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LOW-LYING EIGENVALUES OF SEMICLASSICAL SCHRÖDINGER OPERATOR

WITH DEGENERATE WELLS

JEAN-FRANÇOIS BONY AND NICOLAS POPOFF

ABSTRACT. In this article, we consider the semiclassical Schrödinger operator P = −h
2∆+V in Rd

with confining non-negative potential V which vanishes, and study its low-lying eigenvalues λk(P ) as

h → 0. First, we give a necessary and sufficient criterion upon V
−1(0) for λ1(P )h−2 to be bounded.

When d = 1 and V
−1(0) = {0}, we are able to control the eigenvalues λk(P ) for monotonous

potentials by a quantity linked to an interval Ih, determined by an implicit relation involving V and h.

Next, we consider the case where V has a flat minimum, in the sense that it vanishes to infinite order.

We give the asymptotic of the eigenvalues: they behave as the eigenvalues of the Dirichlet Laplacian on

Ih. Our analysis includes an asymptotic of the associated eigenvectors and extends in particular cases

to higher dimensions.

1. INTRODUCTION

The paper is devoted to the study of the spectrum of the Schrödinger operator

(1) P = −h2∆+ V,

with semiclassical parameter h > 0, acting in L2(Rd). The potential V : Rd → R+ is continuous

and satisfies lim inf |x|→+∞ V (x) > 0 and inf V = minV = 0. The operator P is self-adjoint and

non-negative. For such an operator T , let λk(T ) be its k-th eigenvalue or the bottom of its essential

spectrum if T has less than k eigenvalues before it. The asymptotic of the eigenvalues of P as h → 0
has received large considerations from basis of quantum mechanics to microlocal analysis. For fixed

k, they converge to 0 as h → 0 and their asymptotic behavior depends on V −1(0) and on the shape of

V near this set.

We first consider the general behavior of λ1(P ) under weak assumptions. If V −1(0) contains an

open set, it is clear from the maximin principle that λ1(P ) = O(h2). But if V −1(0) has measure 0,

then λ1(P )h−2 is unbounded, see [3, Lemma 3.2]. We will give in section 2 a characterization on

V −1(0) for which λ1(P )h−2 → +∞ as h → 0: this is true if and only if V −1(0) is 1-null, where the

notion of 1-nullity, coming from [1, 12], is introduced in Definition 2.1.

Numerous works focus on the case where V −1(0) is reduced to a point, let us say V −1(0) = {0}.

In dimension d = 1, the most well-known model case is given by the quadratic harmonic oscillator

V (x) = x2, for which λk(P ) = (2k − 1)h. Next, the standard harmonic approximation states that if

V is C∞(R) and if V is non-degenerate at 0, in the sense that V ′′(0) > 0, then we have

λk(P ) =

√
V ′′(0)

2
(2k − 1)h +O(h3/2),

as h → 0 (see [18, 11, 5, 8]). The idea behind this result is that one can replace the potential V by

its Taylor expansion near 0. Following this strategy, the case where V vanishes to higher order is
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treated in [13]. The authors assume that the potential admits a non-zero Taylor expansion V (x) =
x2p +O(x2p+1) near 0 with p ≥ 2 (see also [19] for p = 2). In that case,

λk(P ) ∼ h
2p

p+1λk(−∆+ x2p).

All these results have extensions to higher dimensions. The strategy of the proofs of the previous

results does not seem to adapt for more general potentials, in particular for those which have no

homogeneous leading term near the minimum.

In this article we describe the low-lying eigenvalues of P without the assumption that P has an

expansion near 0. In section 3.1 we only assume that V is monotonous near 0 and we give a control

from below and from above for λk(P ) by h2|Ih|−2, where Ih is the small interval around 0 defined by

the implicit relation Ih = V −1((0, h2|Ih|−2)). Roughly speaking, this interval equilibrates the kinetic

energy and the potential energy of the operator, in the sense that

h2

|Ih|2
≈ λ1(−h2∆D

Ih
) ≈ sup

Ih

(V ),

where −∆D
I denotes the Dirichlet Laplacian on the interval I .

