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REGULARITY PROPERTIES OF VISCOSITY SOLUTIONS

FOR FULLY NONLINEAR EQUATIONS ON THE MODEL

OF THE ANISOTROPIC ~p-LAPLACIAN

Françoise Demengel
Laboratoire AGM, UMR 8088, University of Cergy Pontoise, France

Abstract. This paper is devoted to some Lipschitz estimates between
sub-and super-solutions of Fully Nonlinear equations on the model of
the anisotropic ~p-Laplacian. In particular we derive from the results
enclosed that the continuous viscosity solutions for the equation∑N

1 ∂i(∂iu|pi−2∂iu) = f are Lipschitz continuous when
supi pi < infi pi + 1, where ~p =

∑
i piei.

1. Introduction

This paper is devoted to some Lipschitz estimates between sub- and
super-solutions for Fully Nonlinear Degenerate equations on the model of
the anisotropic ~p-Laplacian. Recall that the equation of the anisotropic ~p-
Laplacian is

i=N∑
i=1

∂i(∂iu|pi−2∂iu) = f

where all the pi are > 1 and f is given, with a regularity to be precised.
This equation has been extensively studied by many authors, with dif-

ferent purposes. If the existence of weak solutions can easily be obtained
by classical variational techniques, the regularity is far to be easy to study,
and surprisingly, even when the pi are > 2 and all equal to each others, the
Lipschitz regularity was not proved until a recent time. Let us recall some
of the results obtained in that case :

Using classical methods in the calculus of variations, equation

∆̃pu :=
∑
i

∂i(|∂iu|p−2∂iu) = f (1.1)

has solutions in W 1,p
loc , when for example f ∈ Lp

′

loc. When p < 2, Lipschitz
regularity is a consequence of the technics employed in [18].

AMS Subject Classifications: 35D40, 35J15, 35J70.
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When p > 2 things are more delicate. If f is sufficiently regular the
Lipschitz continuity is a direct consequence of the results in the paper of
Bousquet, Brasco and Julin in [10], about the widely degenerate equation

∑
i

∂i((|∂iu| − δi)p−1
+

∂iu

|∂iu|
) = f, (1.2)

where the δi are some given non negative numbers. In that paper, they
proved, completing in that way a previous result in [9], the local Lipschitz
regularity of the weak solutions of (1.2) under the following assumptions :

-Either N = 2, p ≥ 2 and f ∈ W 1,p′

loc - or N ≥ 3, p ≥ 4, and f ∈ W 1,∞
loc .

Of course these regularity assumptions on f , and the gap 2 < p < 4 when
N ≥ 3, are motivated by the difficulties linked to the presence of the δi. In
[15] I proved a local Lipschitz estimate between sub- and super-solutions for
equation (1.1), ie when δi = 0 in (1.2) for all i, under the hypothesis that
the right hand side is continuous. One of the consequences of this result is
the local Lipschitz continuity of the viscosity solutions when the right hand
side f is continuous and bounded, and the same result for weak solutions
when f ∈ L∞loc.

In [7] we extended these Lipschitz estimates for sub- and super-solutions
to some Fully Nonlinear Equations on the model of the pseudo p-Laplacian.
An example of such equation is

M±α (∇u,D2u) = f

where M+
α is the pseudo Pucci’s operator

M+
α (p,X) = Λtr((Θα(p)XΘα(p))+)− λtr((Θα(p)XΘα(p))−),

Θα(p) denotes the diagonal matrix with entries |pi|
α
2 , and 0 < λ < Λ, and

α ≥ 0 are some given numbers, while M−α (p,X) = −M+
α (p,−X). X+ and

X− denote the positive and negative parts of the symmetric matrix X.
When λ = Λ one recovers the pseudo (α+2)-Laplacian, while when α = 0,

M±0 are nothing else that the well known extremal Pucci’s operators.

We now turn to the case where the pi are different and all > 1, and to the
variational case, mainly to the case of equations of the form

N∑
1

∂i(ai(x)|∂iu|pi−2∂iu) = f (1.3)
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where the ai are supposed of the same constant sign, and in general Hölder
continuous.

A first step when studying regularity is to get the local boundedness of the
solutions, and surprinsingy, if the supremum of the pi is too large, this can
fail : let us cite to that purpose [20] and the paper of Marcellini [26] which
exhibits a counterexample to the local boundedness when ai = 1 for all i,
pi = 2 for i ≤ n− 1 and pn > 2n−1

n−3 . This critical value is confirmed by the

results obtained later : let us cite in a non exhaustive way [12], [27, 28], [8].
From all these papers it emanates in a first time that a sufficient condition
for a local minimizer to be locally bounded is that the supremum of the pi
be strictly less than the critical exponent p̄? defined by

(p̄)−1 =
1

n

n∑
1

1

pi
, p̄? =

np̄

n− p̄
.

Note that in the case where pi = 2 for i ≤ n − 1, the condition pn < p̄? is
exactly pn < 2n−1

n−3 . In a second time, this local boundedness is extended by

Fusco Sbordone in [19] to the case where sup pi = p̄?.
A second step for the regularity is the local higher integrability of the local

minimizers : In [16, 17] , Esposito -Leonetti-Mingione consider a large class
of functionals, including (1.3) . More recently some authors are interested
in the case of the systems, [5] [13, 14], and also in the further regularity C1,α

under conditions on the exponent q > 2 for the functionals
∫
|∇u|2 + |∂nu|q,

([1], [11]), see also [2] for other more regular functionals.

