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ASYMPTOTIC EXPANSION IN GEVREY SPACES FOR SOLUTIONS OF
NAVIER-STOKES EQUATIONS

LUAN T. HOANG1 AND VINCENT R. MARTINEZ2

Abstract. In this paper, we study the asymptotic behavior of solutions to the three-
dimensional incompressible Navier-Stokes equations (NSE) with periodic boundary condi-
tions and potential body forces. In particular, we prove that the Foias-Saut asymptotic
expansion for the regular solutions of the NSE in fact holds in all Gevrey classes . This
strengthens the previous result obtained in Sobolev spaces by Foias-Saut. By using the
Gevrey-norm technique of Foias-Temam, the proof of our improved result simplifies the
original argument of Foias-Saut, thereby, increasing its adaptability to other dissipative
systems. Moreover, the expansion is extended to all Leray-Hopf weak solutions.

1. Introduction and Main result

The Navier-Stokes equations (NSE) play an essential role in understanding fluid mechanics.
Their long-time dynamics still pose great challenges in both mathematics and physics. This
paper is focused on the asymptotic analysis of solutions to the NSE with periodic boundary
conditions in the particular case where the body force is potential. In this situation, it is
elementary to show that the solution decays exponentially when time is large. However, to
quantify the decay rate precisely is a more difficult problem. Dyer and Edmunds [6] were
the first to obtain an exponential lower bound for non-trivial solutions. Later, Foias and
Saut proved that in bounded or periodic domains the regular, non-trivial solutions of the
NSE decay exponentially at an exact rate which is an eigenvalue of the Stokes operator
(see [13]). Remarkably, they go on to show that the solution in fact admits an asymptotic
expansion [14] which details its long-time behavior. This inspired a number of subsequent
studies on this expansion, as well as the associated normal form of the NSE, its normalization
map, and invariant nonlinear manifolds (cf. [9–11, 15] and references therein). Applications
of the expansion to statistical solutions of the NSE, decaying turbulence, and analysis of
helicity are obtained in [7,8]. The result is also extended to Minea’s system [21], and to NSE
in the whole space R3 [18]. All of the aforementioned results are established in Sobolev spaces
leaving the question open whether these results hold in spaces of stronger regularity. Indeed,
it is well-known that solutions of the NSE regularize instantaneously to the real-analytic
class (cf. [16]). Thus, the analytic Gevrey class presents itself as a natural class to pose the
problem of whether or not this asymptotic expansion holds in these spaces as well. On the
other hand, the original proof in [14], makes use of rather sophisticated estimates which do
not appear to be easily reproducible for other dissipative systems.

In this paper, we prove that the Foias-Saut expansion indeed holds true in all Gevrey spaces
(see Theorem 1.1). The Gevrey spaces are much stronger than the Sobolev spaces since they
impose exponential decay on the high wave-numbers of the solution. Moreover, Gevrey
norms provide extra information on the solution, particularly, on its radius of analyticity
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in the spatial variable which is of particular importance in the context of turbulence, see
e.g. [2, 5, 12, 17]. We remark that the technique of using Gevrey norms goes back to [16]
and is essentially an energy method analogous to that developed for Sobolev norms. It has
since become a standard method for establishing higher-order regularity for a large class of
equations (cf. [1–3,20,22–24]). We therefore not only strengthen the asymptotic expansion of
Foias-Saut, but, at least for periodic domains, provide a streamlined and transparent proof
of its existence, rendering it adaptable to other dissipative systems.

In order to state our main result precisely, let us prepare some notations and background.
We consider a viscous, incompressible fluid in R

3 with (kinematic) viscosity ν > 0, velocity
vector field u(x, t), scalar pressure p(x, t), and potential body force (−∇φ(x, t)), where
φ(x, t) is a given potential. Here x ∈ R

3 is the location vector and t ∈ R is time. The
corresponding fluid’s dynamics are then described by the Navier-Stokes equations, which is
given as follows:

∂u

∂t
+ (u · ∇)u− ν∆u = −∇p−∇φ,

div u = 0.
(1.1)

For the initial value problem, it is specified that

u(x, 0) = u0(x), (1.2)

where u0(x) is the given initial velocity field.
We focus on L-periodic solutions (u, p), where u has zero average over the domain Ω =

(−L/2, L/2)3, L > 0, corresponding to u0, which is also assumed to be L-periodic with zero
average. Indeed, we may see from (1.1) that the zero-average condition is preserved by the
evolution. Here, a function f(x) is L-periodic if

f(x+ Lej) = f(x) for all x ∈ R
3, j = 1, 2, 3,

where {e1, e2, e3} is the standard basis of R3, and has zero average over Ω if
∫

Ω

f(x)dx = 0. (1.3)

For our purposes, we assume that the potential φ(x, t) is also L-periodic for all t ≥ 0.
We recall that (1.1) satisfies the following scaling law:

(uλ, pλ)(x, t) = (λu(λx, λ2t), λ2p(λx, t))

is a solution of (1.1), for all λ > 0, if (u, p) is a solution of (1.1). Thus, by rescaling the spatial
and time variables, we may assume throughout, without loss of generality, that L = 2π and
ν = 1.

Let 〈·, ·〉 and | · | denote the inner product and norm in L2(Ω)3, that is,

〈u, v〉 =
∫

Ω

u(x) · v(x)dx and |u| = 〈u, u〉1/2 for functions u = u(·), v = v(·).

We note that the notation | · | is also used to denote the Euclidean length of vectors in R
3,

but any apparent ambiguity will be clarified by the context.
Recall that Hm(Ω) with m = 0, 1, 2, . . . are the Sobolev spaces of functions on Ω that have

distributional derivatives up to order m belonging to L2(Ω).
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Let V be the set of all L-periodic trigonometric polynomial vector fields which are divergence-
free and has zero average over Ω. Define

H, resp. V = closure of V in L2(Ω)3, resp. H1(Ω)3.

We will let P denote the orthogonal projection in L2(Ω)3 onto H .
The Stokes operator A with domain D(A) = V ∩H2(Ω)3 is defined by

Au = −P∆u for all u ∈ D(A).

Note that since we are working with periodic boundary conditions, we simply have A = −∆
on D(A).

Thanks to the zero-average condition (1.3), the norm ‖u‖ def
= |∇u| for u ∈ V is equivalent

to the standard H1-norm, and the norm |Au| for u ∈ D(A) is equivalent to the standard
H2-norm.

It is known that in the setting above, the spectrum of the Stokes operator, A, is

σ(A) = {λj : j ∈ N},
where λj is strictly increasing in j, and each is an eigenvalue of A with λj = |k|2 for some
k ∈ Z

3 \ {0}. Observe that the additive semigroup generated by σ(A) is simply the set N of
natural numbers.

