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Abstract. We study asymptotically and numerically the fundamental gaps (i.e. the difference
between the first excited state and the ground state) in energy and chemical potential of the Gross-
Pitaevskii equation (GPE) – nonlinear Schrödinger equation with cubic nonlinearity – with repulsive
interaction under different trapping potentials including box potential and harmonic potential. Based
on our asymptotic and numerical results, we formulate a gap conjecture on the fundamental gaps
in energy and chemical potential of the GPE on bounded domains with the homogeneous Dirich-
let boundary condition, and in the whole space with a convex trapping potential growing at least
quadratically in the far field. We then extend these results to the GPE on bounded domains with
either the homogeneous Neumann boundary condition or periodic boundary condition.
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1. Introduction. The time-independent Schrödinger equation (in dimensionless
form by taking ~ = m = 1 with m the mass of the particle) [34, 5, 24, 27]

(1.1) HΦ :=

[ N∑
j=1

(
−1

2
∆j + V (rj)

)
+

∑
1≤j<k≤N

Vint(rj − rk)

]
Φ = E Φ,

has been widely used in quantum physics and chemistry to mathematically predict
the property of a quantum system with N particles (usually atoms, molecules, and
subatomic particles whether free, bound or localized). Here rj ∈ R3 is the spatial
coordinate of the j-th particle, ∆j is the Laplacian operator with respect to the spatial
coordinate rj for j = 1, 2, . . . , N , Φ := Φ(r1, . . . , rN ) is the complex-valued wave
function of the quantum system, V (r) (for r ∈ R3) is a given real-valued potential,
Vint(r) is a given real-valued interaction kernel for two-body interaction satisfying
Vint(r) = Vint(−r) and H is the Hamiltonian operator. When the wave function is
normalized as

∫
R3N |Φ|2dr1 . . . drN = 1, E is the total energy of the quantum system

with respect to the wave function Φ. The time-independent Schrödinger equation
(1.1), also an eigenvalue problem in mathematics, predicts that wave function can
form stationary states including ground and excited states [34, 5, 24, 27]. Finding
the ground state and its energy, as well as the energy gap (or band gap) between
the ground and first excited states via Eq. (1.1) has become a fundamental and
highly challenging problem in computational quantum physics and chemistry, as well
as material simulation and design.

By setting N = 1 in Eq. (1.1) and performing a dimension reduction from
three dimensions (3D) to two dimensions (2D) and one dimension (1D) under proper
assumptions on the potential V (r) such that separation of (the spatial) variables for
the wave function is valid [6, 21, 32, 12, 7], one can get the d-dimensional (d = 3, 2, 1)
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time-independent Schrödinger equation with complex-valued wave function φ := φ(x),
which has been widely used in the physics literature [34, 5, 24, 27]

(1.2) Hφ :=

(
−1

2
∆x + V (x)

)
φ(x) = E φ(x), x = (x1, . . . , xd)

T ∈ Ω ⊆ Rd.

Using the rescaling formulas y =
√

2x ∈ Rd and ϕ(y) = 2−d/4φ(x), one can derive
the following time-independent Schrödinger equation [2, 3, 4, 36]

(1.3) Lϕ := [−∆y +W (y)]ϕ(y) = E ϕ(y), y ∈ U ⊆ Rd,

where W (y) = V (x) = V (y/
√

2), U = {y |y/
√

2 ∈ Ω} and the operator L :=
−∆y +W (y) is called the Schrödinger operator [3]. If U is bounded, then we require
the homogeneous Dirichlet boundary condition (BC) ϕ(y)|∂U = 0 to be imposed. In
this case, we can also simply define W (y) = +∞ for y outside U and Eq. (1.3)
can be defined in the whole space without BC. If W (y) is bounded below in U , i.e.
infy∈U W (y) > −∞, without loss of generality, we can always assume that W (y) ≥ 0
for y ∈ U when we are interested in the ground and excited states and the energy gap.
Under proper assumptions on the potential W (y), the eigenvalues Eg, E1, E2, · · · of
the Sturm-Liouville eigenvalue problem (1.3) under the normalization condition [3]

(1.4) ‖ϕ‖22 :=

∫
U

|ϕ(y)|2dy = 1 ⇐⇒ ‖φ‖22 :=

∫
Ω

|φ(x)|2dx = 1,

are real and can be ordered such that 0 < Eg < E1 ≤ E2 ≤ · · · with corresponding
eigenfunctions (or stationary states) ϕg(y), ϕ1(y), ϕ2(y), · · · . Then ϕg(y) and ϕ1(y)
are called the ground state and the first excited state, respectively. δ0 := E1−Eg > 0
is usually called the fundamental gap in the literature [3, 4, 36]. Assuming that
U is a bounded convex domain and the potential W (y) ∈ C(U), based on results for
special cases, the gap conjecture was formulated in the literature [3, 4, 36] as:

(1.5) δ0 = E1 − Eg ≥
3π2

D2
U

, with DU := sup
y,z∈U

|y − z|.

The gap conjecture is sharp when d = 1, U = (0, L) with 0 < L ∈ R and W (y) ≡ 0
for y ∈ U [3]. Recently, by the use of the gradient flow and geometric analysis and
assuming that W (y) ∈ C(U) is convex, Andrews and Clutterbuck proved the gap
conjecture [2]. In addition, they showed that if U = Rd and the potential W (y)
satisfies D2W (y) ≥ γ2

wId for y ∈ Rd with γw > 0, where Id is the identity matrix in
d-dimensions, the fundamental gap described by Eq. (1.3) under the condition (1.4)
satisfies δ0 := E1 − Eg ≥

√
2γw [2].

In this paper, we will consider the dimensionless time-independent Gross-Pitaevskii
equation (GPE) in d-dimensions (d = 3, 2, 1) [6, 21, 32, 12, 7]

(1.6)

[
−1

2
∆ + V (x) + β|φ(x)|2

]
φ(x) = µφ(x), x ∈ Ω ⊆ Rd,

where φ := φ(x) is the complex-valued wave function (or eigenfunction) normalized via
(1.4), V := V (x) is a given real-valued potential, β ≥ 0 is a dimensionless constant
describing the repulsive (defocussing) interaction strength, and the eigenvalue (or
chemical potential in the physics literature) µ := µ(φ) is defined as [6, 21, 32, 7]

(1.7) µ(φ) = E(φ) +
β

2

∫
Ω

|φ(x)|4dx,
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with the energy E := E(φ) defined as [7]

(1.8) E(φ) =

∫
Ω

[
1

2
|∇φ(x)|2 + V (x)|φ(x)|2 +

β

2
|φ(x)|4

]
dx.

Again, if Ω is bounded, the homogeneous Dirichlet BC, i.e. φ(x)|∂Ω = 0, needs
to be imposed. Thus, the time-independent GPE (1.6) is a nonlinear eigenvalue
problem under the constraint (1.4). It is a mean field model arising from Bose-
Einstein condensates (BECs) [1, 21, 26, 6] that can be obtained from the Schrödinger
equation (1.1) via the Hartree ansatz and mean field approximation [7, 20, 28, 32].
When β = 0, it collapses to the time-independent Schrödinger equation (1.2). It is
worth mentioning that if the domain U in (1.3) is bounded, the domain Ω in (1.2)
(or (1.6)) can be defined as Ω = {x |

√
2x ∈ U} via the re-scaling y =

√
2x. Thus the

diameter for the domain Ω becomes D := DΩ = D
U
/
√

2, and the lower bound in the

fundamental gap (1.5) for the Schrödinger equation (1.2) becomes 3π2

D2
U

= 3π2

2D2 .

