cauchy-Schwarz inequality and the fact that F = 1. We also introduce the
Sobolev spaces on the torus Hγ(TN ), or Hγ for short. For γ ∈ N, they consist of periodic
functions which are in L2(TN ) as well as their derivatives up to order γ. For general γ ≥ 0,
they are easily defined by Fourier series. For γ < 0, Hγ(TN ) is the dual of H−γ(TN ).

Concerning the velocity mapping a : V → R
N , we shall assume that it is bounded, that is

sup
v∈V

|a(v)| <∞. (2.1)

Furthermore, we suppose that the following null flux hypothesis holds
∫

V

a(v)F (v) dµ(v) = 0, (2.2)

and that the following matrix

K :=

∫

V

a(v)⊗ a(v)F (v) dµ(v)

is definite positive. Finally, to obtain some compactness in the space variable by means of
averaging lemmas, we also assume the following standard condition:

∀ε > 0, ∀(ξ, α) ∈ SN−1× R, µ ({v ∈ V, |a(v) · ξ + α| < ε}) ≤ εθ, (2.3)

for some θ ∈ (0, 1].

Let us now give several hypothesis on the opacity function σ : R → R. We assume that

(H1) There exist two positive constants σ∗, σ
∗ > 0 such that for almost all x ∈ R, we have

σ∗ ≤ σ(x) ≤ σ∗;

(H2) the function σ is Lipschitz continuous.

3



Similarly as in the deterministic case, we expect with (1.1) that σ(f ε)L(f ε) tends to zero with
ε, so that we should determine the equilibrium of the operator σ(·)L(·). In this case, since
σ > 0, they are clearly constituted by the functions of the form ρF with ρ being independent
of v ∈ V . Note that it can easily be seen that σ(·)L(·) is a bounded operator from L2

F−1 to
L2
F−1 and that it is dissipative; precisely, for f ∈ L2

F−1 ,

(σ(f)Lf, f) = −‖σ
1

2 (f)Lf‖2 ≤ 0. (2.4)

In the sequel, we denote by g(t, ·) the semi-group generated by the operator σ(·)L(·) on L2
F−1 .

It verifies, for f ∈ L2
F−1 , 




d

dt
g(t, f) = σ(g(t, f))Lg(t, f),

g(0, f) = f,

and we can show that it is given by

g(t, f) = fF + (f − fF )e−tσ(f), t ≥ 0, f ∈ L2
F−1 .

With the hypothesis (H1) made on σ, we deduce the following relaxation property of the
operator σ(·)L(·)

g(t, f) −→ fF, t → ∞, in L2
F−1 . (2.5)

2.2 The random perturbation

The random term mε is defined by

mε(t, x) := m

(
t

ε2
, x

)
,

where m is a stationary process on a probability space (Ω,F ,P) and is adapted to a filtration
(Ft)t≥0. Note that mε is adapted to the filtration (Fε

t )t≥0 = (Fε−2t)t≥0.

We assume that, considered as a random process with values in a space of spatially dependent
functions, m is a stationary homogeneous Markov process taking values in a subset E of
W 1,∞(TN ). In the sequel, E will be endowed with the norm ‖ · ‖∞ of L∞(TN ). Besides, we
denote by B(E) the set of bounded functions from E to R endowed with the norm ‖g‖∞ :=
supn∈E |g(n)| for g ∈ B(E).

We assume that m is stochastically continuous. Note that m is supposed not to depend on the
variable v. For all t ≥ 0, the law ν of mt is supposed to be centered

Emt =

∫

E

n dν(n) = 0.

We denote by etM a transition semi-group on E associated to m and by M its infinitesimal
generator. D(M) stands for the domain of M ; it is defined as follows:

D(M) :=

{
u ∈ B(E), lim

h→0

ehM − I

h
u exists in B(E)

}
,
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and if u ∈ D(M), we have

Mu := lim
h→0

ehM − I

h
u in B(E).

Moreover, we suppose that m is ergodic and satisfies some mixing properties in the sense that
there exists a subspace PM of B(E) such that for any g ∈ PM , the Poisson equation

Mψ = g −

∫

E

g(n) dν(n) =: ĝ,

has a unique solution ψ ∈ D(M) satisfying
∫
E
ψ(n) dν(n) = 0. We denote by M−1ĝ this unique

solution, and assume that it is given by

M−1ĝ(n) = −

∫ ∞

0

etM ĝ(n)dt, n ∈ E. (2.6)

In particular, we suppose that the above integral is well defined. We need that PM contains
sufficiently many functions. Thus we assume that for all f, g ∈ L2

F−1 , we have

ψ
(1)
f,g : n 7→ (fn, g) ∈ PM , (2.7)

and we then define M−1I from E into W 1,∞(TN ) by

(fM−1I(n), g) :=M−1ψ
(1)
f,g(n), ∀f, g ∈ L2

F−1 . (2.8)

Then, we also suppose that for all f, g, h ∈ L2
F−1 and all continuous operator B from L2

F−1 to
the space of the continuous bilinear operators on L2

F−1 × L2
F−1 ,

ψ
(2)
f,g : n 7→ (fnM−1I(n), g), ψ

(3)
B,f,g,h : n 7→ B(f)(gn, hM−1I(n)) ∈ PM . (2.9)

We need a uniform bound in W 1,∞(TN ) of all the functions of the variable n ∈ E introduced
above. Namely, we assume, for all f, g ∈ L2

F−1 and all continuous operator B on L2
F−1 ,

‖n‖W 1,∞(TN ) ≤ C∗, ‖M−1I(n)‖W 1,∞(TN ) ≤ C∗,

|M−1ψ
(2)
f,g| ≤ C∗‖f‖‖g‖, |M−1ψ

(3)
B,f,g| ≤ C∗‖B(f)‖‖f‖‖g‖.

(2.10)

Finally, we suppose that for all f, g ∈ L2
F−1 ,

n 7→ (fM−1I(n), g)2 ∈ D(M) with |M [(fM−1I(n), g)2]| ≤ C∗‖f‖
2‖g‖2. (2.11)

To describe the limiting stochastic partial differential equation, we then set

k(x, y) = E

∫

R

m0(y)mt(x) dt, x, y ∈ T
N .

We can easily show that the kernel k belong to L∞(TN ×T
N ) and, m being stationary, that it

is symmetric (see [7]). As a result, we introduce the operator Q on L2(TN ) associated to the
kernel k

Qf(x) =

∫

TN

k(x, y)f(y) dy,

which is self-adjoint, compact and non-negative (see [7]). As a consequence, we can define the

square root Q
1

2 which is Hilbert-Schmidt on L2(TN ).

Remark The above assumptions on the process m are verified, for instance, when m is a
Poisson process taking values in a bounded subset E of W 1,∞(TN ).
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2.3 Resolution of the kinetic equation

In this section, we solve the linear evolution problem (1.1) thanks to a semi-group approach.
We thus introduce the linear operator A := a(v) · ∇x on L2

F−1 with domain

D(A) := {f ∈ L2
F−1 ,∇xf ∈ L2

F−1}.

The operatorA has dense domain and, since it is skew-adjoint, it ism-dissipative. Consequently
A generates a contraction semigroup (T (t))t≥0 (see [4]). We recall that D(A) is endowed with
the norm ‖ · ‖D(A) := ‖ · ‖+ ‖A · ‖, and that it is a Banach space.

Proposition 2.1. Let T > 0 and f ε
0 ∈ L2

F−1 . Then there exists a unique mild solution of
(1.1) on [0, T ] in L∞(Ω), that is there exists a unique f ε ∈ L∞(Ω, C([0, T ], L2

F−1)) such that
P−a.s.

f ε
t = T

(
t

ε

)
f ε
0 +

∫ t

0

T

(
t− s

ε

)(
1

ε2
σ(f ε

s )Lf
ε
s +

1

ε
mε

sf
ε
s

)
ds, t ∈ [0, T ].