If n ∈ σ(A), we define Rn to be the orthogonal projection in H onto the eigenspace of A
corresponding to n. In case n /∈ σ(A), set Rn = 0. For n ∈ N, define Pn = R1+R2+ · · ·+Rn.

For α, σ ∈ R and u =
∑

k 6=0 û(k)e
ik·x, define

Aαu =
∑

k 6=0

|k|2αû(k)eik·x,

AαeσA
1/2

u =
∑

k 6=0

|k|2αeσ|k|û(k)eik·x,

where û(k) denotes the Fourier coefficient of u at wavenumber k. We then define the Gevrey
classes by

Gα,σ = D(AαeσA
1/2

)
def
= {u ∈ H : |u|α,σ def

= |AαeσA
1/2

u| < ∞}.
Then the domain of Aα is D(Aα) = Gα,0. Note that D(A0) = H , D(A1/2) = V , and
‖u‖ = |A1/2u| for u ∈ V .

We define the bilinear mapping associated with the nonlinear term in the Navier-Stokes
equations by

B(u,v) = P(u · ∇v) for all u,v ∈ D(A).

For convenience, we will denote u(t) = u(·, t) from now on. Thus, by applying the Leray
projection, P, to (1.1) and (1.2), the initial value problem for NSE may be re-written in the
functional form as

du(t)

dt
+ Au(t) +B(u(t), u(t)) = 0 ∀t > 0, (1.4)

with the initial data

u(0) = u0 ∈ H. (1.5)

(See e.g. [4] or [25] for more details.)
We recall the following local existence theorem [4, 19, 25]: For any u0 ∈ V there exists

T ∈ (0,∞] and a (unique) solution u(t) of (1.4) on (0, T ) such that u(t) is continuous from
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[0, T ) to V and satisfies (1.5). We call such u(t) a regular solution on [0, T ). Moreover, if
Tmax is the maximal time of existence for regular solution u(t) and Tmax < ∞, then

lim
t→T−

max

‖u(t)‖ = ∞.

We denote by R the set of all u0 ∈ V such that the regular solution u(t) of (1.4) and (1.5)
exists on [0,∞).

For any u0 ∈ R, it is proved in [14] that the regular solution u(t) of (1.4) and (1.5) has
an asymptotic expansion

u(t) ∼
∞
∑

n=1

qn(t)e
−nt, (1.6)

where qj(t)’s are unique polynomials in t with values in V. This means that for any N ∈ N

the remainder vN(t) = u(t)−∑N
j=1 qj(t)e

−jt satisfies

‖vN(t)‖Hm(Ω)3 = O
(

e−(N+εN )t
)

as t → ∞ for some εN > 0 and all m = 0, 1, 2, 3 . . . , (1.7)

The notation, O(f(t)), above is defined as

Φ(t) = O(f(t)) as t → ∞ if and only if ∃T, C > 0, Φ(t) ≤ Cf(t), ∀t > T ,

where Φ and f are non-negative scalar quantities. We will also make use of the following
notation: for v(t) which belongs to Gα,σ eventually,

v(t) = Oα,σ(f(t)) as t → ∞ if and only if ∃T, C > 0, |v(t)|α,σ ≤ Cf(t), ∀t > T .

We note that the times, T , and absolute constants, C, may depend on the parameters
appearing in f . The dependence on such parameters in the estimates performed below will
be indicated as needed.

Our main result is the following improvement.

Theorem 1.1 (Main theorem). The expansion (1.6) holds on any Gevrey space Gα,σ with
α, σ > 0. More precisely, for any Leray-Hopf weak solution u(t) of (1.4), there are polyno-
mials qn(t)’s in t valued in V for all n ∈ N such that if α, σ > 0 and N ≥ 1 then

∣

∣

∣
u(t)−

N
∑

n=1

qn(t)e
−nt

∣

∣

∣

α,σ
= O

(

e−(N+ε)t
)

as t → ∞, for any ε ∈ (0, 1). (1.8)

Regarding the Leray-Hopf weak solutions, see e.g. [12]. Some remarks are in order for
Theorem 1.1:

(a) It suffices to state (1.8) with all σ > 0 and a fixed α, say, α = 0. However, we keep
the stated form (1.8) for the generality of the Gevrey norms.

(b) In case u(0) = u0 ∈ R, the polynomials qn’s are uniquely determined by u0. In general,
they depend on the solution u(t). Indeed, for a fixed weak solution, u(t), the corresponding
polynomials, qn’s, are then uniquely determined due to the asymptotic properties of the
expansion.

(c) The extension of the Foias-Saut result from regular solutions to Leray-Hopf weak solu-
tions can be useful in the study of turbulence. (See a similar extension for the normalization
map of Leray-Hopf weak solutions in [8].)

Theorem 1.1 will be proved in Section 3. Although the proof follows the original scheme
in [14], by working directly in Gevrey classes, the need for complicated, recursive estimates
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in Sobolev spaces for the solution’s time derivatives and its higher orders is eliminated com-
pletely, thereby simplifying the proof considerably in addition to improving significantly the
regularity of the expansion. In particular, since one no longer needs to appeal to particu-
lar higher regularity results for the Stokes operator, this approach indicates an avenue for
establishing such an expansion to other dissipative systems. Let us also point out that the
setting of periodic boundary conditions that we consider here is an example of the more
difficult case dealt with in [14] when there are resonances in the eigenvalues of the Stokes
operator. Our choice of this setting is for the availability of explicit eigenfunctions which are
convenient to work with when estimating the Gevrey norms of the bilinear operator B(u, v),
see Lemma 2.1.

The main observation in proving Theorem 1.1 is that for each σ > 0 and N ≥ 1, the
remainder estimate (1.8) is conjectured and then proved, by induction in N , to hold true
for all α > 0. This is crucial due to the estimate of the nonlinear mapping B(u, v) which
always requires the regularity of one more derivative for u or v, see Lemma 2.1. However,
since the Gevrey norm in |u|0,σ for any σ > 0 is stronger than all Sobolev norms |Aαu|, this
obstacle becomes a non-issue. What remains then in dealing with the weak solutions is that
the time of eventual regularity in the class Gα,σ must be uniform in α, albeit its dependence
on σ. By appealing to the Leray energy inequality to enter a small-data regime, we establish
this together with asymptotic bounds in these Gevrey norms (Lemma 2.2 and Theorem 2.3).
Note that these bounds are obtained with an exact exponential decay rate, hence, allowing
us to deduce the exponential decay rates for the remainders in a straightforward manner.

2. Basic estimates

In this section, we derive estimates for the Gevrey norms of the solutions, particularly,
when time is large. First, we state some basic inequalities. For all α, σ ≥ 0,

|u| ≤ |Aαu| (Poincaré’s inequality), (2.1)

|u| ≤ e−σ|eσA1/2

u|. (2.2)

When σ, α > 0, one has

max
x≥0

(x2αe−x) =
(2α

e

)2α

,

hence

|Aαe−A1/2

u| ≤
(2α

e

)2α

|u|. (2.3)

Regarding the bilinear mapping B(u, v), we will use the following inequalities which are
proved in Appendix A.