The ground state of the GPE (1.6) is usually defined as the minimizer of the non-
convex minimization problem (or constrained minimization problem) [6, 21, 26, 7]

(1.9) φg = arg min
φ∈S

E(φ),

where S = {φ | ‖φ‖22 :=
∫

Ω
|φ(x)|2dx = 1, E(φ) <∞, φ|∂Ω = 0 if Ω is bounded}. The

ground state can be chosen as nonnegative |φg|, i.e. φg = |φg|eiθ for some constant
θ ∈ R and i =

√
−1 . Moreover, the nonnegative ground state |φg| is unique [29, 7].

Thus, from now on, we refer to the ground state as the nonnegative one. It is easy
to see that the ground state φg satisfies the time-independent GPE (1.6) and the
constraint (1.4). Hence it is an eigenfunction (or stationary state) of (1.6) with the
least energy. Any other eigenfunctions of the GPE (1.6) under the constraint (1.4)
whose energies are larger than that of the ground state are usually called the excited
states in the physics literature [21, 32, 7]. Specifically, the excited state with the
least energy among all excited states is usually called the first excited state, which is
denoted as φ1.

For the GPE (1.6), the ground state has been obtained asymptotically in weakly
and strongly repulsive interaction regimes, i.e. 0 ≤ β � 1 and β � 1, respectively, for
several different trapping potentials [14]. In fact, by ordering all the eigenfunctions
of the GPE with a repulsive interaction and a confinement potential, i.e. β ≥ 0 and
lim|x|→+∞ V (x) = +∞, under the constraint (1.4) according to their energies with

φβg , φ
β
1 , φ

β
2 , . . . satisfying Eg(β) := E(φβg ) < E1(β) := E(φβ1 ) ≤ E(φβ2 ) ≤ . . . , it can

be shown that µg(β) := µ(φβg ) < µ1(β) := µ(φβ1 ) [19], and thus φβ1 is usually called
the first excited state. We define the fundamental gaps in energy and chemical
potential of the time-independent GPE under the constraint (1.4) as

δE(β) := E(φβ1 )− E(φβg ) > 0, δµ(β) := µ(φβ1 )− µ(φβg ) > 0, β ≥ 0,

δ∞E := inf
β≥0

δE(β), δ∞µ := inf
β≥0

δµ(β).
(1.10)

In general, the first excited state φβ1 is not unique. Since we are mainly interested in
its energy and chemical potential as well as the fundamental gaps, it does not matter
which first excited state is taken in our analysis and simulation below. The main
purpose of this paper is to study asymptotically and numerically the fundamental
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gaps of the GPE with different trapping potentials and to formulate a gap conjecture
for the GPE.

The rest of this paper is organized as follows. In Section 2, we study asymp-
totically and numerically the fundamental gaps of GPE on bounded domains with
homogeneous Dirichlet BC. In Section 3, we obtain results for GPE in the whole
space with a confinement potential. Extension to GPE on bounded domains with ei-
ther periodic or homogeneous Neumann BC are presented in Section 4. Finally, some
conclusions are drawn in Section 5. In order to distinguish two different cases, i.e.
nondegenerate and degenerate cases, we define the eigenspace of (1.2) corresponding
to the eigenvalue E1 (the second smallest eigenvalue) as

(1.11) W1 = {φ(x) : Ω→ C |Hφ = E1φ, φ|∂Ω = 0 if Ω is bounded}.

Then the dimension of W1, i.e. dim(W1) = 1, is referred to the nondegenerate case,

and resp., dim(W1) ≥ 2 is referred to the degenerate case. Denote Ω0 =
∏d
j=1(0, Lj)

satisfying L1 ≥ L2 ≥ · · · ≥ Ld > 0 and A0 = 1/
√∏d

j=1 Lj .

2. On bounded domains with homogeneous Dirichlet BC. In this section,
we obtain fundamental gaps of the GPE (1.6) on a bounded domain Ω with homo-
geneous Dirichlet BC asymptotically under a box potential and numerically under a
general potential. Based on the results, we formulate a novel gap conjecture.

2.1. Nondegenerate case, i.e. dim(W1) = 1. We first consider a special case
by taking Ω = Ω0 satisfying d = 1 or L1 > L2 when d ≥ 2 and V (x) ≡ 0 for x ∈ Ω in
(1.6). For simplicity, we define

(2.1) A1 =
2

L1

 25

9L1
+

2

9

d∑
j=1

1

Lj

 , A2 =
π2

2

d∑
j=1

1

L2
j

.

In this scenario, when β = 0, all the eigenfunctions can be obtained via the sine
series [13, 14]. Thus the ground state φ0

g(x) and the first excited state φ0
1(x) can be

given explicitly as [13, 14] for x ∈ Ω̄

(2.2) φ0
g(x) = 2

d
2A0

d∏
j=1

sin

(
πxj
Lj

)
, φ0

1(x) = 2
d
2A0 sin

(
2πx1

L1

) d∏
j=2

sin

(
πxj
Lj

)
.

Lemma 2.1. In the weakly repulsive interaction regime, i.e. 0 < β � 1, we have

Eg(β) = A2 +
3dA2

0

2d+1
β + o(β), µg(β) = A2 +

3dA2
0

2d
β + o(β), 0 ≤ β � 1,(2.3)

E1(β) =
3π2

2L2
1

+A2 +
3dA2

0

2d+1
β + o(β), µ1(β) =

3π2

2L2
1

+A2 +
3dA2

0

2d
β + o(β).(2.4)

Proof. When 0 < β � 1, we can approximate the ground state φβg (x) and the

first excited state φβ1 (x) by φ0
g(x) and φ0

1(x), respectively. Thus we have

(2.5) φβg (x) ≈ φ0
g(x), φβ1 (x) ≈ φ0

1(x), x ∈ Ω̄.

Plugging (2.5) into (1.7) and (1.8), after a detailed computation which is omitted here
for brevity, we can obtain (2.3)-(2.4).
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Lemma 2.1 implies that δE(β) = E1(β) − Eg(β) ≈ 3π2

2L2
1

and δµ(β) = µ1(β) −

µg(β) ≈ 3π2

2L2
1

for 0 ≤ β � 1, which are independent of β. In order to get the

dependence on β, we need to find more accurate approximations of φβg and φβ1 and
can obtain the following asymptotics of the fundamental gaps.

Lemma 2.2. When 0 ≤ β � 1, we have

(2.6) δE(β) =
3π2

2L2
1

+G
(1)
d β2 + o(β2), δµ(β) =

3π2

2L2
1

+G
(2)
d β2 + o(β2),

where

G
(1)
d =


3

64π2 ,
A4

0

64π2

(
27
4 L

2
1 + 3

A6(A6L2
1+3)

)
,

1
256π2 (C1,1,1 − C2,1,1),

G
(2)
d =


9

64π2 , d = 1,
3A4

0

64π2

(
27
4 L

2
1 + 3

A6(A6L2
1+3)

)
, d = 2,

3
256π2 (C1,1,1 − C2,1,1), d = 3,

with

(2.7) A6 =

d∑
j=1

1

L2
j

, Ck1,k2,k3
= A4

0

81

3∑
j=1

L2
j

k2
j

+ 9
∑
i<j

1
k2
i

L2
i

+
k2
j

L2
j

+
1∑3

j=1

k2
j

L2
j

 .

Proof. When 0 < β � 1, we assume

(2.8) φβg (x) ≈ φ0
g(x) + βϕg(x) + o(β), x ∈ Ω.

Plugging (2.8) into (1.6), noticing (2.2), (2.3) and (2.4), and dropping all terms at
O(β2) and above, we obtain

(2.9) ∆ϕg(x) + 2A2ϕg(x) = 2(φ0
g(x))3 − 3dA2

0

2d−1
φ0
g(x), x ∈ Ω, ϕg(x)|∂Ω = 0.

