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Abstract: We consider the initial value problem for a system of cubic nonlinear Schrödinger
equations with different masses in one space dimension. Under a suitable structural con-
dition on the nonlinearity, we will show that the small amplitude solution exists globally
and decays of the rate O(t−1/2(log t)−1/2) in L∞ as t tends to infinity, if the system satisfies
certain mass relations.
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1 Introduction

We consider the initial value problem for a system of cubic nonlinear Schrödinger equations
in one space dimension:

i∂tuj +
1

2mj
∂2
xuj = Fj(u), (t, x) ∈ (0,∞)× R (1.1)

with the initial condition

uj(0, x) = u◦
j(x), x ∈ R (1.2)

for j = 1, . . . , N , where i =
√
−1, u = (uj)1≤j≤N is a CN -valued unknown function of

(t, x) ∈ [0,∞) × R and the masses m1, . . . , mN are positive constants. Simply we assume
that the nonlinear term F = (Fj)1≤j≤N : CN → CN is a cubic homogeneous polynomial in
(u, u) with some complex coefficients, i.e.,

Fj(u) =

N
∑

k,l,m=1

∑

σ∈{+,−}3
Cσ

jklmu
(σ1)
k u

(σ2)
l u(σ3)

m
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with complex constants Cσ
jklm, where σ = (σ1, σ2, σ3) and u

(+)
j = uj, u

(−)
j = uj respectively.

Also we assume that the system satisfies gauge invariance, i.e.,

Fj

(

eim1θz1, . . . , e
imNθzN

)

= eimjθFj (z1, . . . , zN) (1.3)

for each j = 1, . . . , N and any θ ∈ R, z = (zj)1≤j≤N ∈ CN . In the present paper, we are
interested in large-time behavior of the small amplitude solution for (1.1)–(1.2).
Let us recall some previous results briefly. There is a large body of literature discussing

global existence and large-time behavior of solutions for the single nonlinear Schrödinger
equations in n-space dimensions of the form

i∂tu+
1

2
∆u = G(u), (t, x) ∈ R× R

n, (1.4)

where ∆ is the Laplace operator in x ∈ Rn and G(u) is a nonlinear term. We refer the
readers to [2] concerning the recent development on studies of (1.4). Let us denote by pS(n)

the Strauss exponent, which is defined by pS(n) = n+2+
√
n2+12n+4
2n

. Strauss showed in [13]
that if the nonlinear term G(u) satisfies |G′(u)| ≤ C|u|p−1 with p > pS(n), then there exists
a unique global solution for (1.4) with a suitable small initial data. Note that for one-

dimensional case, we have pS(1) =
3+

√
17

2
≈ 3.56. Now we concentrate our attention to the

power-type nonlinearity, i.e. the case that G(u) = λ|u|p−1u with λ ∈ C \ {0}, because it is a
typical one satisfying the gauge invariance condition (1.3). In this case, when p > 1 + 2/n,
it is well-known that any solution u(t) of (1.4) behaves like a free solution as t → ∞, if the
data belongs to suitable weighted Sobolev spaces (see e.g. [14]). On the other hand, Barab
[1] showed that there is no asymptotically free solution for (1.4) if 1 ≤ p ≤ 1 + 2/n. So we
can see that cubic nonlinearities are critical for (1.4) when n = 1.
Now we consider (1.4) with G(u) = λ|u|2u, λ ∈ C in one space dimension. In this case,

we can find an asymptotic profile of the solution to (1.4) in [11] for sufficiently small final
data, if λ ∈ R. We note that the asymptotic profile given there is just a phase-shifted free
profile, so the amplitude of the solution still behaves like a free solution. Similar results
can be found in [3]. More precisely, Hayashi and Naumkin proved in [3] that the solution
decays like O(t−1/2) in L∞ and behaves like a phase-shifted free solution when λ ∈ R, if the
initial data is sufficiently small and in suitable weighted Sobolev spaces. On the other hand,
according to the result by Shimomura [12], the solution decays like O(t−1/2(log t)−1/2) in L∞,
if Imλ < 0 and the initial data is small enough. Remember that the L∞-decay rate of the
free evolution is t−n/2 for n-dimensional cases. Therefore this gain of additional logarithmic
time-decay can be read as a kind of the long-range effect. His result was extended by [4],
which considers the nonlinear terms including derivative types also.
Next we turn our attention to the case of systems, i.e. (1.1) withN ≥ 2 where ∂2