Lemma 2.1. For σ, α ≥ 0 one has

|B(u, v)|α,σ ≤ 4αc∗

(

|u|1/21/2,σ |u|
1/2
1,σ |v|α+1/2,σ + |u|α+1/4,σ|v|1,σ

)

, (2.4)

|B(u, v)|α,σ ≤ 4αc∗

(

|u|1/21/2,σ |u|
1/2
1,σ |v|α+1/2,σ + |u|α+1/2,σ |v|3/4,σ

)

, (2.5)

where c∗ > 0 is independent of α, σ. In particular, if α ≥ 1/2 then

|B(u, v)|α,σ ≤ Kα|u|α+1/2,σ |v|α+1/2,σ ∀u, v ∈ Gα+1/2,σ, (2.6)

where K = 4(max{2c∗, 1})2.
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Here afterward, we denote Cα = Kα with K ≥ 1 is the constant in (2.6).
We start by establishing uniform-in-time estimates when initial data is small.

Lemma 2.2. Let α ≥ 1/2 and δ ∈ (0, 1). If u0 ∈ D(Aα) satisfies

|Aαu0| < δ

2Cα
, (2.7)

then the regular solution u(t) of (1.4) and (1.5) exists on [0,∞) and satisfies u(t) ∈ D(Aβ)
for all β > 0 and t > 0. Moreover, for any σ > 0

|u(t)|α,σ ≤ e−(1−δ)t|Aαu0| ∀ t ≥ 4σ/δ. (2.8)

Proof. The following calculations are formal but can be made rigorous by using solutions of
the Galerkin approximations of (1.4), and the standard passage to the limit, see e.g. [25].

Let ε > 0, and ϕ ∈ C∞(R) such that ϕ(t) = 0 for t ≤ 0, ϕ(t) > 0 for t > 0, ϕ(t) = σ for
t ≥ 2σ/ε, and 0 < ϕ′(t) ≤ ε for t ∈ (0, 2σ/ε). Then

d

dt
(AαeϕA

1/2

u) + Aα+1eϕA
1/2

u = −AαeϕA
1/2

B(u, u) + ϕ′(t)Aα+1/2eϕA
1/2

u.

Taking the inner product of the equation with AαeϕA
1/2

u, we have

1

2

d

dt
|AαeϕA

1/2

u|2 + |Aα+1/2eϕA
1/2

u|2

= −〈AαeϕA
1/2

B(u, u), AαeϕA
1/2

u〉+ ϕ′(t)〈Aα+1/2eϕA
1/2

u,AαeϕA
1/2

u〉.
Applying Cauchy-Schwarz inequality and (2.6) to the terms on then right-hand side yields

1

2

d

dt
|u|2α,ϕ + |A1/2u|2α,ϕ ≤ Cα|A1/2u|2α,ϕ|u|α,ϕ + ϕ′(t)|A1/2u|α,ϕ|u|α,ϕ. (2.9)

Note that Cα ≥ 4. Then

1

2

d

dt
|u|2α,ϕ + |A1/2u|2α,ϕ ≤ (Cα|u|α,ϕ + ε)|A1/2u|2α,ϕ. (2.10)

Letting ε = δ/2, we obtain

1

2

d

dt
|u|2α,ϕ + (1− δ

2
− Cα|u|α,ϕ)|A1/2u|2α,ϕ ≤ 0. (2.11)

We claim that
Cα|u(t)|α,ϕ(t) ≤ δ/2 ∀t ≥ 0. (2.12)

Suppose (2.12) is not true, then by (2.7), there is T ∈ (0,∞) such that

Cα|u(t)|α,ϕ(t) < δ/2 ∀t ∈ [0, T ), (2.13)

Cα|u(T )|α,ϕ(T ) = δ/2. (2.14)

By (2.11) and (2.13), we have for t ∈ (0, T ) that

1

2

d

dt
|u|2α,ϕ + (1− δ)|A1/2u|2α,ϕ ≤ 0 ∀t ∈ (0, T ). (2.15)

Hence
|u(t)|α,ϕ(t) ≤ |u0|α,ϕ(0) = |Aαu0| ∀t ∈ (0, T ).

Passing t ր T gives

|u(T )|α,ϕ(T ) ≤ |Aαu0| < δ

2Cα
,
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which contradicts (2.14). Therefore, (2.12) holds true. Consequently, u(t) is a regular
solution on [0,∞).

For t > 0, we have ϕ(t) > 0, then for any β > 0, applying inequality (2.3) with α = β and
σ = ϕ(t), we have u(t) ∈ D(Aβ).

As a consequence of (2.12), differential inequality (2.15) now holds for all t > 0. By
Poincaré’s inequality,

1

2

d

dt
|u|2α,ϕ + (1− δ)|u|2α,ϕ ≤ 0 ∀t > 0.

Then by Gronwall’s inequality,

|u(t)|2α,ϕ(t) ≤ e−2(1−δ)t|u0|2α,ϕ(0) = e−2(1−δ)t|Aαu0|2 ∀t > 0. (2.16)

When t ≥ 4σ/δ, ϕ(t) = σ, then we obtain (2.8) from (2.16). �

Next, we improve the exponential decay rate in (2.8) from e−(1−δ)t to e−t.

Theorem 2.3. Assume α ≥ 1/2 and u0 ∈ D(Aα+1/2) satisfy

|Aα+1/2u0| < 1

12Cα+1/2

. (2.17)

Let u(t) be the regular solution of (1.4) and (1.5) on [0,∞). Then one has for any σ > 0
and all t ≥ 24σ that

|u(t)|α,σ ≤
√
2e4σ|Aα+1/2u0|e−t (2.18)

and, consequently,

|u(t)|α,σ ≤ e4σ

6
√
2Cα+1/2

e−t. (2.19)

Proof. Take δ = 1/6, then by (2.17), Cα+1/2|Aα+1/2u0| < δ/2, thus condition (2.7) is met for
α → α + 1/2. We apply in Lemma 2.2 for α → α + 1/2. Then the regular solution u(t)

exists on [0,∞). For t ≥ t0
def
= 4σ/δ = 24σ, estimate (2.8) for α → α + 1/2 gives

|A1/2u(t)|α,σ = |u(t)|α+1/2,σ ≤ e−5t/6‖Aαu0‖. (2.20)

For t ≥ t0, we have ϕ′(t) = 0, and, by combining (2.9) with (2.20), obtain

1

2

d

dt
|u|2α,σ + |A1/2u|2α,σ ≤ Cα|A1/2u|2α,σ|u|α,σ ≤ Cα|A1/2u|3α,σ ≤ Cαe

−5t/2‖Aαu0‖3.