Substituting (2.2) into (2.9), we can solve it analytically. For the simplicity of nota-
tions, here we only present the case when d = 1. Extensions to d = 2 and d = 3 are
straightforward and the details are omitted here for brevity [33]. When d = 1, we
have

(2.10) ϕg(x) =

√
2L1

8π2
sin

(
3πx

L1

)
, 0 ≤ x ≤ L1.

Plugging (2.10) into (2.8) and using ‖φβg‖2 = 1, we get

(2.11) φβg (x) ≈

√
64π4 − β2L2

1

32π4L1
sin

(
πx

L1

)
+
β
√

2L1

8π2
sin

(
3πx

L1

)
, 0 ≤ x ≤ L1.

Inserting (2.11) into (1.8) and (1.7) with V (x) ≡ 0, we have

(2.12) Eg(β) =
π2

2L2
1

+
3β

4L1
− β2

16π2
+ o(β2), µg(β) =

π2

2L2
1

+
3β

2L1
− 3β2

16π2
+ o(β2).

Similarly, we can obtain results for the first excited state

(2.13) E1(β) =
2π2

L2
1

+
3β

4L1
− β2

64π2
+ o(β2), µ1(β) =

2π2

L2
1

+
3β

2L1
− 3β2

64π2
+ o(β2).
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Subtracting (2.12) from (2.13), we obtain (2.6) when d = 1.
Lemma 2.3. In the strongly repulsive interaction regime, i.e. β � 1, we have

Eg(β) =
A2

0

2
β +

4A0A3

3
β

1
2 + 2A2

3 −
8A4

9
+ o(1),(2.14)

µg(β) = A2
0β + 2A0A3β

1
2 + 2A2

3 −A4 + o(1), β � 1,(2.15)

E1(β) =
A2

0

2
β +

4A0(A3L1 + 1)

3L1
β

1
2 +

2(A3L1 + 1)2

L2
1

− 8A5

9
+ o(1),(2.16)

µ1(β) = A2
0β +

2A0(A3L1 + 1)

L1
β

1
2 +

2(A3L1 + 1)2

L2
1

−A5 + o(1),(2.17)

where

(2.18) A3 =

d∑
j=1

1

Lj
, A4 = 4

∑
1≤j<k≤d

1{d≥2}

LjLk
, A5 = A4 + 4

∑
1<j≤d

1{d≥2}

L1Lj
,

with 1{d≥2} the standard set function, which takes 1 when d ≥ 2 and 0 otherwise.
Proof. When β � 1, the ground and first excited states can be approximated by

the Thomas-Fermi (TF) approximations and/or uniformly accurate matched approx-
imations. For d = 1 and Ω = (0, L), these approximations have been given explicitly
and verified numerically in the literature [10, 11, 13, 14] as

(2.19) φg(x) ≈
√
µg
β
φ

(1)
L,µg

(x), φ1(x) ≈
√
µ1

β
φ

(2)
L,µ1

(x), 0 ≤ x ≤ L,

where

φ
(1)
L,µ(x) = tanh (

√
µx) + tanh (

√
µ(L− x))− tanh (

√
µL) , 0 ≤ x ≤ L,

φ
(2)
L,µ(x) = tanh (

√
µx)− tanh (

√
µ(L− x)) + tanh (

√
µ (L/2− x)) ,

(2.20)

with µg and µ1 determined from the normalization condition (1.4) and tanh
(√
µL
)
≈

1. These results in 1D can be extended to d-dimensions (d = 1, 2, 3) for the approxi-
mations of the ground and first excited states as

φβg (x) ≈ φMA
g (x) =

√
µg(β)

β

d∏
j=1

φ
(1)
Lj ,µg

(xj), x ∈ Ω̄,(2.21)

φβ1 (x) ≈ φMA
1 (x) =

√
µ1(β)

β
φ

(2)
L1,µ1

(x1)

d∏
j=2

φ
(1)
Lj ,µ1

(xj),(2.22)

where µg(β) and µ1(β) are determined from the normalization condition (1.4). In-
serting (2.21) and (2.22) into (1.7) and (1.8), after a detailed computation which is
omitted here for brevity, we can obtain (2.14)-(2.17).

From Lemmas 2.1-2.3, we have asymptotic results for the fundamental gaps.
Proposition 2.4 (For GPE under a box potential in nondegenerate case). When

Ω = Ω0 satisfying d = 1 or L1 > L2 when d ≥ 2 and V (x) ≡ 0 for x ∈ Ω in (1.6),
i.e. GPE with a box potential, we have
(2.23)

δE(β) =

{
3π2

2L2
1

+ o(β),
4A0

3L1
β

1
2 +A1 + o(1),

δµ(β) =

{
3π2

2L2
1

+ o(β), 0 ≤ β � 1,
2A0

L1
β

1
2 + 6

L2
1

+ o(1), β � 1.
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Proof. When 0 ≤ β � 1, subtracting (2.3) from (2.4), noting (1.10), we obtain
(2.23) in this parameter regime. Similarly, when β � 1, subtracting (2.14) and (2.15)
from (2.16) and (2.17), respectively, we get (2.23) in this parameter regime.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

φβ g
(x
)
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β=800
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0

0.5

1

x
φβ 1

(x
)

 

 

β=0

β=40

β=800

Fig. 2.1. Ground states φβg (x) (left) and first excited states φβ1 (x) (right) of GPE in 1D with
Ω = (0, 2) and a box potential for different β ≥ 0.

β
0 50 100 150 200 250 300 350 400 450 500

En
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0

50
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200

E(φβ
1,x2

)

E(φβ
1,x1

)

E(φβ
g )

Fig. 2.2. Energy Eg(β) := E(φβg ) < E1(β) := E(φβ1 = φβ1,x1
) < E2(β) := E(φβ1,x2

) of GPE in

2D with Ω = (0, 2)× (0, 1) and a box potential for different β ≥ 0.

To verify numerically our asymptotic results in Proposition 2.4, we solve the
time-independent GPE (1.6) numerically by using the normalized gradient flow via
backward Euler finite difference discretization [8, 9, 7, 10] to find the ground and first
excited states and their corresponding energy and chemical potentials. Fig. 2.1 shows
the ground and first excited states for different β ≥ 0 in 1D, Fig. 2.2 shows the energy
of the ground and excited states which are excited in x1- or x2-direction, while the
first excited state is taken as the one excited in x1-direction, and Fig. 2.3 depicts
fundamental gaps in energy obtained numerically and asymptotically in 1D, 2D and
3D. From Fig. 2.3, we can see that the asymptotic results in Proposition 2.4 are very
accurate in both weakly and strongly repulsive interaction regimes. In addition, our
numerical results suggest that both δE(β) and δµ(β) are increasing functions for β ≥ 0
(cf. Fig. 2.3).

For a general bounded domain Ω and/or V (x) 6= 0, we cannot get asymptotic
results on the fundamental gaps, but we can study the problem numerically. If Ω
and V (x) are symmetric with respect to the axis, we can compute numerically the
ground and first excited states and their corresponding energy and chemical potential
as well as the fundamental gaps via the normalized gradient flow method [8, 9, 7, 10].
We remark here that for a general bounded domain Ω, discretization in space can be
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Fig. 2.3. Fundamental gaps in energy of GPE with a box potential in 1D with Ω = (0, 2) (top),
in 2D with Ω = (0, 2)× (0, 1) (middle), and in 3D with Ω = (0, 2)× (0, 1)× (0, 1) (bottom).
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Fig. 2.4. Fundamental gaps in energy δE(β) (left) and chemical potential δµ(β) (right) of GPE
in 1D with Ω = (0, 2) and V (x) = V0(x− 1)2 for different V0 > 0 and β ≥ 0.

performed by using the finite element method instead of finite difference or spectral
method for the normalized gradient flow to compute the ground and first excited
states [15]. For arbitrarily chosen external potentials, the first excited state might not
have any symmetric property. In this case, we can obtain numerically the first excited
state by using the numerical method proposed in [15]. Fig. 2.4 depicts fundamental
gaps in energy and chemical potential of the GPE in 1D with Ω = (0, 2) and the
potential V (x) = V0(x − 1)2 for different V0 and β. Fig. 2.5 plots the fundamental
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gaps in energy and chemical potential of the GPE in 1D with Ω = (0, 2) and some
nonconvex trapping potentials for different β ≥ 0.
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Fig. 2.5. Fundamental gaps in energy (left) and chemical potential (right) of GPE in 1D with
Ω = (0, 2) and non-convex trapping potentials: (I) V (x) = −10x2, and (II) V (x) = 10 sin(10(x− 1))
for different β ≥ 0.