Assume further that f ε
0 ∈ D(A), then there exists a unique strong solution f ε which belongs to

the spaces L∞(Ω, C1([0, T ], L2
F−1)) and L∞(Ω, C([0, T ],D(A))) of (1.1).

Proof. Subsections 4.3.1 and 4.3.3 in [4] gives that P−a.s. there exists a unique mild solution
f ε ∈ C([0, T ], L2

F−1) and it is not difficult to slightly modify the proof to obtain that in fact
f ε ∈ L∞(Ω, C([0, T ], L2

F−1)) (we intensively use that for all t ≥ 0 and ε > 0, ‖mε
t‖W 1,∞(TN ) ≤

C∗).
Similarly, subsections 4.3.1 and 4.3.3 in [4] gives us P−a.s. a strong solution f ε in the spaces
C1([0, T ], L2

F−1) and C([0, T ],D(A)) of (1.1) and once again one can easily get that in fact f ε

belongs to the spaces L∞(Ω, C1([0, T ], L2
F−1)) and L∞(Ω, C([0, T ],D(A))).

Remark If f ε
0 ∈ D(A), we thus have, for ε > 0 fixed,

sup
t∈[0,T ]

‖f ε
t ‖+ sup

t∈[0,T ]

‖Af ε
t ‖ ∈ L∞(Ω). (2.12)

2.4 Main result

We are now ready to state our main result.

Theorem 2.2. Assume that (f ε
0 )ε>0 is bounded in L2

F−1 and that

ρε0 :=

∫

V

f ε
0 dµ(v) −→

ε→0
ρ0 in L2(TN ).

Then, for all η > 0 and T > 0, ρε := f ε converges in law in C([0, T ], H−η(TN )) and
L2(0, T ;L2(TN )) to the solution ρ to the non-linear stochastic diffusion equation

dρ− divx(σ(ρ)
−1K∇xρ) dt = Hρ dt+ ρQ

1

2 dWt, in [0, T ]× T
N , (2.13)

with initial condition ρ(0) = ρ0 in L2(TN ), and where W is a cylindrical Wiener process on
L2(TN ),

K :=

∫

V

a(v)⊗ a(v)F (v) dµ(v) (2.14)
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and

H :=

∫

E

nM−1I(n) dν(n) ∈ W 1,∞. (2.15)

Remark The limit equation (2.13) can also be written in Stratonovich form

dρ− divx(σ(ρ)
−1K∇xρ) dt = ρ ◦Q

1

2dWt.

Notation In the sequel, we denote by . the inequalities which are valid up to constants of
the problem, namely C∗, N , supε>0 ‖f

ε
0‖, supv∈V |a(v)|, supv∈V F (v), σ∗, σ

∗, ‖σ‖Lip and real
constants.

3 The generator

The process f ε is not Markov (indeed, by (1.1), we need mε to know the increments of f ε) but
the couple (f ε,mε) is. From now on, we denote by L ε its infinitesimal generator, that is

L
εϕ(f, n) := lim

h→0

1

h
E
[
ϕ(f ε

h,m
ε
h)− ϕ(f, n)

∣∣(f ε
0 ,m

ε
0) = (f, n)

]
,

where ϕ : L2
F−1 × E → R belongs to the domain of L ε. Thus we begin this section by in-

troducing a special set of functions which lie in the domain of L ε and satisfy the associated
martingale problem.

In the following, if ϕ : L2
F−1 → R is differentiable with respect to f ∈ L2

F−1 , we denote
by Dϕ(f) its differential at a point f and we identify the differential with the gradient.

Definition 3.1. We say that ϕ : L2
F−1 × E → R is a good test function if

(i) (f, n) 7→ ϕ(f, n) is differentiable with respect to f ;

(ii) (f, n) 7→ Dϕ(f, n) is continuous from L2
F−1 × E to L2

F−1 and maps bounded sets onto
bounded sets;

(iii) for any f ∈ L2
F−1 , ϕ(f, ·) ∈ DM ;

(iv) (f, n) 7→Mϕ(f, n) is continuous from L2
F−1×E to R and maps bounded sets onto bounded

sets.

Proposition 3.1. Let ϕ be a good test function. Then, for all (f, n) ∈ D(A) × E,

L
εϕ(f, n) = −

1

ε
(Af,Dϕ(f)) +

1

ε2
(σ(f )Lf,Dϕ(f)) +

1

ε
(fn,Dϕ(f)) +

1

ε2
Mϕ(f, n).

Furthermore, if f ε
0 ∈ D(A),

M ε
ϕ(t) := ϕ(f ε

t ,m
ε
t )− ϕ(f ε

0 ,m
ε
0)−

∫ t

0

L
εϕ(f ε

s ,m
ε
s) ds

is a continuous and integrable (Fε
t )t≥0 martingale, and if |ϕ|2 is a good test function, its

quadratic variation is given by

〈M ε
ϕ〉t =

∫ t

0

(L ε|ϕ|2 − 2ϕL
εϕ)(f ε

s ,m
ε
s) ds.

7



Proof. We compute the expression of the infinitesimal generator as follows :

L
εϕ(f, n) = lim

h→0

1

h
E
[
ϕ(f ε

h,m
ε
h)− ϕ(f, n)

∣∣(f ε
0 ,m

ε
0) = (f, n)

]

= lim
h→0

1

h
E
[
ϕ(f ε

h,m
ε
h)− ϕ(f,mε

h)
∣∣(f ε

0 ,m
ε
0) = (f, n)

]

+ lim
h→0

1

h
E
[
ϕ(f,mε

h)− ϕ(f, n)
∣∣mε

0 = n
]

Since ϕ verifies point (iii) of Definition 3.1, the second term of the last equality goes to
ε−2Mϕ(f, n) when h→ 0. We now focus on the first term. With points (i)− (ii) of Definition
3.1, we have that ϕ is continuously differentiable with respect to f . Thus

ϕ(f ε
h,m

ε
h)− ϕ(f,mε

h) =

∫ 1

0

Dϕ(f + s(f ε
h − f),mε

h)(f
ε
h − f) ds.

Besides, since f ε
0 = f ∈ D(A), f ε ∈ C1([0, T ], L2

F−1) and we have

f ε
h − f = h

∫ 1

0

∂tf
ε
uh du.

Thus, we can rewrite the first term as

= lim
h→0

1

h
E
[
ϕ(f ε

h,m
ε
h)− ϕ(f,mε

h)
∣∣(f ε

0 ,m
ε
0) = (f, n)

]

= lim
h→0

E(f,n)

[∫ 1

0

∫ 1

0

ah(w, s, u) du ds

]
,

with ah(w, s, u) := Dϕ(f + s(f ε
h − f),mε

h)(∂tf
ε
uh) and where E(f,n) denotes the expectation

under the probability measure P(f,n) := P( · |(f ε
0 ,m

ε
0) = (f, n)).

Recall that Dϕ is continuous with respect to (f, n) thanks to point (ii) of Definition 3.1,
that f ε is P−a.s. in C1([0, T ], L2

F−1) and that mε is stochastically continuous to conclude

that ah converges in probability as h → 0 to Dϕ(f, n)(∂tf
ε(0)) in the probability space Ω̃ :=

(Ω×[0, 1]×[0, 1],P(f,n)⊗dx⊗ds). Furthermore, we prove that (ah)0≤h≤1 is uniformly integrable

in Ω̃ since it is uniformly bounded with respect to 0 ≤ h ≤ 1 in L∞(Ω̃). Indeed, with the fact
that L is a bounded operator, with (H1) and the fact that ‖n‖L∞(TN ) . 1 for all n ∈ E, we get

|ah| . ‖Dϕ(f + s(f ε
h − f),mε

h)‖(‖f
ε
uh‖+ ‖Af ε

uh‖).