Next, we give the asymptotic of λk(P ) in the extremal case where V is flat at 0, i.e. V (x) =
O(|x|n) near 0 for all n ∈ N. More precisely, we obtain in dimension 1 that

λk(P ) ∼ π2k2h2|Ih|−2,

under some assumptions stated in Section 3.2. Our proof is based on the fact that V can be replaced by

0 on the interval Ih and is large outside. The asymptotic follows from known results on Schrödinger

operators with large coupling constant. We provide examples such as V (x) = e−|x|−α

with an esti-

mate of remainder (see (17)). We also give the asymptotic of the eigenfunctions in Proposition 3.11.

Finally, we explain in section 4 how to adapt our method in higher dimensions for potentials of the

form V (x) = V0(|x|θ(x|x|−1)), where V0 is a flat potential and θ is a continuous function on Sd−1.

2. GENERAL ESTIMATES

In this section we give information on the behavior of λ1(P )h−2 as h → 0. First, this ratio is

bounded from below, since

(2) ∀h ∈ (0, 1), λ1(P ) ≥ h2λ1(−∆+ V ),

with λ1(−∆+ V ) > 0 by unique continuation. Next, we give a necessary and sufficient criterion for

its boundedness, in link with V −1(0). Note that, h 7→ λ1(P )h−2 being decreasing on (0,+∞), either

this function is bounded near 0, or it goes to +∞. It is known that this latter case happens when the

Lebesgue measure of V −1(0) is zero, see [3, Lemma 3.2]. We introduce the following definition.

Definition 2.1. A set E ⊂ Rd is 1-null if the only function f ∈ H1(Rd) such that supp(f) ⊂ E is

the zero function.

This terminology comes from [12], where these sets are studied. In fact, this definition is very

closed to the older notion of set of uniqueness for H1, see [1, Section 11.3] (and also [14, Section

14.4]). These two notions coincide when E is a closed set (which will be the case here), see [12,

Proposition 3.17]. We refer to [12, Section 2] (and the references hereby) for a more detailed approach,

including a characterization by the capacity of such sets and we just give below a list of examples

illustrating this definition:

· If the interior of E is not empty, E is not 1-null.

· The converse is true when d = 1, because functions in H1(R) are continuous.
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· If the Lebesgue measure of E is zero, then E is 1-null.

· For all d ≥ 2, a compact set E ⊂ Rd of positive Lebesgue measure, which has empty interior

and is not 1-null, is constructed explicitly in [15, Theorem 3].

This notion is related to our spectral problem through the following result.

Proposition 2.2 (Behavior of the first eigenvalue). The set V −1(0) is 1-null if and only if

lim
h→0

λ1(P )

h2
= +∞.

Proof. Assume that there exist C > 0 and a sequence (hn)n∈N ց 0 such that

∀n ∈ N, λ1(P ) ≤ Ch2n.

We will show that V −1(0) is not 1-null. Let un be an eigenfunction associated with λ1(P ) such that

‖un‖L2(Rd) = 1. In particular,

∀n ∈ N, ‖∇un‖2L2(Rd) + h−2
n ‖V 1/2un‖2L2(Rd) ≤ C,

and therefore (un)n∈N is bounded in H1(Rd). Thus, there exists a subsequence (vn)n∈N which con-

verges weakly to v in H1(Rd). In particular, (vn)n∈N converges also to v in L2
loc(R

d).
Let ε ∈ (0, lim inf |x|→+∞ V ) and denote Kε := V −1([0, ε]). Then

ε

∫

x/∈Kε

|un(x)|2dx ≤
∫

x/∈Kε

V (x)|un(x)|2dx ≤ Ch2n,

and we obtain
∫

x∈Kε

|un(x)|2dx = ‖un‖2L2(Rd) −
∫

x/∈Kε

|un(x)|2dx ≥ 1− C

ε
h2n.

Since Kε is compact, we get in the limit n → +∞
∫

x∈Kε

|v(x)|2dx ≥ 1.

Moreover, since (vn)n∈N converges weakly to v in H1(Rd), it converges also weakly in L2(Rd) and

‖v‖L2(Rd) ≤ 1. Therefore, we deduce that ‖v‖L2(Rd) = 1 and

supp(v) ⊂
⋂

0<ε∈Q

Kε = V −1(0).