Based on the asymptotic results in Proposition 2.4 and the above numerical results
as well as additional extensive numerical results not shown here for brevity [33], we
speculate the following gap conjecture.

Gap conjecture (For GPE on a bounded domain with homogeneous Dirichlet
BC in nondegenerate case) Suppose Ω is a convex bounded domain, the external
potential V (x) is convex and dim(W1) = 1, we have

(2.24) δ∞E := inf
β≥0

δE(β) ≥ 3π2

2D2
, δ∞µ := inf

β≥0
δµ(β) ≥ 3π2

2D2
,

where D := supx,z∈Ω |x−z| is the diameter of Ω. In fact, our numerical results suggest
a stronger gap as

δE(β) ≥

{
3π2

2D2 , 0 ≤ β ≤ 81π4|Ω|
64D2 ,

4β1/2

3D|Ω|1/2 , β ≥ 81π4|Ω|
64D2 ,

δµ(β) ≥

{
3π2

2D2 , 0 ≤ β ≤ 9π4|Ω|
16D2 ,

2β1/2

D|Ω|1/2 , β ≥ 9π4|Ω|
16D2 ,

(2.25)

where |Ω| is the volume of Ω. On the other hand, Fig. 2.5 suggests that the gap
conjecture (2.24) is not valid for non-convex trapping potentials.

2.2. Degenerate case, i.e. dim(W1) ≥ 2. Again, we first consider a special
case by taking Ω = Ω0 satisfying L1 = L2 := L and d ≥ 2 and V (x) ≡ 0 for
x ∈ Ω in (1.6). In this case, the approximations of the ground states and their energy
and chemical potential are the same as those in the previous subsection by letting
L2 → L1 = L. On the contrary, the approximations of the first excited states are
completely different with those in the non-degenerate case.

Lemma 2.5. For weakly repulsive interaction, i.e. 0 < β � 1, we have for d ≥ 2

E1(β) =
3π2

2L2
+A2 +

13d

32
A2

0β + o(β), µ1(β) =
3π2

2L2
+A2 +

13d

16
A2

0β + o(β).(2.26)

Proof. For simplicity, we only present the 2D case and extension to 3D is straight-
forward. Denote

(2.27) φ0
g(x) =

√
2

L
sin
(πx
L

)
, φ0

1(x) =

√
2

L
sin

(
2πx

L

)
, 0 ≤ x ≤ L.
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When d = 2 and β = 0, it is easy to see that ϕ1(x) := φ0
1(x1)φ0

g(x2) and ϕ2(x) :=
φ0
g(x1)φ0

1(x2) are two linearly independent orthonormal first excited states. In fact,
W1 = span{ϕ1, ϕ2}. In order to find an appropriate approximation of the first excited
state when 0 < β � 1, we take an ansatz

(2.28) ϕa,b(x) = aϕ1(x) + bϕ2(x), x = (x1, x2) ∈ Ω̄,

where a, b ∈ C satisfying |a|2 + |b|2 = 1 implies ‖ϕa,b‖2 = 1. Then a and b will
be determined by minimizing E(ϕa,b). Plugging (2.28) into (1.8), a simple direct
computation implies that

E(ϕa,b) =
3π2

2L2
+A2 +

8β

L4

∫∫
[0,L]2

∣∣∣∣a sin(
2πx1

L
) sin(

πx2

L
) + b sin(

πx1

L
) sin(

2πx2

L
)

∣∣∣∣4 dx
=

3π2

2L2
+A2 +

9β

8L2
(|a|4 + |b|4) +

β

2L2
(4|a|2|b|2 + a2b̄2 + ā2b2)

=
3π2

2L2
+A2 +

9β

8L2
+

β

4L2
(2a2b̄2 + 2ā2b2 − |a|2|b|2).

To minimize E(ϕa,b), noting |a|2 + |b|2 = 1, we take a = eiξ cos(θ) and b = eiη sin(θ)
with ξ, η, θ ∈ [−π, π). Then we have

E(ϕa,b) =
3π2

2L2
+A2 +

9β

8L2
− β

16L2
sin2(2θ) [1− 4 cos (2(ξ − η))] ,

which is minimized when θ = ±π/4 and ξ − η = ±π/2, i.e. a = ±ib. By taking

a = 1/
√

2 and b = i/
√

2, we obtain an approximation of the first excited state φβ1
when 0 < β � 1 as

(2.29) φβ1 (x) ≈ 1√
2

[
φ0

1(x1)φ0
g(x2) + iφ0

g(x1)φ0
1(x2)

]
, x ∈ Ω̄.

Substituting (2.29) into (1.8) and (1.7), we get (2.26) when d = 2.
Lemma 2.6. When d = 2 and β � 1, we have

E1(β) =
β

2L2
+

8
√
β

3L2
+

π

2L2
ln(β) + o(ln(β)),(2.30)

µ1(β) =
β

L2
+

4
√
β

L2
+

π

2L2
ln(β) + o(ln(β)).(2.31)

Proof. From Lemma 2.5, when 0 < β � 1, the first excited state needs to be taken
as a vortex-type solution. By assuming that there is no band crossing when β > 0,
then the first excited state can be well approximated by the vortex-type solution when
β � 1 too. Thus when β � 1, we approximate the first excited state via a matched
asymptotic approximation.

(i) In the outer region, i.e. |x − (L/2, L/2)| > o(1), it is approximated by the
ground state profile as

(2.32) φβ1 (x) ≈ φout(x) =

√
µ1

β
φ

(1)
L,µ1

(x1)φ
(1)
L,µ1

(x2),

where φ
(1)
L,µ(x) is given in (2.20) with µ = µ1(β) the chemical potential of the first

excited state.
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(ii) In the inner region near the center (L/2, L/2), i.e. |x− (L/2, L/2)| � 1, it is
approximated by a vortex solution with winding number m = 1 as

(2.33) φβ1 (x) ≈ φin(x) =

√
µ1

β
f(r)eiθ, |x− (L/2, L/2)| � 1,

where r and θ are the modulus and argument of (x1−L/2)+ i(x2−L/2), respectively.
Substituting (2.33) into (1.6), we get the equation for f(r)

(2.34) − 1

2
f ′′(r)− 1

2r
f ′(r) +

1

2r2
f(r) + µ1f

3(r) = µ1f(r), r > 0,

with BCs f(0) = 0 and limr→+∞ f(r) = 1. When β � 1, by dropping the term
− 1

2f
′′(r) in (2.34) and then solving it analytically, we get

(2.35) f(r) ≈ fa(r) :=

√
2µ1r2

1 + 2µ1r2
, r ≥ 0.

Combining the outer and inner approximations via the matched asymptotic technique,
we obtain an asymptotic approximation of the density of the first excited state as

(2.36) ρβ1 (x) := |φβ1 (x)|2 ≈
√
µ1

β

[
f2
a (r) +

(
φ

(1)
L,µ1

(x1)φ
(1)
L,µ1

(x2)
)2

− 1

]
, x ∈ Ω̄.