With (2.12), we set
R := sup

t∈[0,T ]

‖f ε
t ‖+ sup

t∈[0,T ]

‖Af ε
t ‖ ∈ L∞(Ω),

and define r := ‖R‖L∞(Ω). Then, since Dϕ maps bounded sets on bounded sets, we can bound
the term ||Dϕ(f + s(f ε

h − f),mε
h)|| by

C := sup
{
‖Dϕ(f, n)‖, f ∈ BL2

F−1

(0, ‖f‖+ r), n ∈ BE(0, C∗)
}
.

So we are led to
‖ah‖L∞(Ω̃) . C · r,

which is what we announced. To prove the sequel of the proposition, we use the same kind of
ideas and follow the proofs of [7, Proposition 6] and [9, Appendix 6.9].
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4 The limit generator

In this section, we study the limit of the generator L ε when ε → 0. The limit generator L

will characterize the limit stochastic fluid equation.

4.1 Formal derivation of the corrections

To derive the diffusive limiting equation, one has to study the limit as ε goes to 0 of quantities
of the form L εϕ where ϕ is a good test function. To do so, following the perturbed test-
functions method, we have to correct ϕ so as to obtain a non-singular limit. We search the
correction ϕε of ϕ under the classical form:

ϕε := ϕ+ εϕ1 + ε2ϕ2.

In this decomposition, ϕ1 and ϕ2 are respectively the first and second order corrections and
are to be defined in the sequel so that

L
εϕε = L ϕ+O(ε),

where L will be the limit generator. We restrict our study to smooth test-functions. Precisely,
we introduce the set of spatial derivative operators up to order 3:

R := {∂e1i1 ∂
e2
i2
∂e3i3 , e ∈ {0, 1}3, i ∈ {1, ..., N}3, |i| ≤ 3}

and we suppose that the test-function ϕ is a good test, that ϕ ∈ C3(L2
F−1) and that there

exists a constant Cϕ > 0 such that





|ϕ(f)| ≤ Cϕ(1 + ‖f‖2),

‖ΛDϕ(f)‖ ≤ Cϕ(1 + ‖f‖),

|D2ϕ(f)(Λ1h,Λ2k)| ≤ Cϕ‖h‖‖k‖,

|D3ϕ(f)(Λ1h,Λ2k,Λ3l)| ≤ Cϕ‖h‖‖k‖‖l‖,

(4.1)

for any f, h, k, l ∈ L2
F−1 and Λ,Λ1,Λ2,Λ3 ∈ R. Thanks to Proposition 3.1, and since ϕ does

not depend on n ∈ E, we can write

L
εϕε(f, n) = −

1

ε
(Af,Dϕ(f)) +

1

ε2
(σ(f )Lf,Dϕ(f)) +

1

ε
(fn,Dϕ(f)) (4.2)

− (Af,Dϕ1(f)) +
1

ε
(σ(f )Lf,Dϕ1(f)) + (fn,Dϕ1(f)) +

1

ε
Mϕ1 (4.3)

− ε(Af,Dϕ2(f)) + (σ(f )Lf,Dϕ2(f)) + ε(fn,Dϕ2(f)) +Mϕ2. (4.4)

In the sequel, we do not care about the terms relative to the transport part A of the equation
since these terms will be handled as in the deterministic case (when mε ≡ 0). To be more
precise, and as it will be shown in the sequel, the first term of (4.2) will give rise, as ε goes
to 0, to the deterministic term in the limit generator L and the first terms of (4.3) and (4.4)
are respectively of orders ε and ε2. For the remaining terms, in a first step, we would like to
cancel those who have a singular power of ε. Thus we should impose that the two following
equations hold:

(σ(f)Lf,Dϕ(f)) = 0, (4.5)
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(σ(f )Lf,Dϕ1(f)) +Mϕ1 + (fn,Dϕ(f)) = 0. (4.6)

Let us say a word about the fact that we chose to handle the terms relative to the transport
part of the equation separately. When trying to correct these terms thanks to the correctors
ϕ1 and ϕ2, the non-linearity σ implies that the second corrector ϕ2, unless we can write it
formally, does not behave properly any more.

4.1.1 Equation on ϕ

Let us solve (4.5). We recall that (g(t, f))t≥0 denotes the semigroup of the operator σ(·)L.
Equation (4.5) gives immediately that the map t 7→ ϕ(g(t, f)) is constant. As a result, with
(2.5),

ϕ(f) = ϕ(g(0, f)) = ϕ(ϕ(g(∞, f)) = ϕ(fF ),

so that ϕ only depends on fF . This implies, for all h ∈ L2
F−1 ,

(h,Dϕ(f)) = (hF,Dϕ(fF )). (4.7)

4.1.2 Equation on ϕ1

Next, we solve (4.6). We consider the Markov process (g(t, f),m(t, n))t≥0. Its generator will
be denoted by M . We observe that equation (4.6) rewrites:

Mϕ1(f, n) = −(fn,Dϕ(f)).

This Poisson equation will have a solution if the integral of (f, n) 7→ (fn,Dϕ(f)) over L2
F−1×E

equipped with the invariant measure of the process (g(t, f),m(t, n))t≥0 is zero. So, we must
verify that ∫

E

(fFn,Dϕ(fF )) dν(n) = 0,

and this relation does hold since m is centered. As a consequence, if we can prove the existence
of the integral, we can write ϕ1 as

ϕ1(f, n) =

∫ ∞

0

E(g(t, f)m(t, n), Dϕ(g(t, f))) dt.

Then, we use (4.7), g(t, f) = f and (2.7) and (2.8) to obtain

ϕ1(f, n) =

∫ ∞

0

E(fFm(t, n), Dϕ(fF )) dt = −(fFM−1I(n), Dϕ(fF ))

= −(fM−1I(n), Dϕ(f)).

We are now able to state the

Proposition 4.1 (First corrector). Let ϕ ∈ C3(L2
F−1) be a good test-function satisfying (4.1)

and depending only on fF . For any (f, n) ∈ L2
F−1 × E, we define the first corrector ϕ1 as

ϕ1(f, n) := −(fM−1I(n), Dϕ(f)).

Furthermore, it satisfies the bounds

(i) |ϕ1(f, n)| . Cϕ(1 + ‖f‖)2, (ii) ‖ADϕ1(f, n)‖ . Cϕ(1 + ‖f‖). (4.8)

Note that the bounds (4.8) are consequences of (2.10) and (4.1).
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4.1.3 Equation on ϕ2

At this stage, we have

L
εϕε(f, n) = −

1

ε
(Af,Dϕ(f)) + Mϕ2 + (fn,Dϕ1(f))

− (Af,Dϕ1(f))− ε(Af,Dϕ2(f)) + ε(fn,Dϕ2(f)).
(4.9)

Note that the limit of L εϕε as ε goes to 0 does depend on n ∈ E with the term (fn,Dϕ1(f)).
Since the expected limit is Lϕ where ϕ does not depend on n, we have to correct this term
to cancel the dependence with respect to n of the limit. This is the aim of the second order
correction ϕ2. The right way to do so, given the mixing properties of the operator M , is
to subtract the mean value of this term under the invariant measure of the Markov process
(g(t, f),m(t, n))t≥0 governed by M . We write

L
εϕε(f, n) = −

1

ε
(Af,Dϕ(f)) +

∫

E

(fFn,Dϕ1(fF )) dν(n)

+ Mϕ2 + (fn,Dϕ1(f))−

∫

E

(fFn,Dϕ1(fF )) dν(n)

− (Af,Dϕ1(f))− ε(Af,Dϕ2(f)) + ε(fn,Dϕ2(f)),

and we can now define ϕ2 as the solution of the well-posed Poisson equation

Mϕ2 = −(fn,Dϕ1(f)) +

∫

E

(fFn,Dϕ1(fF )) dν(n).