I want to point out that in the present paper we consider lower semi-
continuous (LSC) super-solutions and upper semi-continuous (USC) sub-
solutions, then in the case of solutions they are continuous.

We now state the precise assumptions on the Fully Nonlinear operators
that will be considered in this paper and we state our main result. Fix
αi ≥ 0, 1 ≤ i ≤ N , for any q ∈ RN , let Θ~α(q) be the diagonal matrix with

entries |qi|
αi
2 on the diagonal, and let X be a symmetric matrix.

Let S be the space of symmetric matrices on RN . In the sequel |x| =∑N
1 |xi|2, for x ∈ RN and for X ∈ S, |X| =

∑i=N
i=1 |λi(X)|, the λi(X) being

the eigenvalues of X. Let F be defined on RN × RN × S, continuous in all
its arguments, which satisfies F (x, 0,M) = F (x, p, 0) = 0 and such that :
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There exist 0 < λ < Λ, such that for any M ∈ S and N ∈ S, N ≥ 0, for
any x ∈ B(0, 1)

λtr(Θ~α(q)NΘ~α(q)) ≤ F (x, q,M +N)− F (x, q,M) ≤ Λtr(Θ~α(q)NΘ~α(q)).
(1.4)

There exist γF ∈]0, 1] and cγF > 0 such that for any (q,X) ∈ RN × S, for
all (x, y) ∈ B(0, 1)2

|F (x, q,X)− F (y, q,X)| ≤ cγF |x− y|
γF (

N∑
1

|qi|αi)|X|. (1.5)

There exists cF such that for all q, q′ ∈ (RN )2, x ∈ B(0, 1), and X ∈ S

|F (x, q,X)− F (x, q′, X)| ≤ cF (
N∑
1

||qi|αi − |q′i|αi |)|X|. (1.6)

We will also consider a first order term h which satisfy : h is continuous
on RN × RN and satisfies for some constant ch :

|h(x, q)| ≤ ch
∑
|qi|αi+1. (1.7)

We present some examples of operators that satisfy (1.4), (1.5), and (1.6)
:

-Suppose that L(x) is a Lipschitz matrix such that
√
λI ≤ L ≤

√
ΛI. Then

F (x, q,X) := tr(L(x)Θ~α(q)XΘ~α(q)L(x)),

satisfies the hypothesis above.
-For 0 < λ < Λ

M+
~α (q,X) = Λtr((Θ~α(q)XΘ~α(q))+)− λtr((Θ~α(q)XΘ~α(q))−)

= sup
λI≤A≤ΛI

tr(AΘ~α(q)XΘ~α(q)).

and

M−~α (q,X) = −M+
~α (q,−X).

These operators, denoted as the ~α Pucci’s operators, satisfy all the as-
sumptions above. The case where αi = 0 for all i reduces to the standard
extremizing uniformly elliptic operators. Observe also that for the pseudo
anisotropic ~p-Laplacian :

F (q,X) =
∑
i

(pi − 1)|qi|pi−2Xii (1.8)
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satisfies the previous assumptions with λ ≤ infi(pi−1),Λ ≥ supi(pi−1) and
αi = pi − 2 for all i.

-Suppose that a is some Lipschitz function such that a(x) ≥ ao > 0. Then

F (x, p,X) := a(x)M±~α (p,X)

satisfies all the assumptions before.
We now present the main result of this paper : Suppose that ᾱ = supαi,

and α = inf αi.

Theorem 1.1. Suppose that F is continuous, that F (x, p, 0) = F (x, 0, X) =
0, F satisfies (1.4), (1.5), (1.6), and that h satisfies (1.7). Suppose that
ᾱ < α + 1, and that 1 ≥ γF > ᾱ − α. Suppose that u is USC, bounded and
satisfies in B(0, 1)

F (x,∇u,D2u) + h(x,∇u) ≥ f,
that v is LSC, bounded and satisfies in B(0, 1)

F (x,∇v,D2v) + h(x,∇v) ≤ g,
and that f and g are continuous and bounded. Then for all r < 1, there
exists c depending on (r,N, |u|∞, |v|∞, |f |∞, |g|∞) and on the data linked to
the operator, (say (αi, λ,Λ, γF , cγF , cF , ch)), such that for all (x, y) ∈ B(0, r)2

u(x) ≤ v(y) + sup
B(0,1)

(u− v) + c|x− y|.

We intend by weak solution some solution which belongs to W 1,p
loc (B(0, 1)

and satisfies −
∑

i ∂i(∂iu|pi−2∂iu) = f in the distribution sense : Equiva-
lently u satisfies : for any ϕ ∈ D(B(0, 1))∑

i

∫
|∂iu|pi−2∂iu∂iϕ =

∫
fϕ.