By Poincaré’s and Gronwall’s inequalities, we have for t ≥ t0 that

|u(t)|2α,σ ≤ e−2(t−t0)|u(t0)|2α,σ + 4Cαe
−2t‖Aαu0‖3.

Estimating the first norm on the right-hand side by (2.20) with t = t0 yields

|u(t)|2α,σ ≤ e−2(t−t0)e−5t0/3‖Aαu0‖2 + 4Cαe
−2t‖Aαu0‖3

≤ e−2t(e8σ + 4Cα‖Aαu0‖)‖Aαu0‖2.
Using (2.17) to estimate ‖Aαu0‖ between the parentheses, we obtain

|u(t)|2α,σ ≤ e−2t(e8σ + 1/3)‖Aαu0‖2 ≤ e−2t2e8σ‖Aαu0‖2,
and inequality (2.18) follows. Using (2.17) again in (2.18) yields (2.19). �

The following gives estimates for the Gevrey norms of Leray-Hopf weak solutions with the
optimal exponential decay for large time.
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Theorem 2.4. Let u0 ∈ H and u(t) be a Leray-Hopf weak solution of (1.4) and (1.5) on
[0,∞). For any σ > 0, there exist T = T (σ, |u0|) > 0 and Dσ = Dσ(|u0|) such that

|u(t)|1/2,σ+1 ≤ Dσe
−t ∀t ≥ T. (2.21)

Consequently, for any α ≥ 0 there is Dα,σ = Dα,σ(|u0|) > 0 such that

|u(t)|α+1/2,σ ≤ Dα,σe
−t ∀ t ≥ T. (2.22)

The values of T , Dσ and Dα,σ can be explicitly specified as in (2.32), (2.33) and (2.31).

Proof. Taking inner product of (1.4) with u and using the orthogonality property

〈B(u, u), u〉 = 0

we have
1

2

d

dt
|u|2 + ‖u‖2 = 0. (2.23)

Then for t ≥ 0
|u(t)|2 ≤ e−2t|u0|2,

and for any T0 ≥ 0, by integrating (2.23) from T0 to T0 + 1, we have
∫ T0+1

T0

‖u(τ)‖2dτ ≤ 1

2
|u(T0)|2 ≤

e−2T0

2
|u0|2. (2.24)

The above calculations are valid for regular solutions. For Leray-Hopf weak solutions, the
energy inequality (2.24) holds for T0 = 0 and also almost all T0 ∈ (0,∞).

Take T0 ≥ 0 such that (2.24) holds and

(ln(4C1/2|u0|))+ < T0 < (ln(4C1/2|u0|))+ + 1, (2.25)

which implies
e−T0 |u0| < 1/(4C1/2). (2.26)

By (2.24), there exists t∗ ∈ (T0, T0 + 1) such that

|A1/2u(t∗)| < e−T0 |u0| < 1/(4C1/2). (2.27)

Applying Lemma 2.2 to σ = 1, α = δ = 1/2 with initial time t∗, then (2.8) implies for all

t ≥ T1
def
= t∗ + 8 that

|u(t)|1/2,1 ≤ |A1/2u(t∗)|e−
1

2
(t−t∗) ≤ e−T0 |u0|e 1

2
(−t+T0+1) = |u0|e 1

2
(−t−T0+1).

Then for all t ≥ T1,

|Au(t)| = |A1/2e−A1/2(

A1/2eA
1/2

u(t)
)

|
by (2.3) ≤ e−1|u(t)|1/2,1 ≤ e−1|u0|e(−t−T0+1)/2 = |u0|e−(t+T0+1)/2. (2.28)

Let T2 ≥ T1 such that
|u0|e−(T2+T0+1)/2 < 1/(12C1). (2.29)

Then (2.28) gives
|Au(T2)| < 1/(12C1).

Applying Theorem 2.3 to initial time T2, α = 1/2 and σ → σ + 1, we have from (2.19)

that if t ≥ T
def
= T2 + 24(σ + 1) then

|u(t)|1/2,σ+1 ≤ e−(t−T2)
e4(σ+1)

6
√
2C1

=
eT2+4(σ+1)

6
√
2C1

e−t.
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Thus, we obtain (2.21) with

Dσ =
eT2+4σ+4

6
√
2C1

. (2.30)

Using (2.3) again, we have for all t ≥ T that

|u(t)|α+1/2,σ = |Aαe−A1/2(

A1/2e(σ+1)A1/2

u(t)
)

| ≤ (2α/e)2α|u(t)|1/2,σ+1 ≤ (2α/e)2αDσe
−t,

which proves (2.22) with
Dα,σ = (2α/e)2αDσ. (2.31)

For dependence of T and Dσ on σ and |u0|, we note from (2.25) that

t∗ < T0 + 1 < (ln(4C1/2|u0|))+ + 2.

Then T1 satisfies

T1 = t∗ + 8 < 10 + (ln(4C1/2|u0|))+ ≤ 10 + (ln(12C1|u0|))+.
For T2, we need T2 ≥ T1 and, from (2.29),

T2 > 2(ln(12C1|u0|))+ − T0 − 1.

Note that the last lower bound satisfies

2(ln(12C1|u0|))+ − T0 − 1 < 2(ln(12C1|u0|))+ − (ln(4C1/2|u0|))+ − 1

< 2(ln(12C1|u0|))+ − (ln(12C1|u0|))+ = (ln(12C1|u0|))+.
We select T2 = 10 + (ln(12C1|u0|))+. Consequently,

T = T2 + 24(σ + 1) = 24σ + 34 + (ln(12C1|u0|))+, (2.32)

and, from (2.30),

Dσ =
e4σ+14 max{12C1|u0|, 1}

6
√
2C1

=
√
2e4σ+14 max{|u0|, 1/(12C1)}. (2.33)

The dependence of Dα,σ on α, σ, |u0| is clear from (2.31) and (2.33). The proof is complete.
�

3. Proof of the main theorem

We prove Theorem 1.1 in this section. Let u(t) be a Leray-Hopf weak solution of (1.4).
Let σ > 0 be fixed. Since the asymptotic expansion (1.6) only involves the asymptotic

behavior of u(t) as t → ∞, then by Theorem 2.4 and shifting the initial time to T = T (σ, |u0|),
which is independent of α, we assume, at the moment, that u(t) ∈ G1/2,σ+1 for all t ∈ [0,∞)
and satisfies NSE on [0,∞) in Gα,σ for all α > 0. By (2.22), for any α > 0 and t ≥ 0,

|u(t)|α+1/2,σ ≤ Mαe
−t (3.1)

and, consequently by (2.6),
|B(u(t), u(t))|α,σ ≤ Bαe

−2t, (3.2)

where Mα and Bα are positive constants depending on α, σ and |u0|.
Lemma 3.1. For all N ∈ N, the following statement (TN) holds true.