Note that, thanks to the definition of ϕ1 given above, we can compute

(fFn,Dϕ1(fF )) = −(fnM−1I(n), Dϕ(f)) −D2ϕ(f)(fM−1I(n), fn) =: q(f, n)

As a result, we easily have the following proposition.

Proposition 4.2 (Second corrector). Let ϕ ∈ C3(L2
F−1) be a good test-function satisfying

(4.1) and depending only on fF . For any (f, n) ∈ L2
F−1 × E, we define the second corrector

ϕ2 as

ϕ2(f, n) := E

∫ ∞

0

(∫

E

(q(fF, n) dν(n) − q(g(t, f),m(t, n))

)
dt,

which is well defined and satisfies the bounds

(i) |ϕ2(f, n)| . Cϕ(1 + ‖f‖)2, (ii) ‖ADϕ2(f, n)‖ . Cϕ(1 + ‖f‖). (4.10)

The existence of ϕ2 is based on (2.9) and the bounds (4.10) are proved using (2.10) and (4.1).

4.1.4 Summary

The correctors ϕ1 and ϕ2 being defined as above in Propositions 4.1 and 4.2, we are finally led
to

L
εϕε(f, n) = −

1

ε
(Af,Dϕ(f)) +

∫

E

(fFn,Dϕ1(fF )) dν(n)

− (Af,Dϕ1(f))− ε(Af,Dϕ2(f)) + ε(fn,Dϕ2(f)).
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We are now able to define the limit generator L as, for all ρ ∈ L2(TN ),

L ϕ(ρ) := (divx(σ(ρ)
−1K∇xρ)F,Dϕ(ρF )) −

∫

E

(ρFnM−1I(n), Dϕ(ρF )) dν(n)

−

∫

E

D2ϕ(ρF )(ρFM−1I(n), ρFn) dν(n), (4.11)

and we have shown the following equality

L
εϕε(f, n) = L ϕ(f)−

1

ε
(Af,Dϕ(f)) − (divx(σ(f)

−1K∇xf)F,Dϕ(fF ))

− (Af,Dϕ1(f))− ε(Af,Dϕ2(f)) + ε(fn,Dϕ2(f)).
(4.12)

5 Uniform bound in L
2
F−1

In this section, we prove a uniform estimate of the L2
F−1 norm of the solution f ε with respect to

ε. To do so, we will again use the perturbed test functions method. The result is the following:

Proposition 5.1. Let p ≥ 1 and f ε
0 ∈ D(A). We have the two following bounds

E sup
t∈[0,T ]

‖f ε
t ‖

p . 1, (5.1)

E

(∫ T

0

‖σ
1

2 (f ε
s )Lf

ε
s ‖

2 ds

)p

. ε2p. (5.2)

Proof. We set, for all f ∈ L2
F−1 , ϕ(f) :=

1
2‖f‖

2, which is easily seen to be a good test function.
Then, with Proposition 3.1, the fact that A is skew-adjoint, (2.4), and the fact that ϕ does not
depend on n ∈ E, we get for f ∈ D(A) and n ∈ E,

L
εϕ(f, n) = −

1

ε
(Af, f) +

1

ε2
(σ(f )Lf, f) +

1

ε
(fn, f) +

1

ε2
Mϕ(f, n)

= −
1

ε2
‖σ

1

2 (f)Lf‖2 +
1

ε
(fn, f).

The first term has a favourable behaviour for our purpose. The second term is more difficult
to control and we correct ϕ thanks to the perturbed test-functions method to get rid of it: we
recall the formal computations done in Section 4.1 and we set ϕ1(f, n) = −(f,M−1I(n)f) and
ϕε := ϕ(f, n) + εϕ1. We can show that ϕ1 is a good test function with, thanks to Proposition
3.1,

εL εϕ1(f, n) = −
2

ε
(σ(f)Lf,M−1I(n)f)− 2(Af,M−1I(n)f)

− 2(fn,M−1I(n)f)−
1

ε
(fn, f).

As a consequence, we are led to

L
εϕε(f, n) = −

1

ε2
‖σ

1

2 (f)Lf‖2 −
2

ε
(σ(f)Lf,M−1I(n)f)− 2(Af,M−1I(n)f)

− 2(fn,M−1I(n)f).
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We use (2.10) and the hypothesis (H1) made on σ to bound the second term:

2

ε
(σ(f)Lf,M−1I(n)f) ≤ 2C∗(σ

∗)
1

2 ε−1‖σ
1

2 (f)Lf‖‖f‖

≤
1

2ε2
‖σ

1

2 (f)Lf‖2 + 2C2
∗σ

∗‖f‖2.

Furthermore, for the last two terms, we write

−2(Af,M−1I(n)f)− 2(fn,M−1I(n)f) = (f2, AM−1I(n)) − 2(fn,M−1I(n)f)

≤ ‖f‖2‖a‖L∞(V )C∗ + 2C2
∗‖f‖

2.

To sum up, we have proved that

L
εϕε(f, n) . −

1

2ε2
‖σ

1

2 (f)Lf‖2 + ‖f‖2. (5.3)

As in Proposition 3.1, since ϕε is a good test function, we now define

M ε(t) := ϕε(f ε
t ,m

ε
t )− ϕε(f ε

0 ,m
ε
0)−

∫ t

0

L
εϕε(f ε

s ,m
ε
s) ds,

which is a continuous and integrable (Fε
t )t≥0 martingale. By definition of ϕ, ϕε and M ε, we

obtain

1

2
‖f ε

t ‖
2 =

1

2
‖f ε

0‖
2 − ε(ϕ1(f

ε
t ,m

ε
t )− ϕ1(f

ε
0 ,m

ε
0)) +

∫ t

0

L
εϕε(f ε

s ,m
ε
s) ds+M ε(t).

Since we have obviously |ϕ1(f, n)| . ‖f‖2, we can write, with (5.3),

‖f ε
t ‖

2 . ‖f ε
0‖

2 + ε‖f ε
t ‖+

∫ t

0

−
1

2ε2
‖σ

1

2 (f ε
s )Lf

ε
s ‖

2 + ‖f ε
s‖

2 ds+ sup
t∈[0,T ]

|M ε(t)|,

i.e. for ε sufficiently small,

∫ t

0

1

2ε2
‖σ

1

2 (f ε
s )Lf

ε
s ‖

2 ds+ ‖f ε
t ‖

2 . ‖f ε
0‖

2 +

∫ t

0

‖f ε
s ‖

2 ds+ sup
t∈[0,T ]

|M ε(t)|,

and by Gronwall lemma,

∫ t

0

1

2ε2
‖σ

1

2 (f ε
s )Lf

ε
s ‖

2 ds+ ‖f ε
t ‖

2 . ‖f ε
0‖

2 + sup
t∈[0,T ]

|M ε(t)|. (5.4)

Note that |ϕε|2 is a good test function with, thanks to (2.10) and (2.11),

|L ε|ϕε|2 − 2ϕε
L

εϕε| = |M |ϕ1|
2 − 2ϕ1Mϕ1| . ‖f‖4,

and that, with Proposition 3.1, the quadratic variation of M ε(t) is given by

〈M ε〉t =

∫ t

0

(L ε|ϕε|2 − 2ϕε
L

εϕε)(f ε
s ,m

ε
s) ds.
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As a result, with Burkholder-Davis-Gundy and Hölder inequalities, we get

E sup
t∈[0,T ]

|M ε(t)|p . E|〈M ε〉T |
p
2 .