x is replaced
by ∆. In this case, the problem becomes more complicated because global existence and
large-time behavior of the solution are affected by the ratio of masses as well as the structure
of nonlinearities. Li found some structural conditions on the quadratic nonlinearities and the
masses in [9] under which the solution to (1.1) exists globally and decays like a free solution
in two space dimension, if the data is small and belongs to a suitable weighted Sobolev space
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(note that quadratic nonlinearities are critical in two space dimension). And by a minor
modification of the method there, we can obtain similar results for one-dimensional cases
also. Recently, Katayama, Li and Sunagawa considered the quadratic two-dimensional NLS
system































i∂tu1 +
1

2m1
∆u1 = λ1|u1|u1 + µ1u2u3,

i∂tu2 +
1

2m2
∆u2 = λ2|u2|u2 + µ2u1u3, (t, x) ∈ (0,∞)× R2

i∂tu3 +
1

2m3
∆u3 = λ3|u3|u3 + µ3u1u2

(1.5)

in [5] with complex coefficients on the nonlinearities under the mass relation m1+m2 = m3.
They showed if Imλj < 0 for j = 1, 2, 3 and κ1µ1+κ2µ2 = κ3µ3 with some κ1, κ2, κ3 > 0, then
the solution of (1.5) decays like O(t−1(log t)−1) in L∞ for sufficiently small data which belongs
to certain weighted Sobolev spaces. We refer the readers to [10] and the references cited
therein for the recent progress on two-dimensional NLS systems with critical nonlinearities.
This paper can be regarded as a one-dimensional version of the paper [5] or a piece

of extension of the paper [12]. The aim of the present work is to introduce a structural
condition of the cubic nonlinearities and the masses under which (1.1)–(1.2) admits a unique
global solution and it decays like O(t−1/2(log t)−1/2) in L∞ as t → ∞, if the initial data is
small enough and belongs to suitable weighted Sobolev spaces.

2 Main Results

In order to state our main results, we introduce some notations here. We denote the usual

Lebesgue space by Lp(R) equipped with the norm ‖φ‖Lp =
(∫

R
|φ(x)|p dx

)1/p
if p ∈ [1,∞)

and ‖φ‖L∞ = supx∈R |φ(x)| if p = ∞. The weighted Sobolev space is defined by

Hs,q
p (R) =

{

φ = (φ1, . . . , φN) ∈ Lp(R) : ‖φ‖Hs,q
p

=

N
∑

j=1

‖φj‖Hs,q
p

< ∞
}

with the norm ‖φj‖Hs,q
p

= ‖〈x〉q 〈i∂x〉s φj‖Lp for s, q ∈ R and p ∈ [1,∞], where 〈·〉 =
√
1 + · 2.

For simplicity, we write Hs,q = Hs,q
2 , Hs

p = Hs,0
p and the usual Sobolev space as Hs = Hs,0.

We define the Fourier transform φ̂(ξ) of a function φ(x) by

(Fφ)(ξ) = φ̂(ξ) =
1√
2π

∫

R

e−ixξφ(x) dx.

Then the inverse Fourier transform is given by

(F−1φ)(x) =
1√
2π

∫

R

eixξφ(ξ) dξ.

We denote by y · z the standard scalar product in C
N for y, z ∈ C

N and write |z| = √
z · z

as usual. We can now formulate the main results.
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Theorem 2.1. Let u◦ ∈ H1,0(R) ∩ H0,1(R) and ‖u◦‖H1,0 + ‖u◦‖H0,1 = ε. Assume the

condition (1.3) holds and suppose that there exists an N × N positive Hermitian matrix A
such that

Im (F (z) · Az) ≤ 0 (2.1)

for all z ∈ C
N . Then there exists ε0 > 0 such that for all ε ∈ (0, ε0], the initial value problem

(1.1)–(1.2) admits a unique global solution

u(t) ∈ C0
(

[0,∞);H1,0(R) ∩H0,1(R)
)

satisfying the time-decay estimate

‖u(t)‖L∞ ≤ C(1 + t)−1/2

for all t ≥ 0.