Substituting (2.36) into the normalization condition ‖φβ1‖2 = 1, a detailed computa-
tion gives the approximation of the chemical potential in (2.31). Plugging (2.36) into
(1.7) and noticing (2.31), a detailed computation implies the approximation of the
energy in (2.30). The details of the computation are omitted here for brevity [33].

From lemmas 2.1, 2.3, 2.5 and 2.6, we have the following result about the funda-
mental gaps for the degenerate case.

Proposition 2.7 (For GPE under a box potential in degenerate case). When
Ω = Ω0 satisfying L1 = L2 := L and d ≥ 2 and V (x) ≡ 0 for x ∈ Ω in (1.6), i.e.
GPE with a box potential, we have

(i) when 0 ≤ β � 1 and d ≥ 2,

(2.37) δE(β) =
3π2

2L2
− 5dA2

0

32
β + o(β), δµ(β) =

3π2

2L2
− 5dA2

0

16
β + o(β);

(ii) when β � 1 and d = 2,

(2.38) δE(β) =
π

2L2
ln(β) +O(1), δµ(β) =

π

2L2
ln(β) +O(1).

Again, to verify numerically our asymptotic results in Proposition 2.7, Fig. 2.6
plots the ground state φβg , the first excited state φβ1 = φβ1,v, and other excited states

φβ1,x and φβ1,c, of the GPE in 2D with Ω = (0, 2)2 and a box potential for different
β ≥ 0, which were obtained numerically [8, 9, 7, 10]. Fig. 2.7 depicts the energy

Eg(β) = E(φβg ) < E1(β) = E(φβ1 = φβ1,v) < E(φβ1,x) < E(φβ1,c) for different β ≥ 0 and
the corresponding fundamental gaps in energy, and Fig. 2.8 shows the fundamental
gaps in energy of GPE in 3D with Ω = (0, 1)3 and a box potential. In addition, Fig. 2.9
depicts the fundamental gaps in energy of GPE in 2D with Ω = B1(0) = {x | |x| < 1}
and a box potential.
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Fig. 2.6. Ground states φβg (top row), first excited states – vortex solution |φβ1 = φβ1,v | (second

row), excited states in the x1-direction φβ1,x(fourth row) and excited states in the diagonal direction

φβ1,c (fifth row) for β = 0 (left column), β = 10 (middle column) and β = 500 (right column). Here
the phase of the vortex solution – first excited state – is displayed in the third row.
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ent β ≥ 0 (top) and the fundamental gaps in energy δE(β) (bottom). Here a band crossing in energy
happens at β = 0 for the excited states (cf. top).
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Fig. 2.8. The fundamental gaps in energy of GPE in 3D under a box potential with Ω = (0, 1)3.

Based on the asymptotic results in Proposition 2.7 and the above numerical results
as well as additional extensive numerical results not shown here for brevity [33], we
speculate the following gap conjecture.

Gap conjecture (For GPE in 2D on a bounded domain with homogeneous
Dirichlet BC in degenerate case) Suppose Ω ⊂ R2 is a convex bounded domain,
the external potential V (x) is convex and dim(W1) ≥ 2, we have

(2.39) δ∞E := inf
β≥0

δE(β) ≥ π2

2D2
, δ∞µ := inf

β≥0
δµ(β) ≥ 3π2

8D2
.

3. Fundamental gaps of GPE in the whole space. In this section, we ob-
tain asymptotically the fundamental gaps of the GPE (1.6) in the whole space un-
der a harmonic potential and numerically under general potentials growing at least



14 Weizhu Bao and Xinran Ruan

β
0 100 200 300 400 500 600 700

δ E(β
)

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Fig. 2.9. The fundamental gaps in energy of GPE under a box potential with Ω = B1(0). It
is obviously that the fundamental gap is larger than the lower bound proposed in the gap conjecture

(2.39), which is π2

2D2 ≈ 1.234.

quadratically in the far field. Based on the results, we formulate a novel gap conjec-

ture for this case. Here we take Ω = Rd and denote Vh(x) = 1
2

d∑
j=1

γ2
j x

2
j satisfying

0 < γ1 ≤ γ2 ≤ · · · ≤ γd.

3.1. Nondegenerate case, i.e. dim(W1) = 1. We first consider the special
case by taking V (x) = Vh(x) satisfying d = 1 or γ1 < γ2 when d ≥ 2. For simplicity,
we define

(3.1) B0 =

d∏
j=1

√
γj
2π
, B1 =

1

2

d∑
j=1

γj , B2 =

d∏
j=1

γj , Cd =


2, d = 1,

π, d = 2,
4π
3 , d = 3.

In this scenario, when β = 0, all eigenfunctions can be obtained via the Hermite
functions [13, 14]. Thus the ground state φ0

g(x) and the first excited state φ0
1(x) can

be given explicitly as [13, 14]

(3.2) φ0
g(x) =

d∏
j=1

(γj
π

) 1
4

e−
γjx

2
j

2 , φ0
1(x) =

√
2γ1x1

d∏
j=1

(γj
π

) 1
4

e−
γjx

2
j

2 , x ∈ Rd.

Lemma 3.1. In the weakly repulsive interaction regime, i.e. 0 < β � 1, we have

Eg(β) = B1 +
B0

2
β + o(β), µg(β) = B1 +B0β + o(β), 0 ≤ β � 1,(3.3)

E1(β) = γ1 +B1 +
3B0

8
β + o(β), µ1(β) = γ1 +B1 +

3B0

4
β + o(β).(3.4)

Proof. When 0 < β � 1, we can approximate the ground state φβg (x) and the

first excited state φβ1 (x) by φ0
g(x) and φ0

1(x), respectively. Thus we have

(3.5) φβg (x) ≈ φ0
g(x), φβ1 (x) ≈ φ0

1(x), x ∈ Rd.

Plugging (3.5) into (1.7) and (1.8), after a detailed computation which is omitted here
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for brevity [33], we can obtain (3.3) and (3.4).
Lemma 3.2. In the strongly repulsive interaction regime, i.e. β � 1, we have

µg(β) ≈ µTF
g =

1

2

(
(d+ 2)B2β

Cd

) 2
d+2

, µ1(β) ≈ µMA
1 = µTF

g +

√
2

2
γ1 + o(1),(3.6)

Eg(β) =
2 + d

4 + d
µTF
g + o(1), E1(β) = Eg(β) +

√
2

2
γ1 + o(1), β � 1.(3.7)

Proof. When β � 1, the ground and first excited states can be approximated by
the TF approximations and/or uniformly accurate matched asymptotic approxima-

tions. For d = 1 and V (x) = γ2x2

2 , these approximations have been given explicitly
and verified numerically in the literature [10, 11, 13, 14], and the results can be ex-
tended to d dimensions (d = 1, 2, 3) as

(3.8) φβg (x) ≈ φTF
g (x) =

√
(µTF
g − V (x))+

β
, x ∈ Rd,

(3.9)

φβ1 (x) ≈ φMA
1 (x) =


√

g1(x)
β +

√
g2(x)
β

[
tanh(x1

√
g2(x))− 1

]
, g1(x) ≥ 0&x1 ≥ 0,

−
√

g1(x)
β +

√
g2(x)
β

[
1 + tanh(x1

√
g2(x))

]
, g1(x) ≥ 0&x1 < 0,

0, otherwise,

where (f)+ := max{f, 0}, g1(x) = µMA
1 − 1

2

∑d
j=1 γ

2
j x

2
j and g2(x) = µMA

1 − 1
2

∑d
j=2 γ

2
j x

2
j ,

and µTF
g and µMA

1 can be obtained via the normalization condition (1.4). Inserting
(3.8) and (3.9) into (1.7), after a detailed computation which is omitted here for
brevity [33], we get (3.7).

From Lemmas 3.1 and 3.2, we have asymptotic results for the fundamental gaps.
Proposition 3.3 (For GPE under a harmonic potential in nondegenerate case).