Since v ∈ H1(Rd), V −1(0) does not satisfy Definition 2.1.

Conversely, assume that there exists v ∈ H1(Rd) \ {0} supported in V −1(0). Such a v is in the

form domain of P and the maximin principle provides

λ1(P ) ≤ 〈Pv, v〉
‖v‖2

L2(Rd)

= h2
‖∇v‖2

L2(Rd)

‖v‖2
L2(Rd)

.

Therefore lim suph→0 λ1(P )h−2 < +∞. �
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3. PUNCTUAL WELLS IN DIMENSION 1

3.1. A priori estimates of eigenvalues. This part is devoted to the study of the low-lying eigenvalues

in dimension 1. We first give a general result for punctual wells. We consider P satisfying (1) with

d = 1 and assume that V −1(0) = {0} and that V is increasing for small positive x and decreasing for

small negative x. For h > 0 small enough, let δ±(h) ∈ ±]0,+∞[ be the unique solutions of

(3) V (δ−) = V (δ+) =
h2

(δ+ − δ−)2
.

Indeed, solving first V (δ−) = V (δ+) leads to δ− = δ−(δ+) with δ−(·) continuous, negative and

decreasing. Therefore, the continuous and increasing function δ+ 7→ V (δ+)(δ+ − δ−(δ+))
2 meets

h2 at a unique point. According to the introduction, we have Ih = (δ−, δ+). For even potentials, (3)

becomes δ := δ+ = |δ−| with

(4) 4δ2V (δ) = h2.

The small eigenvalues of P verify the following lower and upper bounds.

Theorem 3.1 (Estimates in dimension 1). Let P be as before. Then, there exist constants Ck, ck > 0
independent of P such that

(5)
ckh

2

(δ+ − δ−)2
≤ λk(P ) ≤ Ckh

2

(δ+ − δ−)2
,

for all k ∈ N∗ and h small enough.

In (5), we can always take Ck = π2k2 +1 but ck does not go to +∞ with k. In particular, we have

no lower bound on the spectral gap λ2(P )− λ1(P ). To prove this result, we make a scaling using δ±
and then compare the rescaled operator with some constant and simple operators.

Proof. Let us consider the unitary transformation on L2(R) given by

(6) (Uf)(x) = (δ+ − δ−)
− 1

2 f
( x− δ−
δ+ − δ−

)
.

Then, the rescaled operator is defined by

(7) Q :=
(δ+ − δ−)

2

h2
U−1PU = −∆+Wh(x),

where the potential Wh satisfies

(8) Wh(x) =
(δ+ − δ−)

2

h2
V
(
δ− + x(δ+ − δ−)

)
.

Using the monotonicity properties of V and (3), we have

Wh(x) ≤
(δ+ − δ−)

2

h2
max(V (δ−), V (δ+)) = 1,

for all x ∈ [0, 1]. The same way,

Wh(x) ≥
(δ+ − δ−)

2

h2
min(V (δ−), V (δ+)) = 1,

for all x ∈ [0, 1]C . Let −∆D
I denote the Dirichlet Laplacian on the open interval I . The previous

estimates on Wh imply

(9) −∆+ 1[0,1]C ≤ Q ≤ −∆D
(0,1) + 1,
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in the sense of form, see [16, Section XIII.15]. Then, the maximin principle yields

(10) λk

(
−∆+ 1[0,1]C

)
≤ λk(Q) ≤ λk(−∆D

(0,1)) + 1.

Eventually, the result follows from (7), (10), λk(−∆+ 1[0,1]C ) > 0 and λk(−∆D
(0,1)) = π2k2. �

Example 3.2. Let V be an even potential satisfying the assumptions of Theorem 3.1 and V (x) =

| ln |x||−α near 0 with α > 0. Then, (4) gives δ ∼ h| ln h|α/2/2 and λk(P ) is of order | ln h|−α.

Example 3.3. Consider V as in Theorem 3.1 with V (x) ∼ |x| for small negative x and V (x) ∼
| lnx|−1 for small positive x. Then, (3) implies |δ−| ∼ | ln δ+|−1, δ+ = O(h∞) and |δ−| ∼ h2/3. As

consequence, λk(P ) is of order h2/3. Such operator appears in [6, Section 4.1].