As mentioned in (1.8), the Pseudo aniotropic ~p Laplacian satisfies the as-
sumptions in Theorem 1.1, and then

Corollary 1.2. Suppose that u is a weak, continuous solution in B(0, 1) of

−
∑
i

∂i(|∂iu|pi−2∂iu) = f,

that all the pi are ≥ 2, that f is continuous. Suppose that supi pi < infi pi+1.
Then for all r < 1, u is Lipschitz continuous inside B(0, r), with some
Lipschitz constant depending on (r, pi, N, |f |∞, |u|∞).
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The remainder of this paper is organized as follows : In Section 2 we
give some preliminary results, in Section 3 we prove Theorem 1.1 and its
corollary.

2. Preliminaries

We suppose in this section and the next one that ω is defined on R+,
continuous on zero, C2 on ]0, 1[ and such that ω(0) = 0, ω(s) > 0, for s >
0, ω′(s) > 1

2 , ω
′′(s) < 0 for s < 1. We define for some constant M > 1

g(x) = Mω(|x|).

Then

Dg(x) = Mω′(|x|) x
|x|

and

D2g(x) = M

(
(ω′′(|x|)− ω′(|x|)

|x|
)
x⊗ x
|x|2

+
ω′(|x|)
|x|

I

)
.

Taking ε̄ ≤ 1
1+4|D2g| and defining

H = D2g + 2ε̄(D2g)2, (2.1)

one easily sees that there exist 3
2 ≥ βH ≥

1
2 and γH ≤ 3

2 such that

H = M

(
(βHω

′′ − γH
ω′(|x|)
|x|

)
x⊗ x
|x|2

+ γH
ω′(|x|)
|x|

I

)
.

For αi ≥ 0 we define the diagonal matrix (Θ~α)ij(x) =
(
Mω′(|x|)|xi|

|x|

)αi
2
δji .

Then

(Θ~αHΘ~α)ij = M1+
αi+αj

2 (βHω
′′(|x|)− γH

ω′(|x|)
|x|

)

(
ω′(|x|)
|x|

)αi+αj
2 |xi|

αi
2 xi|xj |

αj
2 xj

|x|2

+ γHM
1+αi

(
ω′(|x|)
|x|

)αi+1

|xi|αiδji .

For x a vector in RN and for ε > 0 given, we define

I(x, ε) = {i ∈ [1, N ], |xi| ≥ |x|1+ε}.

Note that since there exists i such that |xi| ≥ |x|√
N

, as soon as |x| ≤ δ =

exp(− logN
2ε ), I(x, ε) 6= ∅.

We then have the following
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Proposition 2.1. Let ω, H, Θ~α as above. Let ᾱ = supαi, α = infi αi. For
all x 6= 0, |x| < 1, for any ε > 0 such that I(x, ε) 6= ∅, and such that

βHω
′′(|x|)(1−N |x|2ε)+γHN |x|2ε

ω′(|x|)
|x|

≤ βH
ω′′(|x|)

2
≤ ω′′(|x|)

4
< 0, (2.2)

then Θ~αH(x)Θ~α possesses at least one eigenvalue smaller than

2−3M1+α(ω′(|x|))αω′′(|x|)|x|εα. (2.3)

Proof. Let us define

w =
∑

i∈I(x,ε)

(
ω′(|x|)|xi|
|x|

)−αi
2

M
−αi
2 xiei.

Then using ω′(|x|) ≥ 1
2 ,

|w|2 ≤ M−α2ᾱ−α
(
ω′(|x|)

)−α ∑
i∈I(x,ε)

|xi|2|x|−εαi

≤ 2ᾱ−αM−α|x|−εα
(
ω′(|x|)

)−α ∑
i∈I(x,ε)

|xi|2.

Apply tw on the left and w on the right of Θ~αHΘ~α. One gets

tw(Θ~αHΘ~α)w = M

(
βHω

′′(|x|)− γH
ω′(|x|)
|x|

)
(
∑

i∈I(x,ε) |xi|2)2

|x|2

+ MγH
ω′(|x|)
|x|

(
∑

i∈I(x,ε)

|xi|2)

= M(
∑

i∈I(x,ε)

|xi|2)

(
βHω

′′(|x|)(1−
∑

i/∈I(x,ε) |xi|2

|x|2
)

+ γH
ω′(|x|)
|x|

∑
i/∈I(x,ε) |xi|2

|x|2

)
= M(

∑
i∈I(x,ε)

|xi|2)
(
βHω

′′(|x|)

+

∑
i/∈I(x,ε) |xi|2

|x|2
(γH

ω′(|x|)
|x|

− βHω′′(|x|))

)
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≤ M(
∑

i∈I(x,ε)

|xi|2)
(
βHω

′′(|x|)

+ N |x|2ε(γH
ω′(|x|)
|x|

− βHω′′(|x|))
)

≤ M(
∑

i∈I(x,ε)

|xi|2)
βH
2
ω′′(|x|),

since ω′′ < 0, as soon as (2.2) is satisfied. Finally since ω′′ < 0, for |x| < 1 :

tw(Θ~αHΘ~α)w

|w|2
≤ βH

2
2α−ᾱM1+αω′′(|x|)

(
ω′(|x|)

)α |x|αε
≤ 2−3M1+αω′′(|x|)

(
ω′(|x|)

)α |x|αε.
�

We end this section by recalling the definition of viscosity sub- and super-
solutions :