Statement (TN ). There are polynomials qn(t) in t, for 1 ≤ n ≤ N , with values in V such

that the functions un(t)
def
= e−ntqn(t) for 1 ≤ n ≤ N have the following properties.
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(i) The remainder vN(t) = u(t)−
∑N

n=1 un(t) satisfies for any α > 0 that
∣

∣vN(t)
∣

∣

α,σ
= O(e−(N+ε∗)t) as t → ∞ with ε∗ = 1/2. (3.3)

(ii) There is ξ1 ∈ R1H such that q1(t) = ξ1 for all t ∈ R.
(iii) For 2 ≤ n ≤ N ,

d

dt
un + Aun +

∑

1≤m,j≤n−1

m+j=n

B(um, uj) = 0 ∀t ∈ R. (3.4)

Proof. First, we make the following remarks on Statement (TN ):
(a) Obviously, u′

1(t) + u1(t) = 0, and since u1(t) ∈ R1H , we have u1 = Au1 and hence

d

dt
u1 + Au1 = 0 ∀t ∈ R. (3.5)

(b) Equation (3.4) is posed on a finite-dimensional space. Hence, it is a system of ordinary
differential equations and no norm needs to be indicated.

Now we prove (TN ) by induction in N .

I. Base case (N = 1). We construct a constant ξ1 ∈ R1H such that v1
def
= u − u1 with

u1
def
= ξ1e

−t satisfies (3.3). As we remarked above, clearly, (3.5) is satisfied in this situation.
To construct ξ1, we apply the projection R1 to equation (1.4) to get

d

dt
R1u(t) +R1u(t) +R1B(u(t), u(t)) = 0.

Then by Gronwall’s inequality

etR1u(t) = R1u
0 −

∫ t

0

eτR1B(u(τ), u(τ)) dτ. (3.6)

Thanks to (3.2), the improper integral
∫∞

0
eτR1B(u(τ), u(τ))dτ exists and belongs to R1H .

ξ1
def
= lim

t→∞
etR1u(t) = R1u

0 −
∫ ∞

0

eτR1B(u(τ), u(τ)) dτ belongs in R1H. (3.7)

Solving for R1u
0, we may then rewrite (3.6) as

etR1u(t) = ξ1 +

∫ ∞

t

eτR1B(u(τ), u(τ)) dτ. (3.8)

Define the constant polynomial q1(t)
def
= ξ1. Then from (3.2) and (3.8), we have for t > 0

that

|etR1u(t)− q1(t)|α,σ ≤
∫ ∞

t

eτ |R1B(u(τ), u(τ))|α,σ dτ

=

∫ ∞

t

eτeσ|B(u(τ), u(τ))| dτ ≤ C

∫ ∞

t

eτe−2τ dτ ≤ Ce−t

for some C > 0. Multiplying the preceding inequality by e−t gives

|R1u(t)− u1(t)|α,σ = O(e−2t), where u1(t)
def
= e−tq1(t). (3.9)

Observe that
v1 = u− u1 = (I − R1)u+ (R1u− u1).
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Then, in light of (3.9), to show (3.3), it suffices to consider (I − R1)u.
Applying the complementary projection (I − R1) to (1.4) gives

d

dt
(I − R1)u+ A(I − R1)u+ (I −R1)B(u, u) = 0.

Taking the scalar product of this equation with A2αe2σA
1/2

u, applying inequalities (3.1) and
(3.2), we obtain for all t > 0 that

1

2

d

dt
|AαeσA

1/2

(I −R1)u|2+ ‖AαeσA
1/2

(I −R1)u‖2 ≤ |〈AαeσA
1/2

B(u, u), AαeσA
1/2

(I −R1)u〉|

≤ |AαeσA
1/2

B(u, u)| · |AαeσA
1/2

u| ≤ Dαe
−3t

for Dα = BαMα > 0. Since ‖AαeσA
1/2

(I − R1)u‖2 ≥ 2|AαeσA
1/2

(I − R1)u|2, it follows that
1

2

d

dt
|(I −R1)u|2α,σ + 2|(I − R1)u|2α,σ ≤ Dαe

−3t ∀ t > 0.

By Gronwall’s inequality

|(I − R1)u|2α,σ ≤ e−4t|(I − R1)u
0|2α,σ + 2Dαe

−3t ∀t > 0.

Therefore,
|(I − R1)u(t)|α,σ = O(e−3t/2) as t → ∞. (3.10)

We conclude from (3.9) and (3.10) that |v1(t)|α,σ = O(e−3t/2), thus proving statement
(T1).

II. Induction step. Let N ≥ 1 be any natural number. Suppose that the statement (TN)
is true.

Let qn(t), un(t), vN(t) and ε∗ be as in (TN ). Denote ūN(t) =
∑N

n=1 un(t).
Then vN (t) = u(t)− ūN(t), and for any β > 0

|vN(t)|β,σ = O(e−(N+ε∗)t) as t → ∞. (3.11)

Also, since qj ∈ V, there are sj ∈ N such that qj ∈ PsjH for j = 1, . . . , N . Thus, there
exists sN+1 > max{sn : 1 ≤ n ≤ N} such that B(qm(t), qj(t)) are polynomials of t valued
in PsN+1

H for all 1 ≤ m, j ≤ N . Lastly, let us fix α ≥ 1/2. We organize the induction step
into several parts.

II.1. Evolution of vN . From equation (1.4) for u(t), and equations (3.5) and (3.4) for un(t)’s
with 1 ≤ n ≤ N , we have

d

dt
vN + AvN = −B(u, u) +

∑

m+j≤N

B(uk, uj)

= −B(u, u) + B(ūN , ūN)−
∑

1≤m,j≤N

m+j>N

B(um, uj)

= −B(vN , u)− B(ūN , vN)−
∑

m+j=N+1

B(um, uj)−
∑

1≤m,j≤N

m+j≥N+2

B(um, uj).