When V (x) = Vh(x) satisfying d = 1 or γ1 < γ2 when d ≥ 2, i.e. GPE with a
harmonic potential, we have

(3.10) δE(β) =

{
γ1 − B0

8 β + o(β),
√

2
2 γ1 + o(1),

δµ(β) =

{
γ1 − B0

4 β + o(β), 0 ≤ β � 1,
√

2
2 γ1 + o(1), β � 1.

Proof. When 0 ≤ β � 1, subtracting (3.3) from (3.4), we obtain (3.10) in this
parameter regime. Similarly, when β � 1, we get the result by recalling (3.6) and
(3.7).

Remark 3.1. Similar to Lemma 2.2, when β � 1, by performing asymptotic
expansion to the next order, we can obtain

δE(β) =

√
2

2
γ1 +

γ2
1(d+ 2)

d
d+2

4

(
Cd
B2β

) 2
d+2

+ o(β−
2
d+2 ), β � 1,(3.11)

δµ(β) =

√
2

2
γ1 +

γ2
1d(d+ 2)−

2
d+2

4

(
Cd
B2β

) 2
d+2

+ o(β−
2
d+2 ), β � 1.(3.12)

Again, to verify numerically our asymptotic results in Proposition 3.3, Fig. 3.1
shows the ground and first excited states of GPE in 1D with γ1 = 1 for different
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Fig. 3.1. Ground states (left) and first excited states (right) of GPE in 1D with a harmonic
potential V (x) = x2/2 (dot line) for different β ≥ 0.
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Fig. 3.2. Energy Eg(β) := E(φβg ) < E1(β) := E(φβ1 = φβ1,x) < E2(β) := E(φβ1,y) of GPE in
2D under a harmonic potential with γ1 = 1 < γ2 = 2 for different β ≥ 0.

β ≥ 0, which are obtained numerically [8, 9, 7, 10]. Fig. 3.2 shows energy of the
ground state, first excited state, i.e. excited state in the x1-direction, and excited
states in the x2-direction and Fig. 3.3 depicts fundamental gaps in energy obtained
numerically and asymptotically (cf. Eqs. (3.11), (3.12) and (3.10)) in 1D, 2D and
3D. From Fig. 3.3, we can see that the asymptotic results in Proposition 3.3 are very
accurate in both weakly repulsive interaction regime, i.e. 0 ≤ β � 1, and strongly
repulsive interaction regime, i.e. β � 1. In addition, our numerical results suggest
that both δE(β) and δµ(β) are decreasing functions for β ≥ 0 (cf. Fig. 3.3).

Again, for general external potentials, the ground and first excited states as well
as their energy and chemical potential can be computed numerically [8, 9, 7, 10].
Fig. 3.4 depicts fundamental gaps in energy and chemical potential of GPE in 1D

with V (x) = x2

2 + V0 cos(kx) for different β, V0 and k, and Fig. 3.5 shows the
fundamental gaps of GPE in 1D with different convex trapping potentials growing at
least quadratically in the far field for different β ≥ 0.

Based on the asymptotic results in Proposition 3.3 and the above numerical results
as well as additional extensive numerical results not shown here for brevity [33], we
speculate the following gap conjecture.

Gap conjecture (For GPE in whole space in nondegenerate case) Suppose the
external potential V (x) satisfies D2V (x) ≥ γ2

vId for x ∈ Rd with γv > 0 a constant
and dim(W1) = 1, we have

(3.13) δ∞E := inf
β≥0

δE(β) ≥
√

2

2
γv, δ∞µ := inf

β≥0
δµ(β) ≥

√
2

2
γv.
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Fig. 3.3. Fundamental gaps in energy of GPE with a harmonic potential in 1D with γ1 = 1
(top), in 2D with γ1 = 1 < γ2 = 2 (middle), and in 3D with γ1 = 1 < γ2 = γ3 = 2 (bottom).

3.2. Degenerate case, i.e. dim(W1) ≥ 2. We first consider a special case
by taking V (x) = Vh(x) satisfying d ≥ 2 and γ1 = γ2 := γ. In this case, the
approximations to the ground states and their energy and chemical potential are the
same as those in the previous subsection by letting γ2 → γ1 = γ. Therefore, we only
need to focus on the approximations to the first excited states, which are completely
different with those in the non-degenerate case.

Lemma 3.4. For weakly interaction regime, i.e. 0 < β � 1, we have for d ≥ 2

E1(β) =
3γ

2
+
B0d

8
β + o(β), µ1(β) =

3γ

2
+
B0d

4
β + o(β).(3.14)

Proof. For simplicity, we only present the 2D case and extension to 3D is straight-
forward. Denote

(3.15) φ0
g(x) =

(γ
π

) 1
4

e−
γx2

2 , φ0
1(x) =

√
2γ
(γ
π

) 1
4

xe−
γx2

2 .

When d = 2 and β = 0, it is easy to see that ϕ1(x) := φ0
1(x1)φ0

g(x2) and ϕ2(x) :=
φ0
g(x1)φ0

1(x2) are two linearly independent orthonormal first excited states. In fact,
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Fig. 3.4. Fundamental gaps in energy (left) and chemical potential (right) of GPE in 1D with

V (x) = x2

2
+ V0 cos(kx) satisfying V0k2 = 0.5 for different β, V0 and k.
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Fig. 3.5. Fundamental gaps in energy (left) and chemical potential (right) of GPE in 1D with

(I) V (x) = x2

2
+ 0.5 sin(x), (II) V (x) = x2

4
− x, (III) V (x) = x2

4
+ x4

100
+ x for different β ≥ 0.

W1 = span{ϕ1, ϕ2}. In order to find an appropriate approximation of the first excited
state when 0 < β � 1, we take an ansatz

(3.16) ϕa,b(x) = aϕ1(x) + bϕ2(x), x ∈ R2,

where a, b ∈ C satisfying |a|2 + |b|2 = 1 implies ‖ϕa,b‖2 = 1. Then a and b can be
determined by minimizing E(ϕa,b). Plugging (3.16) into (1.8), we have for β ≥ 0

E(ϕa,b) = 3γ +
γβ

16π

[
|a2 + b2|2 + 2(|a|2 + |b|2)2

]
≥ 3γ +

γβ

8π
,(3.17)

which is minimized when a2+b2 = 0, i.e. a = ±ib. By taking a = 1/
√

2 and b = i/
√

2,
we get an approximation of the first excited state as

(3.18) φβ1 (x) ≈ φ1,v(x) =
γ√
π

(x1 + ix2)e−
γ(x2

1+x2
2)

2 =
γ√
π
re−

γr2

2 eiθ,

where (r, θ) is the polar coordinate. Substituting (3.18) into (1.8) and (1.7), we get
(3.14).

Lemma 3.5. For the 2D case with strongly repulsive interaction, i.e. d = 2 and
β � 1, we have

E1(β) = ETF
g +

γ

2

√
π

β
ln(β) +O(β−

1
2 ), µ1(β) = µTF

g +
γ

4

√
π

β
ln(β) +O(β−

1
2 ),(3.19)
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where µTF
g is given in (3.6) and ETF

g = 2+d
4+dµ

TF
g .

Proof. From Lemma 3.4, when 0 < β � 1, the first excited state needs to be
taken as a vortex-type solution. By assuming that there is no band crossing when
β > 0, the first excited state can be well approximated by the vortex-type solution
when β � 1 too. Thus when β � 1, we approximate the first excited state via a
matched asymptotic approximation.