Definition 2.2. u, USC is a sub-solution of F (x,∇u,D2u) + h(x,∇u) = f
in an open set Ω if for all x̄ ∈ Ω and for all ϕ ∈ C2, such that (u− ϕ)(x) ≤
(u− ϕ)(x̄) in an open neighborhood of x̄ in Ω

F (x̄,∇ϕ(x̄), D2ϕ(x̄)) + h(x̄,∇ϕ(x̄)) ≥ f(x̄),

while v, LSC is a super-solution of F (x,∇u,D2u)+h(x,∇u) = f in an open
set Ω if for all x̄ ∈ Ω and for all ϕ ∈ C2 such that (u − ϕ)(x) ≥ (u − ϕ)(x̄)
in an open neighborhood of x̄ in Ω

F (x̄,∇ϕ(x̄), D2ϕ(x̄)) + h(x̄,∇ϕ(x̄)) ≤ f(x̄).

It is classical in the theory of Second Order Fully Nonlinear Elliptic Equa-
tions that one can work with semi-jets, and closed semi-jets in place of C2

functions. For the convenience of the reader we recall their definition :

Definition 2.3. Let u be an upper semi-continuous function in a neigh-
bourhood of x̄. Then we define the super-jet (q,X) ∈ RN × S and we note
(q,X) ∈ J2,+u(x̄) if there exists r > 0 such that for all x ∈ Br(x̄),

u(x) ≤ u(x̄) + 〈q, x− x̄〉+
1

2
t(x− x̄)X(x− x̄) + o(|x− x̄|2).

Let u be a lower semi-continuous function in a neighbourhood of x̄. Then
we define the sub-jet (q,X) ∈ RN ×S and we note (q,X) ∈ J2,−u(x̄) if there
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exists r > 0 such that for all x ∈ Br(x̄),

u(x) ≥ u(x̄) + 〈q, x− x̄〉+
1

2
t(x− x̄)X(x− x̄) + o(|x− x̄|2).

We also define the ”closed semi-jets” :

J̄2,±u(x̄) = {(q,X),∃ (xn, qn, Xn), (qn, Xn) ∈ J2,±u(xn)

and (xn, qn, Xn)→ (x̄, q,X)}.

We refer to the survey of Ishii [23], and to [24] for more complete results
about semi-jets: The link between semi-jets and test functions for sub- and
super-solutions is the following :
u, USC is a sub-solution if and only if for any x̄ and for any (q,X) ∈

J̄2,+u(x̄), then

F (x̄, q,X) + h(x̄, q) ≥ f(x̄)

and the same with analogous changes is valid for super-solutions.
Let us now recall Lemma 9 in [23] and one of its consequences for the

proofs in the present paper

Lemma 2.4. Suppose that A is a symmetric matrix on R2N and that U ∈
USC(RN ), V ∈ USC(RN ) satisfy U(0) = V (0) and for all (x, y) ∈ (RN )2

U(x) + V (y) ≤ 1

2
(tx,t y)A

(
x
y

)
.

Then for all ε̄ > 0 there exist XU
ε̄ ∈ S, XV

ε̄ ∈ S such that

(0, XU
ε̄ ) ∈ J̄2,+U(0), (0, XV

ε̄ ) ∈ J̄2,+V (0)

and

−(
1

ε̄
+ |A|)

(
I 0
0 I

)
≤
(
XU
ε̄ 0

0 XV
ε̄

)
≤ (A+ ε̄A2).

Lemma 2.5. Suppose that u and v are respectively USC and LSC functions
such that, for some constant L > 1 and for some C2 function Φ

ψ(x, y) := u(x)− v(y)− L|x− xo|2 − L|y − xo|2 − Φ(x, y)

has a local maximum in (x̄, ȳ).
Then for any ε̄, there exist Xε̄, Yε̄ such that

(D1Φ(x̄, ȳ) + 2L(x̄− xo), Xε̄) ∈ J̄2,+u(x̄),

(−D2Φ(x̄, ȳ)− 2L(ȳ − xo),−Yε̄) ∈ J̄2,−v(ȳ)
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with

−(
1

ε̄
+ |A|+ 1)

(
I 0
0 I

)
≤

(
Xε̄ − 2LI 0

0 Yε̄ − 2LI

)
≤ (A+ ε̄A2) +

(
I 0
0 I

)
and A = D2Φ(x̄, ȳ).

A proof of Lemma 2.5 is detailed in [7], for example.

3. Proof of Theorem 1.1

In this section we prove the main result of this paper. Before entering
the details of the proof let us mention that several Hölder’s and Lipschitz
regularity results have been obtained for related nonlinear degenerate elliptic
but homogeneous in the gradient, let us cite in a non exhaustive manner [23],
[6].