Therefore,
d

dt
vN + AvN +

∑

m+j=N+1

B(um, uj) = hN , (3.12)
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where

hN (t) = −B(vN , u)− B(ūN , vN)−
∑

1≤m,j≤N

m+j≥N+2

B(um, uj). (3.13)

II.2. Bounds for hN . We claim that

hN (t) = Oα,σ(e
−(N+1+ε∗)t). (3.14)

Hence, there exist Tα > 0 and HN,α > 0 such that

|hN(t)|α,σ ≤ HN,αe
−(N+1+ε∗)t, ∀t ≥ Tα. (3.15)

First, observe that by the induction hypothesis, (3.11) is satisfied with β = α + 1/2, so
that

vN(t) = Oα+1/2,σ(e
−(N+ε∗)t). (3.16)

Then, by inequality (2.6) and the facts (3.1), (3.16), we may assert that

B(vN (t), u(t)) = Oα,σ(e
−(N+1+ε∗)t). (3.17)

On the other hand, for 1 ≤ n ≤ N , by (2.3) we have

un(t) = qn(t)e
−nt = Oα+1/2,σ(e

−(n−δ∗)t) with δ∗ = 1/4. (3.18)

In particular, un(t) = Oα+1/2,σ(e
−t) for 2 ≤ n ≤ N . Since, u1(t) is already Oα+1/2,σ(e

−t),
then

ūN(t) = Oα+1/2,σ(e
−t). (3.19)

Applying (2.6) again and using (3.16), (3.19) yield

B(ūN(t), vN (t)) = Oα,σ(e
−(N+1+ε∗)t). (3.20)

Lastly, observe that by (3.18) and inequality (2.6) we have B(um, uj) = Oα,σ(e
−(m+j−2δ∗)t).

Thus, for m+ j ≥ N + 2 we have

B(um, uj) = Oα,σ(e
−(N+2−1/2)t) = Oα,σ(e

−(N+1+ε∗)t). (3.21)

Combining definition (3.13) of hN with (3.17), (3.20) and (3.21) gives the desired (3.14).

II.3. Construction of qN+1. Observe that

vN =
∑

k≤N

RkvN +RN+1vN +
∑

k≥N+2

RkvN .

By (3.12), we have

d

dt
RkvN + kRkvN +

∑

m+j=N+1

RkB(um, uj) = RkhN ,

or equivalently, by definition of uj we have

d

dt
RkvN + kRkvN +

∑

m+j=N+1

e−(N+1)tRkB(qm, qj) = RkhN . (3.22)

We will extract polynomials associated with the correct exponential decay from each regime:
k ≤ N , k = N + 1, and k ≥ N + 2. In each case, we show that their error from vN are of
the desired order, i.e., (3.3).
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Case k = N + 1. By (3.22), we have

d

dt
RN+1vN + (N + 1)RN+1vN +

∑

m+j=N+1

e−(N+1)tRN+1B(qm, qj) = RN+1hN(t).

With the integrating factor e(N+1)t, we obtain

e(N+1)tRN+1vN(t)

= RN+1vN (0)−
∑

m+j=N+1

∫ t

0

RN+1B(qm(τ), qj(τ)) dτ +

∫ t

0

e(N+1)τhN (τ) dτ.
(3.23)

By (3.14),

e(N+1)tRN+1hN (t) = Oα,σ(e
−ε∗t). (3.24)

This and the fact RN+1hN (t) is continuous on [0,∞) imply

ξN+1
def
= RN+1vN(0) +

∫ ∞

0

e(N+1)τRN+1hN(τ) dτ exists and belongs to RN+1H. (3.25)

Thus, let us define the polynomial

pN+1,N+1(t)
def
= ξN+1 −

∑

m+j=N+1

∫ t

0

RN+1B(qm(τ), qj(τ)) dτ. (3.26)

Then by (3.24) we have

e(N+1)tRN+1vN(t)− pN+1,N+1(t) = −
∫ ∞

t

e(N+1)τRN+1hN(τ)dτ = Oα,σ(e
−ε∗t),

and hence, that

RN+1vN(t)− e−(N+1)tpN+1,N+1(t) = Oα,σ(e
−(N+1+ε∗)t). (3.27)

Case k ≤ N . Firstly, with the integrating factor ekt and the fact, by (3.16),

lim
t→∞

ektRkvN (t) = 0,

we obtain from (3.22) that

ektRkvN (t) =

∫ ∞

t

e(k−N−1)τ
(

∑

m+j=N+1

RkB(qm, qj)
)

dτ −
∫ ∞

t

ekτRkhN(τ))dτ. (3.28)

Observe that by property (3.15), we estimate for large t that
∣

∣

∣

∫ ∞

t

ekτRkhN(τ)dτ
∣

∣

∣

α,σ
≤ HN,α

∫ ∞

t

e−(N+1+ε∗−k)τdτ =
HN,αe

−(N+1+ε∗−k)t

N + 1 + ε∗ − k

≤ 2HN,αe
−(N+1+ε∗−k)t. (3.29)

An elementary calculation shows that for any β > 0 and integer d ≥ 0 one has
∫ ∞

t

τde−βτ dτ = e−βt
d

∑

n=0

d!

n!βd+1−n
tn.

Thus

pN+1,k(t)
def
= e(N+1−k)t

∑

m+j=N+1

∫ ∞

t

e−(N+1−k)τRkB(qm(τ), qj(τ)) dτ (3.30)
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defines a polynomial in t, valued in RkH .
Returning then to (3.28), we apply (3.29) and (3.30) to derive for large t that

|ektRkvN (t)− e(k−N−1)tpN+1,k(t)|α,σ ≤ 2HN,αe
−(N+1+ε∗−k)t.

Multiplying this inequality by e−kt gives

RkvN(t)− e−(N+1)tpN+1,k(t) = Oα,σ(e
−(N+1+ε∗)t).

Summing this identity over 1 ≤ k ≤ N we obtain

N
∑

k=1

RkvN(t)−
N
∑

k=1

e−(N+1)tpN+1,k(t) = Oα,σ(e
−(N+1+ε∗)t). (3.31)

Case k ≥ N + 2. Let Tα be as in (3.15). For t > Tα, we have from (3.22) that

RkvN(t) = e−k(t−Tα)RkvN(Tα)

−
∑

m+j=N+1

e−kt

∫ t

Tα

e(k−(N+1))τRkB(qm(τ), qj(τ)) dτ +

∫ t

Tα

e−k(t−τ)RkhN (τ)dτ.
(3.32)

Consider the first integral on the right-hand side of (3.32). An elementary calculation
shows that for any integer d ≥ 0 and β ∈ R nonzero we have

∫

tdeβt dt = eβt
d

∑

n=0

(−1)d−nd!

n!βd+1−n
tn + const.