∫ T

0

E‖f ε
s ‖

2p ds. (5.5)

Neglecting the first (positive) term of the left-hand side in (5.4), we have

E‖f ε
t ‖

2p . E‖f ε
0‖

2p + E sup
t∈[0,T ]

|M ε(t)|p,

so that we get

E‖f ε
T ‖

2p . E‖f ε
0‖

2p +

∫ T

0

E‖f ε
s ‖

2p ds,

and, by Gronwall lemma,
E‖f ε

T‖
2p . E‖f ε

0‖
2p. (5.6)

This actually holds true for any t ∈ [0, T ]. Thus, using (5.5) and (5.6) in (5.4) finally gives the
expected bounds.

Remark We define gε := f ε − ρεF = −Lf ε. Since we have σ ≥ σ∗, the bound (5.2) gives
that, for all p ≥ 1,

(ε−1gε)ε>0 is bounded in Lp(Ω;L2(0, T ;L2
F−1)). (5.7)

In the sequel, we must deal with the non-linear term. To do so, we need some compactness
in the space variable of the process (ρε)ε>0. The following proposition is a first step to this
purpose.

Proposition 5.2. We assume that hypothesis (2.3) is satisfied. Let p ≥ 1 and s ∈ (0, θ/2).
We have the bound

E

(∫ T

0

‖ρεs‖
2
Hs(TN ) ds

)p

. 1. (5.8)

Proof. Note that with σ ≤ σ∗, the remark (5.7) and equation (1.1), we observe that

(ε∂tf
ε + a(v) · ∇xf

ε − f εmε)ε>0 is bounded in Lp(Ω;L2(0, T ;L2
F−1)).

Furthermore, (f ε)ε>0 is bounded in Lp(Ω;L2(0, T ;L2
F−1)) with (5.1) and |mε| ≤ C∗ so that

(ε∂tf
ε + a(v) · ∇xf

ε)ε>0 is bounded in Lp(Ω;L2(0, T ;L2
F−1)). (5.9)

Then, thanks to (2.3), we apply an averaging lemma to conclude. Precisely, [10, Theorem 3.1]
in the unstationary case applies a.s. with β = γ = 0, p1 = q1 = p2 = q2 = 2, a = 0, k = θ and

f = f ε, g = ε∂tf
ε + a(v) · ∇xf

ε,

and gives the bound

‖ρε‖
B

θ
2
,2

∞,∞

≤ C‖f ε‖
1

2 ‖ε∂tf
ε + a(v) · ∇xf

ε‖
1

2 a.s.

Since, for any s < θ/2, Hs ⊂ B
θ
2

∞,∞, it yields, for p ≥ 1,

E

(∫ T

0

‖ρεs‖
2
Hs ds

)p

≤ CE

(∫ T

0

‖f ε
s ‖‖ε∂tf

ε
s + a(v) · ∇xf

ε
s ‖ ds

)p

,

so that the result follows with Cauchy Schwarz inequality and (5.1) and (5.9). This concludes
the proof.
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6 Tightness

We want to prove the convergence in law of the family (ρε)ε>0: in this section, we study the
tightness of the processes (ρε)ε>0 in the space C([0, T ], H−η(TN )) where η > 0. In fact, this
will not be sufficient to pass to the limit in the non-linear term. As a consequence, we also
prove that (ρε)ε>0 is tight in the space L2(0, T ;L2(TN )).

Proposition 6.1. Let η > 0. Then the sequence (ρε)ε>0 is tight in the spaces C([0, T ], H−η(TN ))
and L2(0, T ;L2(TN )).

Proof. Step 1: control of the modulus of continuity of ρε in H−η(TN ). Let η > 0 be fixed. For
any δ > 0, we define

w(ρ, δ) := sup
|t−s|<δ

‖ρ(t)− ρ(s)‖H−η(TN )

the modulus of continuity of a function ρ ∈ C([0, T ], H−η(TN )). In this first step of the proof,
we want to obtain the following bound

Ew(ρε, δ) . ε+ δτ , (6.1)

for some positive τ . To do so, we use the perturbed test-functions method. Let (pj)j∈NN the
Fourier orthonormal basis of L2(TN ) and J the operator

J := (I −∆x)
− 1

2 .

Let j ∈ N
N . We set

ϕj(f) := (f, pjF ), f ∈ L2
F−1 ,

and we define the first order corrections by, see Section 4.1,

ϕ1,j(f, n) := −(fM−1I(n), pjF ), (f, n) ∈ L2
F−1 × E.

We finally define ϕε
j := ϕj + εϕ1,j , which is easily seen to be a good test-function, so that,

thanks to Proposition 3.1, we consider the continuous martingales

M ε
j (t) := ϕε

j(f
ε
t ,m

ε
t )− ϕε

j(f
ε
0 ,m

ε
0)−

∫ t

0

L
εϕε

j(f
ε
s ,m

ε
s) ds.

We also define,

θεj (t) := ϕj(f
ε
0 ) +

∫ t

0

L
εϕε

j(f
ε
s ,m

ε
s) ds+M ε

j (t).

Note that
θεj (t) = ϕj(f

ε
t ) + ε(ϕ1,j(f

ε
t ,m

ε
t )− ϕ1,j(f

ε
0 ,m

ε
0)), (6.2)

so that, with the definitions of ϕj and ϕ1,j , Cauchy-Schwarz inequality, we easily get

|θεj (t)| . sup
t∈[0,T ]

‖f ε(t)‖‖pj‖L2
x
= sup

t∈[0,T ]

‖f ε(t)‖.

Hence, by the uniform L2
F−1 bound (5.1),

E sup
t∈[0,T ]

∣∣θεj (t)
∣∣ . 1. (6.3)
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With (6.2) and the uniform L2
F−1 bound (5.1), we also deduce

E sup
t∈[0,T ]

∣∣ϕj(ρ
ε
t )− θεj(t)

∣∣ . ε. (6.4)

From now on, we fix γ > N/2 + 2 and we remark that, by (6.3), a.s. and for all t ∈ [0, T ], the
series defined by uεt :=

∑
j∈NN θεj (t)J

γpj converges in L2(TN ). We then set

θε(t) := J−γ
∑

j∈NN

θεj (t)J
γpj ,

which exists a.s. and for all t ∈ [0, T ] in H−γ(TN ). And with (6.4), we obtain

E sup
t∈[0,T ]

‖ρε(t)− θε(t)‖H−γ (TN ) . ε. (6.5)

Actually, by interpolation, the continuous embedding L2(TN ) ⊂ H−η(TN ) and the uniform
L2
F−1 bound (5.1), we have

E sup
|t−s|<δ

‖ρ(t)− ρ(s)‖
H−η♭ ≤ E sup

|t−s|<δ

‖ρ(t)− ρ(s)‖υ
H−η♯

for a certain υ > 0 if η♯ > η♭ > 0. As a result, it is indeed sufficient to work with η = γ. In
view of (6.5), we first want to obtain an estimate of the increments of θε. We have, for j ∈ N

N

and 0 ≤ s ≤ t ≤ T ,

θεj(t)− θεj (s) =

∫ t

s

L
εϕε

j(f
ε
σ,m

ε
σ) dσ +M ε

j (t)−M ε
j (s). (6.6)

We then control the two terms on the right-hand side of (6.6). Let us begin with the first one.
Note that, since Dϕj(f) ≡ pjF and Dϕ1,j(f) ≡ −M−1I(n)pjF , we obtain thanks to (4.9) with
ϕ2 ≡ 0,

L
εϕε

j(f
ε
σ,m

ε
σ) = −

1

ε
(Af ε

σ, pjF ) + (Af ε
σ,M

−1I(mε
σ)pjF )− (f ε

σm
ε
σ,M

−1I(mε
σ)pjF ).