Note that Theorem1.1 can be obtained only once we have proven the
following Hölder’s estimate. So we will prove first

Theorem 3.1. Suppose that F is continuous, F (x, p, 0) = F (x, 0, X) = 0,
satisfies (1.4), (1.6), (1.5), and that h satisfies (1.7). Suppose that ᾱ < α+1,
that γF > ᾱ − α and that u is USC, bounded and satisfies in B(0, 1) in the
sense of Definition (2.2)

F (x,∇u,D2u) + h(x,∇u) ≥ f,

that v is LSC, bounded and satisfies in B(0, 1) in the sense of Definition
(2.2)

F (x,∇v,D2v) + h(x,∇v) ≤ g,
and that f and g are continuous and bounded in B(0, 1).Then for all γ < 1
and for all r < 1 there exists c depending on (r, γ,N, |u|∞, |v|∞, |f |∞, |g|∞)
and on the data linked to F and h, such that for all (x, y) ∈ B(0, r)2

u(x) ≤ v(y) + sup
B(0,1)

(u− v) + c|x− y|γ .

Remark 3.2. One can delete in that theorem as well as in Theorem 1.1 the
assumptions ” bounded” for u and v. Indeed, with the upper-semi continuity
(respectively lower semi continuity) assumption, u (respectively v) is locally
bounded from above, (respectively bounded from below) and one must replace
|u|∞, |v|∞ in the previous dependances by supB(0,1) u and − infB(0,1) v.
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Let us devote a few lines to explain how we will obtain the results.

Suppose that ω(s) = sγ with γ ∈]0, 1[ in the Hölder’s case and ω(s)
behaves near zero as s in the Lipschitz case. In a classical way when one
deals with viscosity solutions, ([23], [25], [22], [3]), we define

φ(x, y) = u(x)− v(y)− sup(u− v)−Mω(|x− y|)− L|x− xo|2 − L|y − xo|2

where xo ∈ Br, M and L will be chosen later independently on xo . As in
Section 2 we denote g(x) = Mω(|x|). We need to prove that φ(x, y) ≤ 0 in
B(0, 1), which will imply the result. Indeed taking y = xo and making xo
vary, one gets that for all x ∈ B1 and y ∈ Br

u(x) ≤ v(y) + sup(u− v) +Mω(|x− y|) + L|x− y|2

which gives the result.

We argue by contradiction and suppose that there exists (x, y) in B(0, 1)

such that φ(x, y) > 0. The supremum of φ is achieved on (x̄, ȳ) ∈ B(0, 1)
2
.

We begin to impose some conditions on L and M in order to be able to
use lemma 2.5, in particular we need (x̄, ȳ) to be interior points. So we
introduce some δ ∈]0, 1[ which will be chosen later small depending on

(N, |u|∞, |v|∞, r, λ,Λ, |f |∞, |g|∞), define M = 1 + 2|u|∞+2|v|∞
ω(δ) , and L =

1 + 8|u|∞+8|v|∞
(1−r)2 . The hypothesis on L ensures that (x̄, ȳ) ∈ B2

1+r
2

. Futher-

more by the assumption on M , |x̄ − ȳ| ≤ δ. We shall prove that tak-
ing δ small enough depending only on the data, using the fact that u
and v are respectively sub-and super-solutions, we get a contradiction with
φ(x̄, ȳ) = supφ(x, y) > 0.

Using Lemma 2.5 , for all ε̄ > 0, there exist Xε̄, Yε̄ ∈ S such that, defining
qx = Mω′(|x̄ − ȳ|) x̄−ȳ

|x̄−ȳ| + L(x̄ − xo), qy = Mω′(|x̄ − ȳ|) x̄−ȳ
|x̄−ȳ| − L(ȳ − xo),

q = Mω′(|x̄− ȳ|) x̄−ȳ
|x̄−ȳ| one has

(qx, Xε̄) ∈ J2,+u(x̄), (qy,−Yε̄) ∈ J2,−v(ȳ)

with (recalling that H is given by (2.1))

−
(
|D2g(x̄− ȳ)|+ 1

ε̄

)(
I 0
0 I

)
≤

(
Xε̄ − (2L+ 1)I 0

0 Yε̄ − (2L+ 1)Id

)
≤

(
H −H
−H H

)
. (3.1)
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We now take ε̄ = 1
1+4|D2g| and from now we drop the index ε̄ for simplicity

for Xε̄, Yε̄ .

We will prove the following claims, both in the Hölder’s case and in the
lipschitz case

Claims. There exist τ̂ > 0 and c > 0, such that, if δ is small enough and
|x̄− ȳ| < δ the matrix Θ~α(X + Y )Θ~α has one eigenvalue µ1 such that

µ1(Θ~α(X + Y )Θ~α) ≤ −cM1+α|x̄− ȳ|−τ̂ (3.2)

There exist τi < τ̂ and ci for i = 1, . . . , 4 such that the four following asser-
tions hold :

for all j ≥ 2, µj(Θ~α(X + Y )Θ~α) ≤ c1M
1+α|x̄− ȳ|−τ1 , (3.3)

|F (x̄, qx, X)− F (x̄, q,X)|, |F (ȳ, qy,−Y )− F (ȳ, q,−Y )| ≤ c2M
1+α|x̄− ȳ|−τ2 ,

(3.4)

|F (x̄, q,X)− F (ȳ, q,X)|+ |F (x̄, q,−Y )− F (ȳ, q,−Y )| ≤ c3M
1+α|x̄− ȳ|−τ3 ,

(3.5)

|h(x̄, qx)|+ |h(ȳ, qy)| ≤ c4M
1+α|x̄− ȳ|−τ4 . (3.6)