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 are fulfilled. Moreover, suppose

that there exist an N ×N positive Hermitian matrix A and constants C∗, C
∗ > 0 such that

−C∗|z|4 ≤ Im (F (z) · Az) ≤ −C∗|z|4 (2.2)

for all z ∈ CN . Then the global solution of (1.1)–(1.2), which is guaranteed by Theorem 2.1,

satisfies the time-decay estimate

‖u(t)‖L∞ ≤ C(1 + t)−1/2

√

log(2 + t)

for all t ≥ 0.

Here we give some examples satisfying the assumption of Theorem 2.1 or Theorem 2.2 with
suitable mass relations.

Example 2.1. We consider the following two-component system















i∂tu1 +
1

2m1
∂2
xu1 = F1(u) = λ1|u|2u1 + µ1u1

2u2,

i∂tu2 +
1

2m2

∂2
xu2 = F2(u) = λ2|u|2u2 + µ2u

3
1

(2.3)

in (t, x) ∈ (0,∞)×R under the mass relation m2 = 3m1, where λ1, λ2, µ1, µ2 ∈ C. Then we
can see that the system (2.3) satisfies the gauge invariance condition (1.3). Also we assume
that the constants satisfy the following conditions:

Imλj < 0 for j = 1, 2, κ1µ1 = κ2µ2 with some κ1, κ2 > 0.
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Then we have

−C∗|z|4 ≤ Im (F (z) · Az) =
2

∑

j=1

κj (Imλj) |z|2|zj |2 + Im
(

κ1µ1z1
3z2 + κ2µ2z

3
1z2

)

≤ −C∗|z|4

for all z ∈ C2 with A = diag (κ1, κ2). Therefore we can conclude from Theorem 2.1 and
Theorem 2.2 that there exists a unique global solution u(t) ∈ C0 ([0,∞);H1,0(R) ∩H0,1(R))
to the initial value problem (2.3)–(1.2) and the solution decays like O

(

t−1/2(log t)−1/2
)

in
L∞ as t → ∞, if u◦ ∈ H1,0(R) ∩H0,1(R) and it is sufficiently small.

Remark 2.1. Since the Klein-Gordon equation is a relativisitic version of the Schrödinger
equation, it is interesting to compare our results with a system of nonlinear Klein-Gordon
equations. Here we consider the following two-component cubic nonlinear Klein-Gordon
system including dissipative nonlinearities

{

(∂2
t − ∂2

x +m2
1)u1 = λ1|∂tu|2∂tu1 − (∂tu1)

2∂tu2

(∂2
t − ∂2

x +m2
2)u2 = λ2|∂tu|2∂tu2 + (∂tu1)

3 (2.4)

in (t, x) ∈ (0,∞)× R with the same mass relation m2 = 3m1 (often called mass resonance

relation) as above, where u = (u1, u2) is real-valued and λ1, λ2 < 0. Then as pointed out
in [7], we can modify the proof of [8] to see that (2.4) admits a unique global solution u(t)
and it decays like O

(

t−1/2(log t)−1/2
)

in L∞ as t → ∞, if the Cauchy data are sufficiently
smooth, small and compactly-supported. We remark that the condition λ1, λ2 < 0 reflects
a dissipative character in this case, as the condition Imλ1, Imλ2 < 0 implies a dissipative
property in (2.3).

We end this section by giving an example which satisfies the condition (2.1) but violates (2.2).

Example 2.2. We consider the following four-component system














































i∂tu1 +
1

2m1
∂2
xu1 = F1(u) = µ1u2u3u4,

i∂tu2 +
1

2m2

∂2
xu2 = F2(u) = µ2u3u4u1,

i∂tu3 +
1

2m3

∂2
xu3 = F3(u) = µ3u4u1u2,

i∂tu4 +
1

2m4

∂2
xu4 = F4(u) = µ4u1u2u3

(2.5)

in (t, x) ∈ (0,∞)× R under the mass relation m4 = m1 +m2 +m3, where µ1, . . . , µ4 ∈ C.
Then we can see that the condition (1.3) holds and Im (F (z) ·Az) = 0 for all z ∈ C

4

with A = diag(κ1, κ2, κ3, κ4), if there exist some positive constants κ1, . . . , κ4 such that
κ1µ1 + κ2µ2 + κ3µ3 = κ4µ4. Therefore in this case, we can conclude from Theorem 2.1 that
the global solution of (2.5) decays like a free solution if the data is small enough.
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The rest of this paper is organized as follows. In Section 3, we compile some basic facts
concerning the free Schrödinger evolution group. Section 4 is devoted to obtain a suitable
a priori estimate from which Theorem 2.1 follows immediately. After that, we prove Theo-
rem 2.2 in Section 5 and discuss the optimality of the decay-rate of the solution. In what
follows, all non-negative constants will be denoted by C which may vary from line to line
unless otherwise specified.