(i) In the outer region, i.e. |x| > o(1), it is approximated by the TF approximation
as

(3.20) φβ1 (x) ≈ φout(x) ≈

√
(2µ1 − γ2r2)+

2β
, r > o(1),

where µ = µ1(β) is the chemical potential of the first excited state.
(ii) In the inner region near the origin, i.e. |x| � 1, it is approximated by a vortex

solution with winding number m = 1 as

(3.21) φβ1 (x) ≈ φin(x) =

√
µ1

β
f(r)eiθ, |x| � 1,

Substituting (2.33) into (1.6), we get the equation for f(r)

(3.22) − 1

2
f ′′(r)− 1

2r
f ′(r) +

1

2r2
f(r) +

γ2r2

2
f(r) + µ1f

3(r) = µ1f(r), r > 0,

with BC f(0) = 0. When β � 1 and 0 ≤ r � 1, by dropping the terms − 1
2f
′′(r) and

γ2r2

2 f(r) in (3.22) and then solving it analytically with the far field limit limr→+∞ f(r) =
1, we get (2.35). Combining the outer and inner approximations via the matched
asymptotic technique, we obtain an asymptotic approximation of the density of the
first excited state as

(3.23) ρβ1 (x) := |φβ1 (x)|2 ≈ 2µ1r
2

1 + 2µ1r2

(2µ1 − γ2r2)+

2β
, r ≥ 0.

Substituting (3.23) into the normalization condition ‖φβ1‖2 = 1 and (1.7), a detailed
computation gives the approximation of the chemical potential and energy in (3.19).
The details of the computation are omitted here for brevity [33].

From Lemmas 3.4&3.5, we have asymptotic results for the fundamental gaps.
Proposition 3.6 (For GPE under a harmonic potential in degenerate case).

When V (x) = Vh(x) with d ≥ 2 and γ1 = γ2 := γ, i.e. GPE with a harmonic
potential, we have

(i) when 0 ≤ β � 1 and d ≥ 2

(3.24) δE(β) = γ − (4− d)B0

8
β + o(β), δµ(β) = γ − (4− d)B0

4
β + o(β);

(ii) when β � 1 and d = 2,

(3.25) δE(β) =
γ1

2

√
π

β
ln(β) + o

(
ln(β)√
β

)
, δµ(β) =

γ1

4

√
π

β
ln(β) + o

(
ln(β)√
β

)
,

which implies δE(β)→ 0 and δµ(β)→ 0 as β →∞.
Again, to verify numerically our asymptotic results in Proposition 3.6, Fig. 3.6

plots the ground state φβg , the first excited state φβ1 = φβ1,v, and the higher excited
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Fig. 3.6. Ground state φβg (top row), first excited state – vortex solution |φβ1 = φβ1,v |(second

row) and higher excited state in x1-direction φβ1,x(bottom row) of GPE in 2D with a harmonic

potential (γ = 1) for β = 0 (left column), β = 10 (middle column) and β = 100 (right column). The

phase of the first excited state φβ1 = φβ1,v is displayed in the third row.

states φβ1,x, of GPE in 2D with a harmonic potential (γ = 1) for different β ≥ 0,
which were obtained numerically [8, 9, 7, 10]. Fig. 3.7 depicts the energy Eg(β) =

E(φβg ) < E1(β) = E(φβ1 = φβ1,v) < E(φβ1,x) for different β ≥ 0 and the corresponding
fundamental gaps in energy, and Fig. 3.8 shows the fundamental gaps in energy of
GPE in 3D with a harmonic potential. In addition, our numerical results suggest that
both δE(β) and δµ(β) are decreasing functions for β ≥ 0 (cf. Figs. 3.7&3.8).

Based on the asymptotic results in Proposition 3.6 and the above numerical results
as well as additional extensive numerical results not shown here for brevity [33], we
speculate the following gap conjecture.
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Fig. 3.8. The fundamental gaps in energy of GPE in 3D under a harmonic potential V (x) =
(x21 + x22 + x23)/2 for different β ≥ 0.

Gap conjecture (For GPE in the whole space in degenerate case) Suppose the
external potential V (x) satisfies D2V (x) ≥ γ2

vId for x ∈ Rd with γv > 0 a constant
and dim(W1) ≥ 2. When 0 ≤ β � 1, we have

(3.26) δE(β) ≥ γv − C1β, δµ(β) ≥ γv − C2β,

where C1 > 0 and C2 > 0 are two constants independent of β. In addition, we have
limβ→+∞ δE(β) = 0 and limβ→+∞ δµ(β) = 0.

We remark here that the fundamental gap δE(β) gives an upper bound of the
critical rotating speed Ωβc in rotating BEC for β ≥ 0 [35, 16, 6, 7], which implies that
limβ→+∞ Ωβc = 0.
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4. Extensions to other BCs. In this section, we study the fundamental gaps
of GPE on bounded domains with either periodic BC or homogeneous Neumann BC.

4.1. Results for the periodic BC. Take Ω = Ω0 and assume that φ satisfies
the periodic BC. When d = 1, it corresponds to a BEC on a ring [7]; and when d = 2,
it corresponds to a BEC on a torus. In this case, the ground state φβg is defined the
same as in (1.9) provided that the set S is replaced by S = {φ | ‖φ‖22 :=

∫
Ω
|φ(x)|2dx =

1, E(φ) <∞, φ is periodic on ∂Ω}, and the first excited state φβ1 and the eigenspace
W1 are defined similarly. We have the following results for the energy and chemical
potential of the ground and first excited states.

Lemma 4.1. Assume V (x) ≡ 0, for all β ≥ 0 and d = 1, 2, 3, we have

Eg(β) =
A2

0

2
β, µg(β) = A2

0β, E1(β) =
2π2

L2
1

+
A2

0

2
β, µ1(β) =

2π2

L2
1

+A2
0β.(4.1)

Proof. For any φ ∈ S, the Cauchy-Schwarz inequality implies that

(4.2) 1 = ‖φ‖42 =

(∫
Ω

|φ|2dx
)2

≤
∫

Ω

|φ|4dx
∫

Ω

1dx =
1

A2
0

∫
Ω

|φ|4dx.

Thus, for all β ≥ 0 and any φ ∈ S, we have

(4.3) E(φ) =

∫
Ω

[
1

2
|∇φ|2 +

β

2
|φ|4

]
dx ≥ β

2
A2

0 =
β

2

∫
Ω

|A0|4dx = E(φ ≡ A0).

Therefore, for all β ≥ 0, we have

(4.4) φβg (x) ≡ φ0
g(x) := A0, x ∈ Ω.

Plugging (4.4) into (1.8) and (1.7) and noticing V (x) ≡ 0, we obtain the first two
equalities in (4.1).

As for the first excited state, for simplicity, we only present 1D case and exten-
sions to 2D and 3D are straightforward. When d = 1 and β = 0, it is easy to see that
ϕ1(x) :=

√
2A0 cos (2πx/L1) and ϕ2(x) :=

√
2A0 sin (2πx/L1) are two linearly inde-

pendent orthonormal first excited states. In fact, in this case, W1 = span{ϕ1, ϕ2}. In
order to find an appropriate approximation of the first excited state when 0 < β � 1,
we take an ansatz

(4.5) ϕa,b(x) = aϕ1(x) + bϕ2(x), 0 ≤ x ≤ L1,

where a, b ∈ C satisfying |a|2 + |b|2 = 1 implies ‖ϕa,b‖2 = 1. Then a and b can be
determined by minimizing E(ϕa,b). Plugging (4.5) into (1.8), we have for β ≥ 0

E(ϕa,b) =
2π2

L2
1

+
β

4L1

[
2(|a|2 + |b|2)2 + |a2 + b2|2

]
≥ 2π2

L2
1

+
β

2L1
,(4.6)

which is minimized when a2+b2 = 0, i.e. a = ±ib. By taking a = 1/
√

2 and b = i/
√

2,
we get an approximation of the first excited state as

(4.7) φβ1 (x) ≈ φ0
1(x) := A0e

i2πx/L1 , 0 ≤ x ≤ L1.