All these claims permit to obtain a contradiction both for the two cases
Lipschitz and Hölder. Indeed remark that by (1.4)

F (x̄, q,X) ≤ F (x̄, q,−Y ) + Λ
∑
j≥2

µ+
j (Θα(q)(X + Y )Θα(q))

+ λµ1(Θα(q)(X + Y )Θα(q))

hence one has

f(x̄) ≤ F (x̄, qx, X) + h(x̄, qx)

≤ F (x̄, q,X) + h(x̄, qx) + c2M
1+α|x̄− ȳ|−τ2

≤ F (x̄, q,−Y ) + h(ȳ, qy)− cλM1+α|x̄− ȳ|−τ̂ +NΛc1M
1+α|x̄− ȳ|−τ1

+ c2M
1+α|x̄− ȳ|−τ2 + c4M

1+α|x̄− ȳ|−τ4

≤ F (ȳ, q,−Y ) + h(ȳ, qy)− cλM1+α|x̄− ȳ|−τ̂ +NΛc1M
1+α|x̄− ȳ|−τ1

+ c2M
1+α|x̄− ȳ|−τ2 + c3M

1+α|x̄− ȳ|−τ3 + c4M
1+α|x̄− ȳ|−τ4

≤ F (ȳ, qy,−Y ) + h(ȳ, qy)− cλM1+α|x̄− ȳ|−τ̂ +NΛc1M
1+α|x̄− ȳ|−τ1
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+ 2c2M
1+α|x̄− ȳ|−τ2 + c3M

1+α|x̄− ȳ|−τ3 + c4M
1+α|x̄− ȳ|−τ4

≤ g(ȳ)− cλ

2
M1+α|x̄− ȳ|−τ̂ , (3.7)

as soon as δ is small enough in order that

c1ΛNδ−τ1 + 2c2δ
−τ2 + c3δ

−τ3 + c4δ
−τ4 <

c

2
λδ−τ̂ .

Finally supposing also that δ satisfies cλ
2 δ
−τ̂ > |f |∞ + |g|∞ one gets a con-

tradiction.

So to prove the results in Theorem 3.1 and in Theorem 1.1 it is sufficient to
prove (2.2), (3.2), (3.3), (3.4), (3.5), and (3.6) when ω(s) = sγ and γ ∈ [0, 1[.
Once this done we obtain for any γ < 1, the Hölder’s estimate. We then
define conveniently ω, behaving like s near zero, and prove the above claims
in that case.

As a first step to get ( 3.2), ( 3.3), both in the Hölder and in the Lipschitz
case, let us derive two important consequences of Proposition 2.1 and of

( 3.1) :
i) All the eigenvalues of Θ~α(X + Y )Θ~α are less than cLM ᾱω′(|x̄− ȳ|)ᾱ.
ii) There exists at least one eigenvalue of Θ~α(X + Y )Θ~α, less than
1
2M

1+αω′′(|x̄− ȳ|) (ω′(|x̄− ȳ|)))α |x̄− ȳ|εα.

Indeed to prove i) let us multiply equation (3.1) by

(
Θ~α 0
0 Θ~α

)
on the

right and on the left. Next apply the resulting inequality to (tx,t x) on the

left and to

(
x
x

)
the right, x being any vector : One gets the result.

To prove ii) let e be a unit eigenvector for some eigenvalue of Θ~αHΘ~α

which is less than 1
23
M1+αω′′(x̄−ȳ) (ω′(|x̄− ȳ|))α |x̄−ȳ|εα. Then by applying

to

(
Θ~αXΘ~α 0

0 Θ~αYΘ~α

)
the vector

(
e
e

)
on the right and to its transpose

on the left one gets that Θ~α(X +Y )Θ~α has at least one eigenvalue less than
4te(Θ~αHΘ~α)e.

3.1. Proof of (2.2), (3.2), (3.3), (3.4) and (3.6) in the Hölder’s case.
Here ω(s) = sγ with γ ∈]0, 1[ and then qx = M |x̄− ȳ|γ−2(x̄− ȳ) +L(x̄−xo),
qy = M |x̄− ȳ|γ−2(x̄− ȳ)−L(ȳ−xo). For further purposes we also introduce
q = M |x̄−ȳ|γ−2(x̄−ȳ). Note also that using (3.1) there exists some universal
constant c such that
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|X|+ |Y | ≤ cM |x̄− ȳ|γ−2 + L.

We now take ε positive,

ε < inf(
γF − (ᾱ− α)

ᾱ
,
(1− γ)(α− (1− ᾱ)−)

ᾱ
) (3.8)

which is possible since γF > ᾱ− α and (1− γ)(1− ᾱ+ α) > 0.
Concerning δ, we will suppose first that is enough small in order that

ᾱL < M1+α−ᾱ and 2Lα < Mα. Note that this implies in particular that

|X|+ |Y | ≤ 2cM |x̄− ȳ|γ−2. (3.9)

Furthermore in order to check (2.2) we will suppose that

δ < exp

(
1

2ε
log(

1− γ
6N(2− γ)

)

)
.