3 Preliminaries

In this section, we introduce some notations and useful estimates which will be used in
Section 4 and Section 5 for the proof of the main results. In what follows, we denote
AB = (AjBj)1≤j≤N for N -dimensional column vectors A = (Aj)1≤j≤N and B = (Bj)1≤j≤N .
First we introduce the free Schrödinger evolution group U(t) = (Uj(t))1≤j≤N defined by

Uj(t) = e
it

2mj
∂2
x = F−1e

− it
2mj

ξ2F .

It is well-known that U(t) is decomposed into U(t) = M(t)D(t)GM(t), where the mul-
tiplication factor M(t) = (Mj(t))1≤j≤N is defined by Mj(t)φ(x) = exp(

imj

2t
x2)φ(x), the

Fourier-like transform G = (Gj)1≤j≤N (see e.g. [5]) and the dilation operator D(t) are given
by

(Gjφ)(ξ) =

√

mj

i
(Fφ)(mjξ), D(t)φ(x) =

1√
t
φ
(

xt−1
)

.

Also we define W(t) = GM(t)G−1 so that U(t) = M(t)D(t)W(t)G. Then we have

‖(W(t)− 1)φ‖L∞ ≤ Ct−1/4 ‖φ‖H1 ,
∥

∥

(

W−1(t)− 1
)

φ
∥

∥

L∞
≤ Ct−1/4 ‖φ‖H1 (3.1)

for φ = (φ1, . . . , φN) ∈ H1(R). Indeed it is easy to check that the estimates (3.1) hold. Since

|Mj(t)− 1| =
∣

∣

∣
e

imj
2t

x2 − 1
∣

∣

∣
= 2

∣

∣

∣

∣

sin
mjx

2

4t

∣

∣

∣

∣

≤ C
|x|2β
tβ

where β ∈ [0, 1], we find

‖(W(t)− 1)φ‖L∞ =
∥

∥G(M(t)− 1)G−1φ
∥

∥

L∞
≤ C

∥

∥(M(t)− 1)G−1φ
∥

∥

L1

≤ Ct−β
∥

∥〈x〉−η 〈x〉η |x|2βF−1φ
∥

∥

L1

≤ Ct−β
∥

∥〈x〉−η
∥

∥

L2

∥

∥

∥
〈x〉2β+η F−1φ

∥

∥

∥

L2

≤ Ct−β ‖φ‖H2β+η

holds for any η > 1/2. So by choosing β = 1/4, we get the first estimate of (3.1). In view
of the relation W−1(t)− 1 = −(W(t) − 1)W−1(t) and ‖W−1(t)φ‖H1 ≤ C ‖φ‖H1 , the second
estimate of (3.1) follows immediately.

6



4 A Priori Estimates

The argument of this section is similar to those of the previous works, for example [5], [9]
and [12]. Let u(t) be the solution to (1.1)–(1.2) in [0, T ] and we define

‖u‖XT
= sup

t∈[0,T ]

(

〈t〉−γ ( ‖u(t)‖H1 + ‖U(−t)u(t)‖H0,1

)

+ 〈t〉1/2 ‖u(t)‖L∞

)

where 0 < γ ≪ 1 small.

Lemma 4.1. Under the assumption of Theorem 2.1, there exist ε1 > 0 and C0 > 0 such

that ‖u‖XT
≤ √

ε implies ‖u‖XT
≤ C0ε for any ε ∈ (0, ε1]. Here the constant C0 does not

depend on T .

Once this lemma is proved, we can obtain the global existence part of Theorem 2.1 in
the following way: By taking ε0 ∈ (0, ε1] so that 2C0

√
ε0 ≤ 1, we deduce that ‖u‖XT

≤ √
ε

implies ‖u‖XT
≤ √

ε/2 for any ε ∈ (0, ε0]. Then by the continuity argument, we have
‖u‖XT

≤ C0ε as long as the solution exists. So the local solution to (1.1)–(1.2) can be
extended to the global one.