3.2. Asymptotic of eigenvalues for flat potentials. We now consider P as in (1) with d = 1 and

assume that V −1(0) = {0}, V is flat at 0 and, for all n ∈ N, the function

(11) x 7−→ |x|−nV (x),

is increasing for small positive x and decreasing for small negative x. For smooth potentials, this

hypothesis is equivalent to xV ′(x)/V (x) → +∞ as x → 0. As before, we define δ±(h) by (3).

Theorem 3.4 (Spectral asymptotic for flat potentials). Let P satisfy the previous assumptions. In the

limit h → 0, we have

λk(P ) ∼ π2h2k2

(δ+ − δ−)2
,

for all k ∈ N∗.

From (3), we have h2 . (δ+ − δ−)
2+n for all n ∈ N and therefore

∀α > 0, hα ≪ δ+ − δ− ≪ 1,

as h → 0. As a consequence, λk(P ) goes to 0 faster that any power of h less than 2:

(12) ∀ν < 2, h2 ≪ λk(P ) ≪ hν .

The proof of this theorem uses the strategy of the one of Theorem 3.1. We remark that, after an

appropriate scaling, the operator P looks like −∆ + R(h)1[0,1]C with R(h) → +∞ as h → 0. We

conclude applying results on Schrödinger operators with large coupling constant. The proof gives also

an estimate of the remainder term in Theorem 3.4 (see Lemma 3.7).

Proof. We begin with a lemma showing a difference between flat potentials and those having a non-

zero Taylor expansion.

Lemma 3.5. For all 0 < ε < 1, we have

lim
δ→0
δ 6=0

V (εδ)

V (δ)
= 0.

Proof of Lemma 3.5. We only consider the case δ > 0, since the negative δ can be treated similarly.

For all n ∈ N, there exists δn > 0 such that

∀δ ∈ (0, δn), (εδ)−nV (εδ) ≤ δ−nV (δ),

from (11). Thus, for all 0 < δ < δn,

(13) 0 ≤ V (εδ)

V (δ)
≤ εn.

Since n can be chosen arbitrarily large, this implies the lemma. �
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We now apply the unitary transformation (6). The rescaled operator Q = −∆ + Wh is defined

in (7)–(8). Roughly speaking, Wh is very small in [0, 1] and very large outside this interval. More

precisely,

Lemma 3.6. For all 0 < ε < 1/2, there exist two functions m(h),M(h) with m(h) → 0 and

M(h) → +∞ as h goes to 0 such that

0 ≤ Wh(x) ≤ m(h) for all x ∈ [ε, 1 − ε],

Wh(x) ≥ M(h) for all x ∈ [−ε, 1 + ε]C .

Proof of Lemma 3.6. From the monotonicity properties of Wh near [0, 1], it is enough to verify the

lemma at ±ε and 1± ε. Using (3) and ±δ± > 0, we have

Wh(1− ε) =
(δ+ − δ−)

2

h2
V
(
(1− ε)δ+ + εδ−

)
≤ max

(
V
(
(1− ε)δ+

)

V (δ+)
,
V (εδ−)

V (δ−)

)
=: m+(h).

Similar computations show that Wh(ε) ≤ m−(h) where

m−(h) = max

(
V
(
(1− ε)δ−

)

V (δ−)
,
V (εδ+)

V (δ+)

)
.

Setting m(h) = max(m±(h)), the first part of the lemma follows from Lemma 3.5.

More easily, (3), δ− < 0 and the monotonicity properties of V yield

Wh(1 + ε) =
(δ+ − δ−)

2

h2
V
(
(1 + ε)δ+ − εδ−

)
≥ V

(
(1 + ε)δ+

)

V (δ+)
:= M+(h),

and similarly

Wh(−ε) ≥ V
(
(1 + ε)δ−

)

V (δ−)
=: M−(h).

We set M(h) = min(M±(h)) and we deduce the second part of the lemma from Lemma 3.5. �

We apply the estimates on the potential Wh to surround the eigenvalues of Q as in (10).