Indeed supposing δ so, one has for |x| < δ

N(−βHω′′(|x|) + γH
ω′(|x|)
|x|

)|x|2ε ≤ 3

2
N |x|γ−2+2εγ(2− γ)

≤ γ(1− γ)

4
|x|γ−2

≤ βH |ω′′(|x|)|
2

Note that δ < e
− logN

2ε , which implies that as soon as |x| < δ, I(x, ε) 6= ∅.

To prove (3.2) note that τ̂ = (2 − γ) + (1− γ)α − ᾱε is positive by (3.8)
and convenient, by using Proposition 2.1.

Secondly ( 3.3) holds with τ1 = (1 − γ)α < (2 − γ) + (1 − γ)α − εᾱ by
(3.8). Indeed one has by the choice of L and for some constant c1

µi(Θ~α(X + Y )Θ~α) ≤ c1LM
ᾱ|x̄− ȳ|(γ−1)ᾱ ≤ c1M

1+α|x̄− ȳ|(γ−1)ᾱ.

To prove (3.4), we need to evaluate
∑

i ||qxi |αi − |qi|αi ||X|.
For that aim we use :
-If αi ≤ 1 ||qxi |αi − |qi|αi | ≤ |qxi − qi|αi ≤ Lαi |x̄− xo|αi ≤ 2ᾱLᾱ,
hence using (3.9)

||qxi |αi − |qi|αi ||X| ≤ 2c(2L)ᾱM |x̄− ȳ|γ−2 ≤ 2cM1+α|x̄− ȳ|γ−2,

by the choice of δ and its consequence on L and M .
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-While if αi > 1 ||qxi |αi−|qi|αi | ≤ αi|qxi −qi|(|qx|+|q|)αi−1 ≤ cᾱLM ᾱ−1|x̄−
ȳ|(γ−1)(ᾱ−1), and then ||qxi |αi − |qi|αi ||X| ≤ ᾱ2cLM ᾱ|x̄− ȳ|(γ−1)(ᾱ−1)+γ−2 ≤
2cM1+α|x̄−ȳ|(γ−1)(ᾱ−1)+γ−2. Gathering these two estimates, (3.4) holds with
τ2 = (2− γ) + (1− γ)(sup(1, ᾱ)− 1) < 2− γ + (1− γ)α− εᾱ by the choice
of ε in (3.8).

To prove (3.5) let us observe that

|F (x̄, q,X)− F (ȳ, q,X)| ≤ cF |x̄− ȳ|γF |q|ᾱ|X|
≤ cFγ

ᾱ2c|x̄− ȳ|γFM1+α|x̄− ȳ|(γ−1)ᾱ+γ−2.

Note that by the definition of M there exist some constants c depending
only on the data such that

M1+α|x̄− ȳ|γF |x̄− ȳ|(γ−1)ᾱ+γ−2 ≤ cM1+αδ−γ(α−α)|x̄− ȳ|(γ−2)+(γ−1)ᾱ+γF

≤ cM1+α|x̄− ȳ|(γ−2)+γ(−α+α)+(γ−1)ᾱ+γF

≤ cM1+α|x̄− ȳ|(γ−2)+γα−ᾱ+γF

and then (3.5) holds with τ3 = (2−γ)+ᾱ−γα−γF < (2−γ)+(1−γ)α−εᾱ.

We finally check (3.6). One has

|h(x̄, qx)|+ |h(ȳ, qy)| ≤ chN(|qx|ᾱ+1 + |qy|ᾱ+1) ≤ 2chNM
1+ᾱ|x̄− ȳ|(γ−1)(1+ᾱ)

and by the definition of M one has for some constant which can vary from
one line to another

M1+ᾱ|x̄− ȳ|(γ−1)(1+ᾱ) ≤ cM1+αδ−γ(ᾱ−α)|x̄− ȳ|(γ−1)(1+ᾱ)

≤ cM1+α|x̄− ȳ|γ−1+γα−ᾱ

and then one has (3.6) by defining τ4 = 1−γ+ ᾱ−γα < 2−γ+(1−γ)α− ᾱε
since εᾱ < γF − (ᾱ− α) ≤ 1− (ᾱ− α).

3.2. Proof of (2.2), (3.2), (3.3,) (3.4) and (3.5), (3.6) in the ”Lip-
schitz” case. We define ω(s) = s − 1

2(1+τ)s
1+τ , where 0 < τ < 1 will be

precised later, and s < 1 . ω is extended constantly after 1. Note that for
s < 1, 1

2 ≤ ω
′(s) < 1, and then ω(s) ≥ s

2 , and ω is C2 on ]0, 1[.

We define α? = inf{αi, αi > 0} . Let ε < inf
(

inf(1,α?)
2(1+ᾱ) ,

γF−(ᾱ−α)
1+ᾱ

)
, and τ

such that τ < ε, then τ + εᾱ < inf(α− ᾱ+ γF ,
inf(1,α?)

2 ).
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We suppose

M = 1 +
8(|u|∞ + |v|∞)

δ
, L = 1 +

8(|u|∞ + |v|∞)

(1− r)2

and that δ is small enough in order that MLᾱ + L
1
2M ᾱ ≤ M1+α. We

introduce also γ < 1 such that γ
2 inf(1, α?) > τ + εᾱ which is possible since

τ + εᾱ < ε+ εᾱ < inf(1,α?)
2 .