From now on, we will prove Lemma 4.1. Since i∂tUj(−t) = Uj(−t)(i∂t +
1

2mj
∂2
x), taking

U(−t) to the both sides of (1.1), we get the following integral equation

u(t) = U(t)u◦ − i

∫ t

0

U(t− τ)F (u(τ)) dτ.

Taking the H1 norm, we obtain

‖u(t)‖H1 ≤ ‖u◦‖H1 +

∫ t

0

‖F (u(τ))‖H1 dτ

≤ Cε+ C

∫ t

0

‖u(τ)‖2L∞ ‖u(τ)‖H1 dτ

≤ Cε+ C

∫ t

0

ε3/2 〈τ〉−1+γ dτ ≤ Cε 〈t〉γ , (4.1)

where we used the assumption ‖u‖XT
≤ √

ε. Now we are going to estimate ‖U(−t)u(t)‖H0,1 .
Since M(−t)F (u) = F (M(−t)u) by (1.3), using the relation

Uj(t)xUj(−t) = Mj(t)itm
−1
j ∂xMj(−t),

we have

‖xU(−t)F (u)‖L2 = ‖U(t)xU(−t)F (u)‖L2 ≤ Ct ‖∂xM(−t)F (u)‖L2

= Ct ‖∂xF (M(−t)u)‖L2 ≤ Ct ‖M(−t)u‖2L∞ ‖∂xM(−t)u‖L2

≤ C ‖u‖2L∞ ‖xU(−t)u‖L2 . (4.2)

7



Therefore by the similar way as above, we obtain

‖U(−t)u(t)‖H0,1 ≤ ‖u◦‖H0,1 +

∫ t

0

‖U(−τ)F (u(τ))‖H0,1 dτ

≤ Cε+ C

∫ t

0

‖u(τ)‖2L∞ ‖U(−τ)u(τ)‖H0,1 dτ

≤ Cε 〈t〉γ , (4.3)

where we used (4.2) for the second inequality. Next, we consider the term ‖u(t)‖L∞ . If t ≤ 1,
the standard Sobolev embedding and (4.1) suffice to obtain

〈t〉1/2+γ ‖u(t)‖L∞ ≤ 21/4+γ/2 ‖u(t)‖H1 ≤ Cε 〈t〉γ . (4.4)

So from now on we consider the case that t ≥ 1. We define the new function α = (αj)1≤j≤N

by
α(t, ξ) = G (U(−t)u(t)) (ξ).

Then from the decomposition of the free Schrödinger evolution group and (1.3), we have

i∂tα(t, ξ) = GU(−t)F (u(t))(ξ)

= W−1(t)D−1(t)M(−t)F (M(t)D(t)W(t)α(t, ξ))

= t−1W−1(t)F (W(t)α(t, ξ))

= t−1F (α(t, ξ)) +R(t, ξ), (4.5)

where
R(t, ξ) = t−1W−1(t)F (W(t)α(t, ξ))− t−1F (α(t, ξ)).

As we shall see below, R can be regarded as a remainder because it decays strictly faster
than O(t−1) in L∞, while the first term of the right-hand side of (4.5) plays a role as a main
term. Since we have by the estimate (3.1), the Sobolev embedding and (4.3),

t−1
∥

∥

(

W−1(t)− 1
)

F (W(t)α(t))
∥

∥

L∞
≤ Ct−5/4 ‖F (W(t)α(t))‖H1 ≤ Ct−5/4 ‖W(t)α(t)‖3H1

≤ Ct−5/4 ‖α(t)‖3H1 ≤ Ct−5/4 ‖GU(−t)u(t)‖3H1

≤ Ct−5/4 ‖U(−t)u(t)‖3H0,1

≤ Cε3t−5/4+3γ

and similarly

t−1 ‖F (W(t)α(t))− F (α(t))‖L∞

≤ Ct−1 ‖(W(t)− 1)α(t)‖L∞

(

‖(W(t)− 1)α(t)‖2L∞ + ‖W(t)α(t)‖L∞ ‖α(t)‖L∞

)