Lemma 3.7. For all k ∈ N∗, there exists C > 0 such that, for all 0 < ε < 1/2, there exists hε > 0
with

(14) ∀h ∈ (0, hε),
π2k2

(1 + 2ε)2
− C

M(h)1/2
≤ λk(Q) ≤ π2k2

(1− 2ε)2
+m(h).

Proof. From Lemma 3.6, we have

(15) −∆+M(h)1[−ε,1+ε]C ≤ Q ≤ −∆D
(ε,1−ε) +m(h),

in the sense of form. Then, the maximin principle gives

(16) λk

(
−∆+M(h)1[−ε,1+ε]C

)
≤ λk(Q) ≤ λk(−∆D

(ε,1−ε)) +m(h).

On the one hand, applying the translation x 7→ x+ε and the scaling x 7→ (1+2ε)−1x, we see that the

operator −∆+M(h)1[−ε,1+ε]C is unitarily equivalent to (1 + 2ε)−2(−∆+ (1 + 2ε)2M(h)1[0,1]C ).
As h → 0, this operator enters the theory of Schrödinger operators with large coupling constant, see

[2, 4] and also [9, Problem 25] for explicit computations. In particular, for fix k ∈ N∗, [2, Theorem

3.6] provides

λk

(
−∆+ (1 + 2ε)2M(h)1[0,1]C

)
= λk(−∆D

(0,1)) +O
(

1

(1 + 2ε)M(h)1/2

)
,



EIGENVALUES FOR DEGENERATE WELLS 7

as h → 0, and therefore

λk

(
−∆+M(h)1[−ε,1+ε]C

)
≥ π2k2

(1 + 2ε)2
− C

M(h)1/2
.

On the other hand, we have λk(−∆D
(ε,1−ε)) = π2k2(1− 2ε)−2 and we get the lemma from (16). �

Finally, Theorem 3.4 is a direct consequence of (7), Lemma 3.6 and Lemma 3.7. �

We now treat some examples of potentials. For simplicity, we will consider even potentials, so that

δ+ = |δ−| =: δ and the functions m(h) and M(h) of Lemma 3.6 are given by

m(h) =
V
(
(1− ε)δ

)

V (δ)
and M(h) =

V
(
(1 + ε)δ

)

V (δ)
,

for 0 < ε < 1/2. Note that all these examples are of the form V (x) = xω(x) with ω(x) → +∞ as

x → 0, which is the generic form of flat potential.

Example 3.8. V (x) = e−|x|−α

with α > 0. This potential satisfies the assumptions of Theorem 3.4

and δ is given by solving 4δ2e−δ−α

= h2. Taking the logarithm, we get δ(h) ∼ (2| ln h|)−1/α. We

then optimize the upper bound in (14) by solving ε = m(h), that is ε = e−δ−α((1−ε)−α−1). Quick

computations show that the solution ε+ verifies ε+(δ) ∼ δα| ln δ| as h → 0. Similarly, optimizing the

lower bound in (14) leads to ε = ε−(δ) ∼ 2δα| ln δ|. Eventually, Lemma 3.7 provides as h → 0

(17) λk(P ) = h2| lnh|2/α
(
2−2+2/απ2k2 +O

( | ln | ln h||
| ln h|

))
.

Example 3.9. V (x) = e−| ln |x||2 . The hypotheses of Theorem 3.4 hold and δ = e1−
√

1+2| lnh/2| in

that case. Optimization of the remainders is possible as in Example 3.8.

Example 3.10. V (x) = e−|x|−4−|x|−2(1+sin(|x|−36)). This potential is continuous, non-negative, flat at

0 with V −1(0) = {0} and lim inf |x|→+∞ V (x) > 0. Nevertheless, (11) does not hold since V itself

is not increasing for small positive x. Thus, Theorem 3.4 can not be applied here.

The proof of Theorem 3.4 gives as a byproduct the description of the eigenvectors of P .

Proposition 3.11 (Asymptotic of eigenvectors). Under the assumptions of Theorem 3.4, there exists

a normalized eigenvector uk of P associated to the eigenvalue λk(P ) with k ∈ N∗ such that

(18) uk(x) =

√
2

δ+ − δ−
sin

(
πk

x− δ−
δ+ − δ−

)
1[δ

−
,δ+] + oL2(R)(1),

in the limit h → 0.