Similar to (4.2) and (4.3), we can prove rigorously that for all β ≥ 0

(4.8) φβ1 (x) ≡ φ0
1(x) = A0e

i2πx/L1 , 0 ≤ x ≤ L1.
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Plugging (4.8) into (1.8) and (1.7), we obtain the last two equalities in (4.1).
From (4.1), it is straightforward to have (with the proof omitted here for brevity).
Proposition 4.2 (For GPE on a bounded domain with periodic BC). Assume

V (x) ≡ 0, we have

(4.9) δE(β) = δµ(β) =
2π2

L2
1

, β ≥ 0.

Based on the above analytical results and extensive numerical results not shown
here for brevity [33], we speculate the following gap conjecture.

Gap conjecture (For GPE on a bounded domain with periodic BC) Suppose
the external potential V (x) is convex, we speculate the following gap conjecture

(4.10) δ∞E := inf
β≥0

δE(β) ≥ 2π2

D2
, δ∞µ := inf

β≥0
δµ(β) ≥ 2π2

D2
.

4.2. Results for homogeneous Neumann BC. Assume that Ω ⊂ Rd is a
bounded domain and φ satisfies the homogeneous Neumann BC, i.e. ∂nφ|∂Ω = 0 with
n the unit outward normal vector. In this case, the ground state φβg is defined the
same as in (1.9) provided that the set S is replaced by S = {φ | ‖φ‖22 :=

∫
Ω
|φ(x)|2dx =

1, E(φ) <∞, ∂nφ|∂Ω = 0}, and the first excited state φβ1 and the eigenspace W1 are
defined similarly.

Similar to Lemma 4.1 (with the proof omitted here for brevity), we have
Lemma 4.3. For the ground state φβg , we have for β ≥ 0

φβg (x) = φ0
g(x) ≡ 1√∫

Ω
1 dx

:= Ã0, x ∈ Ω; Eg(β) =
Ã2

0

2
β, µg(β) = Ã2

0β.(4.11)

However, for the first excited state, we first consider a special case by taking
Ω = Ω0 and distinguish two different cases: (i) non-degenerate case d = 1 or L1 > L2

when d ≥ 2 (⇔ dim(W1) = 1); and (ii) degenerate case L1 = L2 and d ≥ 2 (⇔
dim(W1) ≥ 2).

Lemma 4.4. Assume Ω = Ω0 satisfying d = 1 or L1 > L2 when d ≥ 2, i.e.
non-degenerate case, we have

(i) in the weakly repulsive interaction regime, i.e. 0 < β � 1,

E1(β) =
π2

2L2
1

+
3A2

0

4
β + o(β), µ1(β) =

π2

2L2
1

+
3A2

0

2
β + o(β);(4.12)

(ii) in the strongly repulsive interaction regime, i.e. β � 1,

E1(β) =
A2

0

2
β +

4A0

3L1
β1/2 +

2

L2
1

+ o(1), µ1(β) = A2
0β +

2A0

L1
β1/2 +

2

L2
1

+ o(1).(4.13)

Proof. Here we only present the proof in 1D case and extension to high dimensions
is similar to that in Lemma 2.3. When d = 1 and β = 0, the first excited state can
be taken as φ0

1(x) =
√

2A0 cos(πx/L1) for x ∈ [0, L1]. When 0 < β � 1, we can

approximate φβ1 (x) by φ0
1(x), i.e.

(4.14) φβ1 (x) ≈ φ0
1(x) =

√
2A0 cos (πx/L1) , 0 ≤ x ≤ L1.
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Plugging (4.14) into (1.8) and (1.7) with V (x) ≡ 0, we obtain (4.12). When β � 1, i.e.
in strongly repulsive interaction regime, the first excited state can be approximated
via the matched asymptotic method shown in [13, 14] as

(4.15) φβ1 (x) ≈ φMA
1 (x) =

√
µMA

1

β
tanh

(√
µMA

1

(
L1

2
− x
))

, 0 ≤ x ≤ L1.

Substituting (4.15) into the normalization condition (1.4) and (1.7), we obtain (4.13),
while the detailed computation is omitted here for brevity [33].

Lemma 4.5. Assume Ω = Ω0 satisfying L1 = L2 := L and d ≥ 2, i.e. degenerate
case, we have

(i) in the weakly repulsive interaction regime, i.e. 0 ≤ β � 1,

E1(β) =
π2

2L2
+

5A2
0

8
β + o(β), µ1(β) =

π2

2L2
+

5A2
0

4
β + o(β);(4.16)

(ii) in the strongly repulsive interaction regime, i.e. β � 1, and d = 2,

E1(β) =
β

2L2
+

π

2L2
ln(β) + o(ln(β)), µ1(β) =

β

L2
+

π

2L2
ln(β) + o(ln(β)).(4.17)

Proof. The proof is similar to that for Lemmas 2.5&2.6 in the box potential case
and thus it is omitted here for brevity [33].

Lemmas 4.4&4.5 implies the following proposition about the fundamental gaps.
Proposition 4.6 (For GPE on a bounded domain with homogeneous Neumann

BC). Assume Ω = Ω0 and V (x) ≡ 0, we have
(i) if d = 1 or L1 > L2 when d ≥ 2, i.e. non-degenerate case,

δE(β) =

{
π2

2L2
1

+
A2

0

4 β + o(β),
4A0

3L1
β1/2 + 2

L2
1

+ o(1),
δµ(β) =

{
π2

2L2
1

+
A2

0

2 β + o(β), 0 ≤ β � 1,
2A0

L1
β1/2 + 2

L2
1

+ o(1), β � 1;

(4.18)

(ii) if L1 = L2 := L, i.e. degenerate case, with 0 ≤ β � 1 and d ≥ 2,

(4.19) δE(β) =
π2

2L2
+

β

8L2
+ o(β), δµ(β) =

π2

2L2
+

β

4L2
+ o(β).

For the degenerate case with β � 1 and d = 2,

(4.20) δE(β) =
π

2L2
ln(β) + o(ln(β)), δµ(β) =

π

2L2
ln(β) + o(ln(β)).

The above asymptotic results have been verified numerically [33], which are omit-
ted here to avoid this paper to be too long. In addition, our numerical results suggest
that both δE(β) and δµ(β) are increasing functions for β ≥ 0 [33].

Based on the above asymptotic results and numerical results not shown here for
brevity [33], we speculate the following gap conjecture.

Gap conjecture (For GPE on a bounded domain with homogeneous Neumann
BC) Suppose Ω is a convex bounded domain and the external potential V (x) is convex,
we speculate a gap conjecture for the fundamental gaps as

(4.21) δ∞E := inf
β≥0

δE(β) ≥ π2

2D2
, δ∞µ := inf

β≥0
δµ(β) ≥ π2

2D2
.



Fundamental gaps of the GPE 25

5. Conclusions. Fundamental gaps in energy and chemical potential of the
Gross-Pitaevskii equation (GPE) with repulsive interaction were obtained asymp-
totically and computed numerically for different trapping potentials and a gap con-
jecture on fundamental gaps was formulated. In obtaining the approximation of the
first excited state of GPE and the fundamental gaps, two different cases were iden-
tified in high dimensions (d ≥ 2), i.e. non-degenerate and degenerate cases which
correspond to the dimensions dim(W1) = 1 and dim(W1) ≥ 2, respectively, with
W1 the eigenspace associated to the second smallest eigenvalue of the corresponding
Schrödinger operator H := − 1

2∆ + V (x). Our asymptotic results were confirmed
by numerical results. Rigorous mathematical justification for the fundamental gaps
obtained asymptotically and numerically for the GPE in this paper is on-going. Fi-
nally, we remark here that the fundamental gaps in the degenerate case are the same
as those in the nondegenerate case when one requires the solution φ of (1.6) to be
real-valued function instead of complex-valued function.
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