≤ Ct−5/4 ‖α(t)‖H1

(

t−1/2 ‖α(t)‖2H1 + ‖α(t)‖2H1

)

≤ Cε3t−5/4+3γ ,

8



we deduce that the remainder satisfies the estimate

‖R(t)‖L∞ ≤ t−1
(
∥

∥

(

W−1(t)− 1
)

F (W(t)α(t))
∥

∥

L∞
+ ‖F (W(t)α(t))− F (α(t))‖L∞

)

≤ Cε3t−5/4+3γ (4.6)

for t ≥ 1. Here we note that

|y · Az| ≤ (y ·Ay)1/2(z · Az)1/2, λ∗|z|2 ≤ z ·Az ≤ λ∗|z|2 (4.7)

hold for y, z ∈ C
N , where the matrix A is in Theorem 2.1 and λ∗ (resp. λ∗) is the largest

(resp. smallest) eigenvalue of A. Therefore it follows from (4.5), (2.1), (4.7) and (4.6) that

∂t (α(t, ξ) · Aα(t, ξ)) = 2 Im (i∂tα(t, ξ) · Aα(t, ξ))
= 2t−1 Im (F (α(t, ξ)) · Aα(t, ξ)) + 2 Im (R(t, ξ) · Aα(t, ξ))
≤ Ct−5/4

∣

∣t5/4R(t, ξ) · Aα(t, ξ)
∣

∣

≤ Ct−5/4
(

α(t, ξ) · Aα(t, ξ) + t5/2R(t, ξ) ·AR(t, ξ)
)

≤ Ct−5/4α(t, ξ) ·Aα(t, ξ) + Cε6t−5/4+6γ . (4.8)

Noting that

‖α(1)‖L∞ = ‖GU(−1)u(1)‖L∞ ≤ C ‖GU(−1)u(1)‖H1 ≤ C ‖U(−1)u(1)‖H0,1 ≤ Cε,

integrating (4.8) with respect to time lead to

α(t, ξ) · Aα(t, ξ) ≤ Cε2 +

∫ t

1

τ−5/4α(t, ξ) · Aα(t, ξ) dτ.

Thus the Gronwall lemma and (4.7) yield

‖α(t)‖L∞ ≤ Cε (4.9)

for t ≥ 1. Hence with the estimates (4.9), (4.3) and the inequality

‖G(M(t)− 1)U(−t)u(t)‖L∞ = ‖(W(t)− 1)GU(−t)u(t)‖L∞

≤ Ct−1/4 ‖GU(−t)u(t)‖H1 , (4.10)

we finally obtain

‖u(t)‖L∞ = ‖M(t)D(t)GM(t)U(−t)u(t)‖L∞

≤ Ct−1/2 ‖GM(t)U(−t)u(t)‖L∞

≤ Ct−1/2
(

‖GU(−t)u(t)‖L∞ + ‖G(M(t)− 1)U(−t)u(t)‖L∞

)

≤ Ct−1/2
(

‖α(t)‖L∞ + t−1/4 ‖U(−t)u(t)‖H0,1

)

≤ Cεt−1/2 (4.11)

for t ≥ 1. By (4.1), (4.3), (4.4) and (4.11), we arrive at Lemma 4.1 and the L∞-decay
estimate in Theorem 2.1 follows immediately.
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5 Proof of Theorem 2.2

Now we are in a position to prove Theorem 2.2. Note that the similar arguments of this
section are also used in the previous works [5], [6] and [8]. If t ≤ 2 then by (4.1) we have

〈t〉1/2+γ
√

log(2 + t) ‖u(t)‖L∞ ≤ C ‖u(t)‖H1 ≤ Cε 〈t〉γ ,

so we only consider the case that t ≥ 2. First we note that

∂t
(

(log t)2 (α(t, ξ) · Aα(t, ξ))
)

= (log t)2∂t(α(t, ξ) · Aα(t, ξ)) +
2 log t

t
α(t, ξ) · Aα(t, ξ).