The functions in the right hand side of the last equation are normalized in L2(R), belong to the

form domain of P but not in its domain. In fact, they form a basis of eigenvectors of −h2∆D
(δ

−
,δ+).

This result is then in agreement with the intuition that P behaves like this operator at low energy.

Proof. Let vk be the function in the right hand side of (18). We show this proposition by induction

over k. For k = 0, there is nothing to prove. Assume that this property holds true until k − 1 ∈ N.

Using the unitary transform (6), we note Uℓ := U−1uℓ for 1 ≤ ℓ ≤ k − 1,

Vℓ := U−1vℓ =
√
2 sin(πℓx)1[0,1](x) and V ε

k :=

√
2

1− 2ε
sin

(πk(x− ε)

1− 2ε

)
1[ε,1−ε](x),
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for 1 ≤ ℓ ≤ k. In particular, (Uℓ)1≤ℓ≤k−1 (resp. (Vℓ)1≤ℓ≤k) is an orthonormal basis of the eigenspace

associated to the k− 1 (resp. k) first eigenvalues of Q (resp. −∆D
(0,1)). Otherwise, V ε

k is a normalized

eigenvector of −∆D
(ε,1−ε) associated to the eigenvalue π2k2(1 − 2ε)−2 and V ε

k = Vk + oε→0(1). Let

us decompose V ε
k using

V −
k = 1[0,λk−1(Q)](Q)V ε

k , V 0
k = 1{λk(Q)}(Q)V ε

k , V +
k = 1[λk+1(Q),+∞)(Q)V ε

k .

Of course, V ε
k = V −

k + V 0
k + V +

k and 1 = ‖V −
k ‖2 + ‖V 0

k ‖2 + ‖V +
k ‖2. Moreover, by the induction

hypothesis and the orthogonality of the vk,

(19) V −
k = oε→0(1) + oh→0(1).

Using that V ε
k is in the form domain of −∆D

(ε,1−ε), (15) gives

〈
QV ε

k , V
ε
k

〉
≤

〈
−∆D

(ε,1−ε)V
ε
k , V

ε
k

〉
+

〈
m(h)V ε

k , V
ε
k

〉
= π2k2(1− 2ε)−2 + oεh→0(1),

where oεh→0(1) denotes a function which goes to 0 as h goes to 0 for ε fixed. From (19) and λℓ(Q) ∼
π2ℓ2, we obtain

〈
QV ε

k , V
ε
k

〉
=

〈
QV −

k , V −
k

〉
+

〈
QV 0

k , V
0
k

〉
+

〈
QV +

k , V +
k

〉

≥ π2k2‖V 0
k ‖2 + π2(k + 1)2‖V +

k ‖2 + oε→0(1) + oεh→0(1).

The two last inequalities and the properties of V ε
k yield

π2k2‖V 0
k ‖2 + π2(k + 1)2‖V +

k ‖2 ≤ π2k2‖V 0
k ‖2 + π2k2‖V +

k ‖2 + oε→0(1) + oεh→0(1),

and then ‖V +
k ‖ = oε→0(1) + oεh→0(1). Summing up,

Vk = V ε
k + oε→0(1) = 1{λk(Q)}(Q)V ε

k + oε→0(1) + oεh→0(1)

= 1{λk(Q)}(Q)Vk + oε→0(1) + oεh→0(1).

Coming back to the original variables and using that the function vk is independent of ε, we deduce

vk = 1{λk(P )}(P )vk + oh→0(1) which implies the induction hypothesis for k. �

4. A GENERALIZATION IN HIGHER DIMENSIONS

Here, we study operators P as in (1) on Rd with d ≥ 1 where the potential V can be written

(20) V (x) = V0 (|x|θ(x̂)) ,
and x̂ = x|x|−1 ∈ Sd−1 is the angle of x. We assume that V0 ∈ C0(R+;R+) satisfies V −1

0 (0) = {0},

lim infx→+∞ V0(x) > 0, V0 is flat at 0 and x 7→ |x|−nV0(x) is increasing for all n ∈ N and small

positive x. We also suppose that θ belongs to C0(Sd−1;R∗
+). Let Ω denote the star-shaped, bounded

open set defined by

Ω = {x ∈ Rd; |x| < 1/θ(x̂)}.
Mimicking (3), let δ(h) ∈]0,+∞[ be the unique solution of

(21) δ2V0(δ) = h2,

for h small enough.