This identity and the fact that each B(qm(τ), qj(τ)) is a polynomial of τ imply that there is
a polynomial, pN+1,k(t), in t, valued in RkH such that

−
∫ t

Tα

e(k−(N+1))τ
(

∑

m+j=N+1

RkB(qm, qj)
)

dτ

= e(k−(N+1))tpN+1,k(t)− e(k−(N+1))TαpN+1,k(Tα). (3.33)

Then (3.32) gives

RkvN(t) = e−k(t−Tα)RkvN(Tα)

+
(

e−(N+1)tpN+1,k(t)− e−k(t−Tα)−(N+1)TαpN+1,k(Tα)
)

+

∫ t

Tα

e−k(t−τ)RkhN(τ)dτ. (3.34)

It follows from (3.34) and (3.15) that

|RkvN (t)− e−(N+1)tpN+1,k(t)|α,σ

≤ e−k(t−Tα)
(

|RkvN(Tα)|α,σ + e−(N+1)Tα |pN+1,k(Tα)|α,σ
)

+

∫ t

Tα

e−k(t−τ)|hN(τ)|α,σdτ

≤ e−(N+2)(t−Tα)
(

|RkvN(Tα)|α,σ + |pN+1,k(Tα)|α,σ
)

+

∫ t

Tα

e−k(t−τ)HN,αe
−(N+1+ε∗)τdτ.
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Elementary calculations give

|RkvN(t)− e−(N+1)tpN+1,k(t)|α,σ ≤ e−(N+2)(t−Tα)(|RkvN (Tα)|α,σ + |pN+1,k(Tα)|α,σ)

+
HN,αe

−(N+1+ε∗)t

k − (N + 1 + ε∗)
.

Squaring the preceding inequality, using the 3-term Cauchy-Schwarz inequality for the
right-hand side, and then summing up in k yield

∑

k≥N+2

|RkvN (t)− e−(N+1)tpN+1,k(t)|2α,σ ≤ 3e−2(N+2)(t−Tα)

·
(

∑

k≥N+2

|RkvN (Tα)|2α,σ +
∑

N+2≤k≤sN+1

|pN+1,k(Tα)|2α,σ
)

+
∑

k≥N+2

3H2
N,αe

−2(N+1+ε∗)t

(k − (N + 1 + ε∗))2

≤ e−2(N+2)tE2
1 + e−2(N+1+ε∗)tE2

2 , (3.35)

where

E2
1 = 3e2(N+2)Tα

(

|vN(Tα)|2α,σ +
∑

N+2≤k≤sN+1

|pN+1,k(Tα)|2α,σ
)

,

E2
2 =

∑

k≥N+2

3H2
N,α

(k − (N + 1 + ε∗))2
= 3H2

N,α

∑

k≥1

1

(k − 1/2)2
.

Definition of qN+1. Finally, we define the polynomial

qN+1(t)
def
=

∑

1≤k≤sN+1

pN+1,k(t), that is, RkqN+1(t) = pN+1,k(t) for k = 1, . . . , sN+1, (3.36)

where pN+1,k(t) are polynomials defined in (3.26), (3.30) and (3.33).
Therefore, with qN+1(t) defined as in (3.36), properties (3.27) and (3.31) can be summa-

rized as

|PN+1(vN(t)− e−(N+1)tqN+1(t))|α,σ = O(e−(N+1+ε∗)t), (3.37)

while (3.35) can be equivalently expressed as

|(I − PN+1)(vN(t)− e−(N+1)tqN+1(t))|2α,σ = O(e−2(N+1+ε∗)t). (3.38)

Let uN+1(t)
def
= e−(N+1)tqN+1(t) ∈ PsN+1

H and vN+1
def
= vN − uN+1. Then (3.38) and (3.37)

imply

|vN+1(t)|α,σ = O(e−(N+1+ε∗)t). (3.39)

Since vN+1 = u−
∑N+1

n=1 un, inequality (3.39) proves (3.3) for N + 1.

II.4. Evolution of uN+1. To complete the induction step, it remains to show that uN+1

satisfies the ODE (3.4). Observe that we need only to show that the equation holds in the
finite dimensional space PsN+1

H , or equivalently, in RkH for 1 ≤ k ≤ sN+1.
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For 1 ≤ k ≤ N and N + 2 ≤ k ≤ sN+1 we have from (3.30) and (3.33), respectively, that

d

dt
RkuN+1(t) + ARkuN+1(t) =

d

dt
RkuN+1(t) + kRkuN+1(t)

= e−kt d

dt

(

ektRkuN+1(t)
)

= e−kt d

dt

(

e(k−N−1)tpN+1,k(t)
)

= e−kt
[

− e(k−N−1)t
∑

m+j=N+1

RkB(qm(t), qj(t))
]

= −
∑

m+j=N+1

RkB(um(t), uj(t)).

For k = N + 1, we have from (3.26) that

d

dt
RN+1uN+1(t) =

d

dt

(

e−(N+1)tpN+1,N+1(t)
)

= −(N + 1)e−(N+1)tpN+1,N+1(t)− e−(N+1)t
∑

m+j=N+1

RN+1B(qm(t), qj(t)

= −ARN+1uN+1(t)−
∑

m+j=N+1

RN+1B(um(t), uj(t)).

Hence

d

dt
RkuN+1 + ARkuN+1 +

∑

m+j=N+1

RkB(um, uj) = 0

holds for each 1 ≤ k ≤ sN+1 and therefore, that (3.4) holds for uN+1 in PsN+1
H .

Since (3.3) and (3.4) hold for n = N + 1, this completes the induction step. Thus, (TN)
is true for all N ∈ N. In concluding this proof, let us remark that in the induction step, the
polynomials, qn(t), n = 1, . . . , N appearing in (TN+1) are precisely those from (TN). Hence,
the polynomials qn(t)’s exist for all n ∈ N. �

We are ready to prove the main result.

Proof of Theorem 1.1. Let u(t) be a Leray-Hopf weak solution. For any σ > 0, Theorem 2.4
and Lemma 3.1 imply that there is Tσ > 0 such that u(Tσ) ∈ R, solution u(t) is regular on

[Tσ,∞) and there are polynomials Qσ
n(t) for all n ∈ N such that uσ(t)

def
= u(Tσ + t) satisfies

for each N ≥ 1 and all α > 0 that the expansion

uσ(t) ∼
∞
∑

n=1

Qσ
n(t)e

−nt as t → ∞ holds in Gα,σ (3.40)

with
∣

∣

∣
uσ(t)−

N
∑

n=1

Qσ
n(t)e

−nt
∣

∣

∣

α,σ
= O(e−(N+1/2)t) as t → ∞.

By defining

qσn(t) = Qσ
n(t− Tσ)e

nTσ , (3.41)

we have for any N ≥ 1 and α > 0 that

∣

∣

∣
u(t)−

N
∑

n=1

qσn(t)e
−nt

∣

∣

∣

α,σ
=

∣

∣

∣
uσ(t− Tσ)−

N
∑

n=1

Qσ
n(t− Tσ)e

−n(t−Tσ)
∣

∣

∣

α,σ

= O(e−(N+1/2)(t−Tσ )) = O(e−(N+1/2)t) as t → ∞.