Since, with (2.2), we have a(v)f ε
σ = a(v)gεσ where gε has been defined previously as gε :=

f ε − ρεF , we can write

(Af ε
σ, pjF ) =

∫

TN

divx(a(v)f ε
σ)pj dx =

∫

TN

divx(a(v)gεσ)pj dx = (Agεσ, pjF )

and, as a consequence, since a is bounded, we are led to

1

ε
(Af ε

σ, pjF ) . ‖ε−1gεσ‖‖∇xpj‖L2 .

Similarly, we can show that

(Af ε
σ,M

−1I(mε
σ)pjF ) . ‖gεσ‖(1 + ‖∇xpj‖L2).

Since we have obviously (f ε
σm

ε
σ,M

−1I(mε
σ)pjF ) . ‖f ε

σ‖, we can conclude that

|L εϕε
j(f

ε
σ,m

ε
σ)| . Cj

[
‖ε−1gεσ‖+ ‖gεσ‖+ ‖f ε

σ‖
]
, (6.7)
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where Cj := 1 + ‖∇xpj‖L2 ≤ 1 + |j|. Thanks to (5.1) and (5.7) with p = 4, we have that
(ε−1gε)ε>0, (g

ε)ε>0 and (f ε)ε>0 are bounded in L4(Ω;L2(0, T ;L2
F−1)). As a consequence, (6.7)

and an application of Hölder’s inequality gives

E

∣∣∣∣
∫ t

s

L
εϕε

j(f
ε
σ,m

ε
σ) dσ

∣∣∣∣
4

. C4
j |t− s|2.

Furthermore, using Burkholder-Davis-Gundy inequality, we can control the second term of the
right-hand side of (6.6) as

E|M ε
j (t)−M ε

j (s)|
4 . E|〈M ε

j 〉t − 〈M ε
j 〉s|

2,

where the quadratic variation 〈M ε
j 〉 is given by

〈M ε
j 〉t =

∫ t

0

(M |ϕ1,j |
2 − 2ϕ1,jMϕ1,j)(f

ε
s ,m

ε
s) ds.

With the definition of ϕ1,j , (2.10), (2.11) and the uniform L2
F−1 bound (5.1), it is now easy to

get
E|M ε

j (t)−M ε
j (s)|

4 . |t− s|2.

Finally we have E|θεj (t) − θεj (s)|
4 . (1 + |j|4)|t − s|2. Since we took γ > N/2 + 2, we can

conclude that
E‖θε(t)− θε(s)‖4H−γ (TN ) . |t− s|2.

It easily follows that, for υ < 1/2,

E‖θε‖4Wυ,4(0,T,H−γ(TN )) . 1

and by the embedding

W υ,4(0, T,H−γ(TN )) ⊂ Cτ (0, T,H−γ(TN )), τ < υ −
1

4
,

we obtain that Ew(θε, δ) . δτ for a certain positive τ . Finally, with (6.5), we can now conclude
the first step of the proof since

Ew(ρε, δ) ≤ 2E sup
t∈[0,T ]

‖ρεt − θεt ‖H−γ (TN ) + Ew(θε, δ) . ε+ δτ . (6.8)

Step 2: tightness in C([0, T ];H−η(TN )). Since the embedding L2(TN ) ⊂ H−η(TN ) is
compact, and by Ascoli’s Theorem, the set

KR :=

{
ρ ∈ C([0, T ], H−η(TN )), sup

t∈[0,T ]

‖ρ‖L2(TN ) ≤ R, w(ρ, δ) < ε(δ)

}
,

where R > 0 and ε(δ) → 0 when δ → 0, is compact in C([0, T ], H−η(TN )). By Prokohrov’s
Theorem, the tightness of (ρε)ε>0 in C([0, T ], H−η(TN )) will follow if we prove that for all
σ > 0, there exists R > 0 such that

P( sup
t∈[0,T ]

‖ρε‖L2(TN ) > R) < σ, (6.9)
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and
lim
δ→0

lim sup
ε→0

P(w(ρε, δ) > σ) = 0. (6.10)

With Markov’s inequality and the uniform L2
F−1 bound (5.1), we have

P( sup
t∈[0,T ]

‖ρε‖L2(TN ) > R) ≤ P( sup
t∈[0,T ]

‖f ε‖ > R) . R−1,

which gives (6.9). And we deduce (6.10) by Markov’s inequality and the bound (6.1) since

lim
δ→0

lim sup
ε→0

P(w(ρε, δ) > σ) ≤ lim
δ→0

lim sup
ε→0

σ−1
Ew(ρε, δ)

. lim
δ→0

lim sup
ε→0

σ−1(ε+ δτ ) = 0.

Step 3: tightness in L2(0, T ;L2(TN )). Similarly, due to [12, Theorem 5], the set

KR :=

{
ρ ∈ L2(0, T ;L2(TN )),

∫ T

0

‖ρt‖
2
Hs(TN )dt ≤ R, w(ρ, δ) < ε(δ)

}
,

where R > 0, s > 0 and ε(δ) → 0 when δ → 0, is compact in L2(0, T ;L2(TN )). By Prokhorov’s
Theorem, the tightness of (ρε)ε>0 in L2(0, T ;L2(TN )) will follow if we prove that for all σ > 0,
there exists R > 0 such that

P(

∫ T

0

‖ρt‖
2
Hs(TN )dt > R) < σ, (6.11)

and
lim
δ→0

lim sup
ε→0

P(w(ρε, δ) > σ) = 0. (6.12)

But (6.11) and (6.12) are consequences of Markov’s inequality and the bounds (5.8) with p = 1
and (6.1) so that the proof is complete.

7 Convergence

We conclude here the proof of Theorem 2.2. The idea is now, by the tightness result and
Prokhorov Theorem, to take a subsequence of (ρε)ε>0 that converges in law to some probability
measure. Then we show that this limiting probability is actually uniquely determined by the
limit generator L defined above.

We fix η > 0. By Proposition 6.1 and Prokhorov’s Theorem, there is a subsequence of (ρε)ε>0,
still denoted (ρε)ε>0, and a probability measure P on the spaces C([0, T ], H−η) and L2(0, T ;L2)
such that

P ε → P weakly in C([0, T ], H−η) and L2(0, T ;L2),

where P ε stands for the law of ρε. We now identify the probability measure P .

Since the spaces C([0, T ], H−η) and L2(0, T ;L2) are separable, we can apply Skohorod rep-

resentation Theorem [3], so that there exists a new probability space (Ω̃, F̃ , P̃) and random
variables

ρ̃ε, ρ̃ : Ω̃ → C([0, T ], H−η) ∩ L2(0, T ;L2),
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with respective law P ε and P such that ρ̃ε → ρ̃ in C([0, T ], H−η) and L2(0, T ;L2) P̃−a.s. In
the sequel, for the sake of clarity, we do not write any more the tildes.

Note that, with (5.7), we can also suppose that ε−1gε converges to some g weakly in the space
L2(Ω;L2(0, T ;L2

F−1)). Similarly, with (2.10), we assume that mε converges to m weakly in
L2(Ω;L2(0, T ;L2

F−1)). Before going on the proof, we want to identify the weak limit g of
ε−1gε.

Lemma 7.1. In L2(Ω;L2(0, T ;L2)), we have the relation

a(v)g = −σ(ρ)−1K∇xρ.