Theorem 4.1 (Spectral asymptotic in dimension d). Let P satisfy the previous assumptions. In the

limit h → 0, we have

λk(P ) ∼ h2

δ2
λk(−∆D

Ω ),

for all k ∈ N∗, where −∆D
Ω is the Dirichlet Laplacian on Ω.
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Note that the eigenvalues of −∆D
Ω are positive. Radial potentials can be considered taking θ = 1.

In that case, Ω is the unit ball B(0, 1). On the other hand, Theorems 3.4 and 4.1 provide similar

results in dimension d = 1 under the present assumptions. Indeed, direct computations show δ(h) ∼
±θ(±1)δ±(h) and Ω = (1/θ(−1), 1/θ(+1)). Finally, if we assume V (x) = V0(|x|)θ(x̂) instead

of (20), one can verify that λk(P ) ∼ h2δ−2λk(−∆D
B(0,1)). In other words, θ plays no role and the

geometry (given by Ω) disappears.

Proof. The proof is similar to the one of Theorem 3.4. Let us consider the unitary transformation on

L2(Rd) given by

(Uf)(x) = δ−
d
2 f

(x
δ

)
.

As in (7), the rescaled operator is defined by

(22) Q :=
δ2

h2
U−1PU = −∆+Wh(x),

where the potential Wh satisfies

Wh(x) =
δ2

h2
V (δx) =

δ2

h2
V0

(
δ|x|θ(x̂)

)
.

As in Lemma 3.7, for all 0 < ε < 1/2, there exist two functions m(h),M(h) with m(h) → 0 and

M(h) → +∞ as h goes to 0 such that

(23)
0 ≤ Wh(x) ≤ m(h) for all x ∈ (1− ε)Ω,

Wh(x) ≥ M(h) for all x /∈ (1 + ε)Ω.

Indeed, for x ∈ (1− ε)Ω, we have δ|x|θ(x̂) ≤ (1− ε)δ. Then, Lemma 3.5 and (21) give

Wh(x) ≤
δ2

h2
V0((1− ε)δ) ≤ δ2

h2
V0(δ)m(h) = m(h).

The same way, for x /∈ (1 + ε)Ω, we have δ|x|θ(x̂) ≥ (1 + ε)δ. Then, Lemma 3.5 and (21) give

Wh(x) ≥
δ2

h2
V0((1 + ε)δ) ≥ δ2

h2
V0(δ)M(h) = M(h).

From (23), we deduce as in (15) that

−∆Rd +M(h)1(1+ε)ΩC ≤ Q ≤ −∆D
(1−ε)Ω +m(h),

in the form sense. Then, the maximin principle yields

(24) λk

(
−∆Rd +M(h)1(1+ε)ΩC

)
≤ λk(Q) ≤ λk

(
−∆D

(1−ε)Ω +m(h)
)
,

for all k ∈ N∗.

By scaling invariance, we have

(25) λk

(
−∆D

(1−ε)Ω +m(h)
)
= (1− ε)−2λk(−∆D

Ω ) + oεh→0(1),

where oεh→0(1) denotes a function which goes to 0 as h goes to 0 for ε fixed. On the other hand, by

the theory of large coupling constant (see [17], [10] or [7]), the spectrum of −∆Rd + M1(1+ε)ΩC

converges to the one of −∆D
(1+ε)Ω as M goes to +∞. Thus,

λk

(
−∆Rd +M(h)1(1+ε)ΩC

)
= λk

(
−∆D

(1+ε)Ω

)
+ oεh→0(1)

= (1 + ε)−2λk(−∆D
Ω ) + oεh→0(1).(26)
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Combining (24) with (22), (25) and (26), we get

(1 + ε)−2λk(−∆D
Ω ) + oεh→0(1) ≤

δ2

h2
λk(P ) ≤ (1− ε)−2λk(−∆D

Ω ) + oεh→0(1).

Letting ε goes to 0, this inequality and λk(−∆D
Ω ) > 0 imply Theorem 4.1. �
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