(3.42)
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It remains to prove that qσn(t) is independent of σ. Suppose σ′ 6= σ and Tσ′ ≥ Tσ. Then
applying (3.40) to σ′ in place of σ gives

u(Tσ′ + t) ∼
∞
∑

n=1

Qσ′

n (t)e
−nt (3.43)

and, at the same time, from (3.40)

u(Tσ′ + t) = uσ(t+ Tσ′ − Tσ) ∼
∞
∑

n=1

Qσ
n(t+ Tσ′ − Tσ)e

−n(t+Tσ′−Tσ)

=

∞
∑

n=1

Qσ
n(t+ Tσ′ − Tσ)e

−n(Tσ′−Tσ)e−nt.

(3.44)

Since both (3.43) and (3.44) can be seen as asymptotic expansions in H for the regular
solution u(Tσ′ + t) with t ≥ 0, by the expansion’s uniqueness, we have

Qσ′

n (t) = Qσ
n(t+ Tσ′ − Tσ)e

−n(Tσ′−Tσ). (3.45)

Then it follows definition (3.41) and relation (3.45) that

qσ
′

n (t) = Qσ′

n (t− Tσ′)enTσ′ = Qσ
n(t− Tσ)e

−n(Tσ′−Tσ)enTσ′ = Qσ
n(t− Tσ)e

nTσ = qσn(t).

For n ≥ 1, let qn(t) = q1n(t) which is defined by (3.41) with σ = 1. Then qσn = qn for all
n ≥ 1 and σ > 0. Therefore (3.42) holds for all N ≥ 1 and α, σ > 0. Note for all N ≥ 1 and
α, σ > 0 that, with the same notation used in Lemma 3.1, as t → ∞
vN (t) = qN+1(t)e

−(N+1)t + vN+1(t) = Oα,σ(e
−(N+ε)t) +Oα,σ(e

−(N+3/2)t) = Oα,σ(e
−(N+ε)t),

for any ε ∈ (0, 1), which yields (1.8). The proof of Theorem 1.1 is complete. �

Remark 3.2. By combining this paper’s method with those in [9–11], we can study the
associated normal form to the expansion (1.6), and its solutions in the Gevrey spaces. This
study will be pursued in a subsequent work.

Appendix A.

Proof of Lemma 2.1. The proof follows Foias-Temam [16] and the Sobolev-norm version in
[11, Lemma 2.3]. Let u, v, w be H with

u =
∑

k 6=0

û(k)e−ik·x, v =
∑

k 6=0

v̂(k)e−ik·x, w =
∑

k 6=0

ŵ(k)e−ik·x.

Define the scalar functions

u∗ =
∑

k 6=0

|û(k)|e−ik·x, v∗ =
∑

k 6=0

|v̂(k)|e−ik·x, w∗ =
∑

k 6=0

|ŵ(k)|e−ik·x. (A.1)

Then
|Aαu| = |(−∆)αu∗| for all α ≥ 0. (A.2)

We have

〈AαeσA
1/2

B(u, v), w〉 = 8π3
∑

k+l+m=0

|m|2αeσ|m|(û(k) · l) (v̂(l) · ŵ(m)).

Since
|m|2α = |k+ l|2α ≤ 22α(|k|2α + |l|2α) and eσ|m| ≤ eσ|k|eσ|l|,
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it follows that

|〈AαeσA
1/2

B(u, v), w〉| ≤ 8π34α
∑

k+l+m=0

|k|2αeσ|k||û(k)| · eσ|l||l| · |v̂(l)||ŵ(m)|

+ 8π34α
∑

k+l+m=0

eσ|k||û(k)| · |l|2α+1eσ|l| · |v̂(l)||ŵ(m)|.

Rewriting the last inequality’s right-hand side in terms of u∗, v∗ and w∗ gives

|〈AαeσA
1/2

B(u, v), w〉| ≤ 8π34α
∣

∣

∣

∣

∫

Ω

((−∆)αeσA
1/2

u∗) · ((−∆)1/2eσA
1/2

v∗) · w∗ dx

∣

∣

∣

∣

+ 8π34α
∣

∣

∣

∣

∫

Ω

(eσA
1/2

u∗) · ((−∆)α+1/2eσA
1/2

v∗) · w∗ dx

∣

∣

∣

∣

def
= 8π34αI1 + 8π34αI2. (A.3)

We recall the Sobolev, interpolation, and Agmon inequalities for functions u∗, v∗, w∗ of
the form in (A.1). There are positive constants c1 and c2 such that

‖u∗‖L6(Ω) ≤ c1|(−∆)1/2u∗|,

‖u∗‖L3(Ω) ≤ c
1/2
1 |(−∆)1/4u∗|,

‖u∗‖L∞(Ω) ≤ c2|(−∆)1/2u∗|1/2|(−∆)u∗|1/2.
For I1 in (A.3), we apply Hölder’s inequality with powers 3, 6, and 2. Then by the above

interpolation and Sobolev inequalities, and relation (A.2), we obtain

I1 ≤ ‖(−∆)αeσA
1/2

u∗‖L3(Ω)‖(−∆)1/2eσA
1/2

v∗‖L6(Ω)|w∗|
≤ c

3/2
1 |(−∆)α+1/4eσA

1/2

u∗||(−∆)eσA
1/2

v∗||w∗|
≤ c

3/2
1 |Aα+1/4eσA

1/2

u||AeσA1/2

v||w|. (A.4)

Similarly, estimating I1 by Hölder’s inequality with powers 6, 3, 2, and then using interpo-
lation inequalities and the relation (A.2), we obtain

I1 ≤ ‖(−∆)αeσA
1/2

u∗‖L6(Ω)‖(−∆)1/2eσA
1/2

v∗‖L3(Ω)|w∗|
≤ c

3/2
1 |(−∆)α+1/2eσA

1/2

u∗||(−∆)3/4eσA
1/2

v∗||w∗|
≤ c

3/2
1 |Aα+1/2eσA

1/2

u||A3/4eσA
1/2

v||w|. (A.5)

For I2 in (A.3), applying the Hölder inequality and then using the Agmon inequality for
the embedding of D(A) into L∞(Ω)3, we obtain

I2 ≤ ‖eσA1/2

u∗‖L∞(Ω)|(−∆)α+1/2eσA
1/2

v∗||w∗|
≤ c2|(−∆)1/2eσA

1/2

u∗|1/2|(−∆)eσA
1/2

u∗|1/2 · |(−∆)α+1/2eσA
1/2

v∗||w∗|
≤ c2|A1/2eσA

1/2

u|1/2|AeσA1/2

u|1/2|Aα+1/2eσA
1/2

v||w|. (A.6)

Combining (A.3) with (A.6) and (A.4), resp. (A.5), yields (2.4), resp. (2.5) with

c∗ = 8π3max{c3/21 , c2}.
For α ≥ 1/2, it follows either (2.4) or (2.5) that

|AαeσA
1/2

B(u, v)| ≤ 2c∗4
α|Aα+1/2eσA

1/2

u| |Aα+1/2eσA
1/2

v|,
and, hence, we obtain (2.6). �
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