We also suppose that δ < exp
log τ

3N(τ+2)

2ε−τ . Then for |x| < δ,

N(−βHω′′(|x|) + γH
ω′(|x|)
|x|

)|x|2ε ≤ 3N

2
(
τ

2
+ 1)|x|−1+2ε

≤ τ

4
|x|−1+τ

≤ βH
2
|ω′′(|x|)|

and then (2.2) is satisfied.
Note that δ2ε < 1

N , and then since there exists i ∈ [1, N ] such that |xi| >
|x|√
N

, for x such that |x| ≤ δN , I(x, ε) 6= ∅. We introduce as in the last

subsection

φ(x, y) = u(x)− v(y)− sup(u− v)−Mω(|x− y|)− L|x− xo|2 − L|y − xo|2

and suppose by contradiction that the supremum of φ is positive . Then it
is achieved on (x̄, ȳ) which belongs to B2

1+r
2

and is such that |x̄− ȳ| < δ.

Recall that since the estimate u(x) − v(y) ≤ sup(u − v) + c|x − y|γ has
been proved in the last section, one has L|x̄−xo|2 ≤ c 1+r

2
,γ |x̄− ȳ|γ and then

L|x̄− xo| ≤ c
1
2
1+r
2
,γ
L

1
2 |x̄− ȳ|

γ
2 . (3.10)

The analogous is true for ȳ− xo. In particular as soon as δ is small enough,
L|x̄− xo| ≤ M

4 .
This will be needed in the estimate (3.4).

Note that here one has qxi = M ω′(|x̄−ȳ|)
|x̄−ȳ| (x̄i − ȳi) + L(x̄i − xoi), qi =

M ω′(|x̄−ȳ|)
|x̄−ȳ| (x̄i − ȳi) qyi = M ω′(|x̄−ȳ|)

|x̄−ȳ| (x̄i − ȳi) − L(ȳi − xoi) and then for any

i, M
2 ≤ |qi| ≤M and M

4 ≤ |q
x
i |, |q

y
i | ≤

5M
4 .

Applying Proposition 2.3 one gets that (3.2) holds with τ̂ = 1 − τ − εα.
We now prove claim (3.3) : One has for all i ∈ [1, N ]

µi(Θ~α(X + Y )Θ~α) ≤ (2L+ 1)|Θ~α|2 ≤ c1LM
ᾱ ≤ c1M

1+α
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by the choice of δ and its consequences for L and M and then (3.3) holds
with τ1 = 0 < 1− τ − εᾱ.

For the following estimates, we need to observe that inequality (3.1) im-
plies here that there exists c such that

|X|+ |Y | ≤ cM |x̄− ȳ|−1 + 2L ≤ 3cM |x̄− ȳ|−1 (3.11)

by the assumption on L.

To prove (3.4), let us recall that (3.10) holds.
Suppose that 0 < αi ≤ 1 which implies if such an index exists, that α ≤ 1.

For such a i one has using (3.11 ) for some constant c2 which can vary from
one lie to other

||qxi |αi − |qi|αi ||X| ≤ |qxi − qi|αi |X| ≤ c2|x̄− ȳ|
γαi
2 L

αi
2 M |x̄− ȳ|−1

≤ c2M
1+α|x̄− ȳ|

γαi
2
−1

by the choices of L and M , while if αi ≥ 1 the mean value’s theorem implies,
always with the choice of L and M , still using (3.11)

|qxi |αi − |qi|αi ||X| ≤ c2|qi − qxi |Mαi−1M |x̄− ȳ|−1 ≤ c2L
1
2 |x̄− ȳ|

γ
2
−1M ᾱ

≤ c2M
1+α|x̄− ȳ|

γ
2
−1.

Combining the two inequalites, (3.4) holds with τ2 = 1 − γ
2 inf(1, α?) <

1− τ − εᾱ.

We now prove (3.5). One has for some constant c3 which can vary from
one line to another

|F (x̄, q,X)− F (ȳ, q,X)| ≤ cF |x̄− ȳ|γFM1+ᾱ|x̄− ȳ|−1

≤ c3M
1+αδ−ᾱ+α|x̄− ȳ|γF−1

≤ c3M
1+α|x̄− ȳ|γF−1+α−ᾱ

by the choice of δ, hence (3.5) holds with τ2 = 1− γF − α+ ᾱ < 1− τ − εᾱ
by the choice of τ .

We finally check (3.6): One has for some constant c4 which can vary from
l one line to another

|h(x̄, qx)| ≤ c4M
1+ᾱ

≤ c4M
1+αδ−(ᾱ−α)

≤ c4M
1+α|x̄− ȳ|−(ᾱ−α)

a same estimate holds for |h(ȳ, qy)|, and then (3.6) holds with τ4 = ᾱ− α <
1− τ − εᾱ since τ + εᾱ < γF − ᾱ+ α < 1− ᾱ+ α.
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Since all the claims are proved one concludes by (3.7).

Proof of Corollary 1.2
We just give a hint of the proof. Adapting arguments as in [4], [15], Propo-

sition 2.7, we obtain that weak continuous solutions are viscosity solutions.
Then one applies Theorem 1.1 with u = v.
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