Proof. We define DT := (0, T )× T
N . Since f ε satisfies equation (1.1), we can write, for any

ψ ∈ C∞
c (DT ) and θ ∈ L∞(V × Ω;RN ),

E

∫

DT×V

f εF−1 (−ε∂tψ − a · ∇xψ) θ = E

∫

DT ×V

1

ε
σ(f ε)Lf εF−1ψθ

+ E

∫

DT×V

mεf εF−1ψθ.

We recall that we set gε := f ε − ρεF and that Lf ε = Lgε so that we have

E

∫

DT×V

−εf εF−1∂tψ θ − ρεa · ∇xψ θ − gεF−1a · ∇xψ θ

= E

∫

DT×V

σ(ρε)L(ε−1gε)F−1ψθ + E

∫

DT×V

mεf εF−1ψθ.

Since (f ε)ε>0 and (ε−1gε)ε>0 are bounded in L2(Ω;L2(0, T ;L2
F−1)) by (5.1) and (5.7), and with

the P−a.s. convergence ρε → ρ in L2(0, T ;L2
F−1) coupled with the uniform integrability of the

family (ρε)ε>0 obtained with (5.1), we have that the left-hand side of the previous equality
actually converges as ε→ 0 to

E

∫

DT×V

−ρa · ∇xψ θ.

Note that, P−a.s., we have the following convergences in L2(0, T ;L2
F−1)

σ(ρε) → σ(ρ), L(ε−1gε)⇀ Lg, f ε → ρF, mε ⇀ m,

where the first convergence is justified by the Lipschitz continuity of σ. As a result, since
all the quantities above are uniformly integrable with respect to ε thanks to (5.1), (5.7) and
(2.10), the right-hand side of the previous equality converges as ε→ 0 to

E

∫

DT×V

σ(ρ)L(g)F−1ψθ + E

∫

DT×V

mρψθ.

Thus, we have

E

∫

DT×V

−ρa · ∇xψ θ = E

∫

DT×V

σ(ρ)L(g)F−1ψθ + E

∫

DT×V

mρψθ.
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Let ξ be an arbitrary bounded measurable function on Ω. We now set θ(v, ω) = a(v)F (v)ξ(ω);
note that we do have θ ∈ L∞(V ×Ω,RN ). With (2.2) and the relation Lg = gF − g, we obtain

−E

∫

DT×V

ρa · ∇xψ aF = −E

∫

DT ×V

σ(ρ)ga(v)ψ.

Since this relation holds for any ξ ∈ L∞(Ω) and ψ ∈ C∞
c (DT ), we deduce that ∇xρ ∈

L2(Ω, L2(DT )) and that
a(v)g = −σ(ρ)−1K∇xρ,

and this concludes the proof.

Let ϕ ∈ C3(L2
F−1) a good test-function satisfying (4.1). We define ϕε as in Section 4.1. Since

ϕε is a good test-function, we have that

ϕε(f ε
t ,m

ε
t )− ϕε(f ε

0 ,m
ε
0)−

∫ t

0

L
εϕε(f ε

s ,m
ε
s) ds, t ∈ [0, T ],

is a continuous martingale for the filtration generated by (f ε
s )s∈[0,T ]. As a result, if Ψ denotes

a continuous and bounded function from L2(TN )n to R, we have

E

[(
ϕε(f ε

t ,m
ε
t )− ϕε(f ε

s ,m
ε
s)−

∫ t

s

L
εϕε(f ε

u,m
ε
u) du

)
Ψ(ρεs1 , ..., ρ

ε
sn
)

]
= 0, (7.1)

for any 0 ≤ s1 ≤ ... ≤ sn ≤ s ≤ t. Our final purpose is to pass to the limit ε→ 0 in (7.1). In the
sequel, we assume that the function ϕ and Ψ are also continuous on the space H−η, which is
always possible with an approximation argument: it suffices to consider ϕr := ϕ((I− r∆x)

− η
2 ·)

and Ψr := Ψ((I − r∆x)
− η

2 ·, ..., (I − r∆x)
− η

2 ·) as r → 0. With (4.12), we divide the left-hand
side of (7.1) in four parts. Precisely, we define, for i ∈ {1, ..., 4}

τε1 := ϕε(f ε
t ,m

ε
t )− ϕε(f ε

s ,m
ε
s),

τε2 :=

∫ t

s

L ϕ(ρεu) du,

τε3 :=

∫ t

s

−
1

ε
(Af ε

u, Dϕ(f
ε
u))− (divx(σ(ρ

ε
u)

−1K∇xρ
ε
u)F,Dϕ(ρ

ε
uF )) du,

τε4 :=

∫ t

s

−(Af ε
u, Dϕ1(f

ε
u))− ε(Af ε

u, Dϕ2(f
ε
u)) + ε(f ε

um
ε
u, Dϕ2(f

ε
u)) du.

Study of τε1 . We recall that ϕε(f ε
t ,m

ε
t ) = ϕ(ρεtF )+εϕ1(f

ε
t ,m

ε
t )+ε

2ϕ2(f
ε
t ,m

ε
t ) so that, with

the P−a.s. convergence of ρε to ρ in C([0, T ], H−η) and the bounds (i) of (4.8) and (4.10),
we have that τε1 converges P−a.s. to ϕ(ρtF ) − ϕ(ρsF ) as ε goes to 0. Furthermore, with the
continuity of Ψ in H−η, we also have that Ψ(ρεs1 , ..., ρ

ε
sn) converges P−a.s. to Ψ(ρs1 , ..., ρsn).

Finally, since the family τε1Ψ(ρεs1 , ..., ρ
ε
sn) is uniformly integrable with respect to ε thanks to

(4.1), the bounds (i) of (4.8) and (4.10) and the uniform L2
F−1 bound (5.1), we have that

E[τε1Ψ(ρεs1 , ..., ρ
ε
sn)] → E [(ϕ(ρtF )− ϕ(ρsF ))Ψ(ρs1 , ..., ρsn)] .
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Study of τε2 . We recall, with (4.11), that

Lϕ(ρεu) = (divx(σ(ρ
ε
u)

−1K∇xρ
ε
u)F,Dϕ(ρ

ε
uF ))−

∫

E

(ρεuFnM
−1I(n), Dϕ(ρεuF )) dν(n)

−

∫

E

D2ϕ(ρεuF )(ρ
ε
uFM

−1I(n), ρεuFn) dν(n).

Thanks to the P−a.s. convergence of ρε to ρ in L2(0, T ;L2) and with ϕ ∈ C3(L2
F−1), we can

pass to the limit ε→ 0 in the term

∫ t

s

∫

E

−(ρεuFnM
−1I(n), Dϕ(ρεuF ))−D2ϕ(ρεuF )(ρ

ε
uFM

−1I(n), ρεuFn) dν(n) du.

Regarding the first term of Lϕ(ρεu), we introduce

G(ρ) :=

∫ ρ

0

dy

σ(y)
,

which is, thanks to the hypothesis (H1) made on σ, Lipschitz continuous on L2(TN ). Now the
first term of Lϕ(ρεu) writes

(divx(σ(ρ
ε
u)

−1K∇xρ
ε
u)F,Dϕ(ρ

ε
uF )) = (divx∇xG(ρ

ε
u)F,Dϕ(ρ

ε
uF )).

Furthermore, with (4.1), the mapping ρ 7→ ∂2xi,xj
Dϕ(ρF ) is continuous on L2(TN ). As a result,

we can now pass to the limit in the term

∫ t

s

(divx(σ(ρ
ε
u)

−1K∇xρ
ε
u)F,Dϕ(ρ

ε
uF )) du.