Similarly to (4.8), we have

∂t(α(t, ξ) ·Aα(t, ξ)) = 2t−1 Im (F (α(t, ξ)) · Aα(t, ξ)) + 2 Im (R(t, ξ) · Aα(t, ξ))
≤ −2C∗t−1|α(t, ξ)|4 + C|R(t, ξ)||α(t, ξ)|
≤ −2C∗t−1|α(t, ξ)|4 + Cε4t−5/4+3γ ,

where we used (4.6), (4.7), (4.9) and the assumption (2.2) with the constant C∗ appearing
in Theorem 2.2. Also we have

α(t, ξ) · Aα(t, ξ) ≤ λ∗|α(t, ξ)|2 = λ∗
√
2C∗ log t

√

2C∗ log t|α(t, ξ)|2

≤ (λ∗)2

4C∗ log t
+ C∗ log t|α(t, ξ)|4

by the Young inequality. Piecing them together, we obtain

∂t
(

(log t)2 (α(t, ξ) · Aα(t, ξ))
)

≤ Ct−1 + Cε4(log t)2t−5/4+3γ .

Integrating with respect to time, we get

(log t)2 (α(t, ξ) · Aα(t, ξ)) ≤ Cε2 + C

∫ t

2

(

τ−1 +
(log τ)2

τ 5/4−3γ

)

dτ ≤ C log t

for t ≥ 2. Thus (4.7) yields
‖α(t)‖L∞ ≤ C(log t)−1/2.

Therefore by the same arguments as in (4.11), we arrive at

‖u(t)‖L∞ ≤ Ct−1/2
(

‖α(t)‖L∞ + t−1/4 ‖U(−t)u(t)‖H0,1

)

≤ Ct−1/2(log t)−1/2,

which proves Theorem 2.2.

Finally, we discuss the optimality of the decay rate O(t−1/2(log t)−1/2). We put u◦(x) =
δv◦(x)( 6≡ 0) ∈ H1,0(R)∩H0,1(R) with δ > 0 (note that ε = ‖u◦‖H1,0 + ‖u◦‖H0,1 ≤ Cδ). Here
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we will show that the solution does not decay strictly faster than t−1/2(log t)−1/2 as t → ∞,
if δ is sufficiently small. Suppose that

lim
t→∞

(t log t)1/2 ‖u(t)‖L∞ = 0 (5.1)

holds. By (4.10) and (4.3), we have

‖α(t)‖L∞ = ‖GU(−t)u(t)‖L∞

≤ ‖GM(t)U(−t)u(t)‖L∞ + ‖G(M(t)− 1)U(−t)u(t)‖L∞

≤ Ct1/2 ‖M(t)D(t)GM(t)U(−t)u(t)‖L∞ + Ct−1/4 ‖U(−t)u(t)‖H0,1

≤ Ct1/2 ‖u(t)‖L∞ + Cδt−1/4+γ .

Thus from (5.1), we get

(log t)1/2|α(t, ξ)| ≤ C(t log t)1/2 ‖u(t)‖L∞ + Cδt−1/4+γ(log t)1/2 → 0 (5.2)

as t → ∞ uniformly with respect to ξ ∈ R. Hence if δ is sufficiently small, we have

√

2C∗
λ∗

(log t)1/2|α(t, ξ)| ≤ 1 (5.3)

for all t ≥ 2 and ξ ∈ R, where C∗ and λ∗ are the constants appearing in (2.2) and (4.7)
respectively. Therefore as in (4.8), it follows from (2.2), (4.7), (4.6), (4.9) and (5.3) that

∂t ((log t)α(t) · Aα(t)) = (log t)∂t(α(t) ·Aα(t)) + t−1α(t) · Aα(t)
= 2(log t)

(

t−1 Im (F (α(t)) ·Aα(t)) + Im (R(t) ·Aα(t))
)

+ t−1α(t) ·Aα(t)
≥ −2C∗t

−1(log t)|α(t)|4 + λ∗t
−1|α(t)|2 − 2(log t)|R(t) · Aα(t)|

≥ λ∗t
−1|α(t)|2

(

1− 2C∗ log t

λ∗
|α(t)|2

)

− Cδ4t−5/4+3γ log t

≥ −Cδ4t−5/4+3γ log t,

which yields

(log t)α(t) · Aα(t) ≥ (log 2)α(2) · Aα(2)− Cδ4
∫ t

2

log τ

τ 5/4−3γ
dτ ≥ Cδ2 − C ′δ4 > 0

for sufficiently small δ with some positive constants C and C ′. This contradicts (5.2).
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