To sum up, we obtain that τε2 converges P−a.s. to
∫ t

s
Lϕ(ρu) du as ε goes to 0. Finally, since

the family τε2Ψ(ρεs1 , ..., ρ
ε
sn
) is uniformly integrable with respect to ε thanks to (4.1) and the

uniform L2
F−1 bound (5.1), we have that

E[τε2Ψ(ρεs1 , ..., ρ
ε
sn)] → E

[(∫ t

s

Lϕ(ρu) du

)
Ψ(ρs1 , ..., ρsn)

]
.

Study of τε3 . First of all, we observe that, with the decomposition f ε = ρεF + gε, (4.7) and
(2.2),

−ε−1(Af ε
u, Dϕ(f

ε
u)) = −ε−1(Agεu, Dϕ(f

ε
u)),

so that, with the P−a.s. convergences in L2(0, T ;L2)

ε−1gε ⇀ g, ρε → ρ,

and the continuity of the mapping ρ 7→ ADϕ(ρF ) thanks to (4.1), we obtain that the first
term of τε3 converges P−a.s. to

−

∫ t

s

(AguF,Dϕ(ρuF )) du.
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And, with Lemma 7.1, this term writes

∫ t

s

(divx(σ(ρu)
−1K∇xρu)F,Dϕ(ρuF )) du. (7.2)

Furthermore, similarly as the case of τε2 , we have that the second term of τε3 converges P−a.s.
to the opposite of (7.2). As a result, τε3 converges P−a.s. to 0. Finally, since the family
τε3Ψ(ρεs1 , ..., ρ

ε
sn) is uniformly integrable with respect to ε thanks to (4.1), the uniform L2

F−1

bound (5.1) and the bound (5.7) on (ε−1gε)ε>0, we have that

E[τε3Ψ(ρεs1 , ..., ρ
ε
sn
)] → 0.

Study of τε4 . If we transform the two first terms of τε4 exactly as we do for the first term of
τε3 , it is then easy, using the uniform bounds (5.1) and (5.7) and the bounds (ii) of (4.8) and
(4.10), to get

E[τε4Ψ(ρεs1 , ..., ρ
ε
sn
)] = O(ε).

To sum up, we can pass to the limit ε→ 0 in (7.1) to obtain

E

[(
ϕ(ρtF )− ϕ(ρsF )−

∫ t

s

Lϕ(ρu) du

)
Ψ(ρs1 , ..., ρsn)

]
= 0. (7.3)

We recall that this is valid for all n ∈ N, 0 ≤ s1 ≤ ... ≤ sn ≤ s ≤ t ∈ [0, T ] and all Ψ continuous
and bounded function on L2(TN )n. Now, let ξ be a smooth function on L2(TN ). We choose
ϕ(f) = (f, ξF ). We can easily verify that ϕ and |ϕ|2 belong to C3(L2

F−1) and that they are
good test-function satisfying (4.1). Thus, we obtain that

Nt := ϕ(ρtF )− ϕ(ρ0F )−

∫ t

0

L ϕ(ρu) du, t ∈ [0, T ],

|ϕ|2(ρtF )− |ϕ|2(ρ0F )−

∫ t

0

L |ϕ|2(ρu) du, t ∈ [0, T ],

are continuous martingales with respect to the filtration generated by (ρs)s∈[0,T ]. It implies
(see appendix 6.9 in [9]) that the quadratic variation of N is given by

〈N〉t =

∫ t

0

[
L |ϕ|2(ρu)− 2ϕ(ρu)Lϕ(ρu)

]
du, t ∈ [0, T ].

Furthermore, we have

L |ϕ|2(ρu)− 2ϕ(ρu)L ϕ(ρu) = −2

∫

E

(ρuFn, ξF )(ρuFM
−1I(n), ξF ) dν(n)

= 2E

∫ ∞

0

(ρuFm0, ξF )(ρuFmt, ξF ) dt

= E

∫

R

(ρuFm0, ξF )(ρuFmt, ξF ) dt

=

∫

TN

∫

TN

ρu(x)ξ(x)ρu(y)ξ(y)k(x, y) dxdy

= ‖ρuQ
1

2 ξ‖2L2.
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This is valid for all smooth function ξ of L2(TN ) so we deduce that

Mt := ρt − ρ0 −

∫ t

0

divx(σ(ρs)
−1K∇xρs) ds−

∫ t

0

ρsH ds, t ∈ [0, T ],

is a martingale with quadratic variation

∫ t

0

ρsQ
1

2

(
ρsQ

1

2

)∗
ds.

Thanks to martingale representation Theorem, see [5, Theorem 8.2], up to a change of proba-
bility space, there exists a cylindrical Wiener process W such that

ρt − ρ0 −

∫ t

0

divx(σ(ρs)
−1K∇xρs) ds−

∫ t

0

ρsH ds =

∫ t

0

ρsQ
1

2 dWs, t ∈ [0, T ].

This gives that ρ has the law of a weak solution to the equation (2.13) with paths in C([0, T ], H−η)∩
L2(0, T ;L2). Since this equation has a unique solution with paths in the space C([0, T ], H−η)∩
L2(0, T ;L2), and since pathwise uniqueness implies uniqueness in law, we deduce that P is
the law of this solution and is uniquely determined. Finally, by the uniqueness of the limit,
the whole sequence (P ε)ε>0 converges to P weakly in the spaces of probability measures on
C([0, T ], H−η) and L2(0, T ;L2). This concludes the proof of Theorem 2.2.

References

[1] C. Bardos, F. Golse, and B. Perthame. The Rosseland approximation for the radiative
transfer equations. Comm. Pure Appl. Math., 40(6):691–721, 1987.

[2] C. Bardos, F. Golse, B. Perthame, and R. Sentis. The nonaccretive radiative transfer
equations: existence of solutions and Rosseland approximation. J. Funct. Anal., 77(2):434–
460, 1988.

[3] P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and
Statistics. John Wiley & Sons, 2009.

[4] T. Cazenave and A. Haraux. An introduction to semilinear evolution equations. Oxford
Lecture Series in Mathematics and its Applications. Clarendon Press, 1998.

[5] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia
of Mathematics and Its Applications. Cambridge University Press, 2008.

[6] A. de Bouard and M. Gazeau. A diffusion approximation theorem for a nonlinear PDE
with application to random birefringent optical fibers. Ann. Appl. Probab., 22(6):2460–
2504, 2012.

[7] A. Debussche and J. Vovelle. Diffusion limit for a stochastic kinetic problem. Commun.
Pure Appl. Anal., 11(6):2305–2326, 2012.

[8] P. Degond, T. Goudon, and F. Poupaud. Diffusion limit for nonhomogeneous and non-
micro-reversible processes. Indiana Univ. Math. J., 49(3):1175–1198, 2000.

23



[9] J.P. Fouque, J. Garnier, G. Papanicolaou, and K. Solna. Wave Propagation and Time
Reversal in Randomly Layered Media. Stochastic Modelling and Applied Probability.
Springer, 2010.

[10] P.-E. Jabin. Averaging lemmas and dispersion estimates for kinetic equations. Riv. Mat.
Univ. Parma (8), 1:71–138, 2009.

[11] G. C. Papanicolaou, D. Stroock, and S. R. S. Varadhan. Martingale approach to some
limit theorems. Duke Univ. Math. Ser. Duke Univ., 1977.

[12] J. Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. (4), 146:65–96,
1987.

24


	1 Introduction
	2 Preliminaries and main result
	2.1 Notations and hypothesis
	2.2 The random perturbation
	2.3 Resolution of the kinetic equation
	2.4 Main result

	3 The generator
	4 The limit generator
	4.1 Formal derivation of the corrections
	4.1.1 Equation on 
	4.1.2 Equation on 1
	4.1.3 Equation on 2
	4.1.4 Summary


	5 Uniform bound in L2F-1
	6 Tightness
	7 Convergence

