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Abstract

We are concerned with the 3D-Navier-Stokes equations with Coriolis force. Existence and uniqueness of
global solutions in homogeneous Besov spaces are obtained for large speed of rotation. In the critical case of the
regularity, we consider a suitable initial data class whose definition is based on the Stokes-Coriolis semigroup
and Besov spaces. Moreover, we analyze the asymptotic behavior of solutions in that setting as the speed of

rotation goes to infinity.
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1 Introduction

In this paper we are concerned with the incompressible Navier-Stokes equations in the rotational framework

0
a—?—Au—i—Qegxu—i—(u-V)u—l—Vp:Oin R? x (0, 00)
V-u=0in R? x (0,00) ) (1.1)

u(z,0) = up(x) in R?

where u = u(z,t) = (ui(x,t),us(z,t),us(x,t)) and p = p(x,t) stand for the velocity field and the pressure
of the fluid, respectively. The initial data ug = (uo,1(2), uo2(z), uo3(x)) satisfies the divergence-free condition
V - ug = 0. The letter 2 € R represents the Coriolis parameter while its modulus || is the speed of rotation
around the vertical vector e3 = (0,0, 1). For more details about the physical model, we refer the reader to the book
[9]. Here, we will use the same notation for spaces of scalar and vector functions, e.g., we write ug € H?® instead
of ug € (H*)3.

Invoking Duhamel’s principle, the system (1.1) can be converted to the integral equation (see e.g. [12])

u(t) = Ta(t)ug — B(u,u)(t), (1.2)
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where the bilinear operator ‘5 is defined by

B (u, v)(t) = /0 Tt — PV - (u® v)(r) dr. (13)

In (1.3), P = (6; ;+ RiR;)1<i j<3 is the Leray-Helmholtz projector, { R; } 1<i<3 are the Riesz transforms, and T (-)
stands for the semigroup corresponding to the linear part of (1.1) (Stokes-Coriolis semigroup). More explicitly, we
have that

Ta(t)f = |eos (254) 1)+ sn (021 —'ﬁlgtmg)f(s)r

for divergence-free vector fields f, where I is the identity matrix in R® and R(¢) is the skew-symmetric matrix

symbol
) 0 & —&
R(§) = i =& 0 & for ¢ € R*\ {0}
& =& 0

Vector-fields w satisfying the formulation (1.2) are called mild solutions for (1.1).

In the last decades, the global well-posedness of models in fluid mechanics has been studied by several authors
of the mathematical community, particularly in physical models of rotating fluids as the system (1.1). In what
follows, we give a brief review on some of these results. We start with the works of Babin, Mahalov and Nicolaenko
[2, 3, 4], who showed the global existence and regularity of solutions for (1.1) with periodic initial velocity provided
that the speed of rotation || is sufficiently large. In [8, 9], Chemin et al. obtained a unique global strong Leray-type
solution for large || and initial data ug(z) € L?(R?)3 + H 2 (R3)3 (notice that the first parcel of ug(x) depends
on (w1, x9) where © = (11,29, 23)). For almost periodic initial data and using the [*-norm of amplitudes with
sum closed frequency set, Yoneda [20] proved the existence of solutions for large times and sufficiently large |2|.
Considering the mild (semigroup) formulation, the global well-posedness in homogeneous Sobolev spaces H* (R3)
with 1/2 < s < 3/4 was obtained by Iwabuchi and Takada [14]. They considered sufficiently large |Q2| (depending
on the size of ||ug||;;.) when 1/2 < s < 3/4. In the critical case s = 1/2, they used a class of precompact subsets
in /2 (Rg) in order to get similar results. Local versions (7" large but finite) of the results in [14] can be found in
[16]for1/2 < s < 5/4.

Another type of results for (1.1) is the uniform global solvability (or well-posedness) in which the smallness
condition on wuyg is independent of |Q2|. Giga et al. [11] obtained the uniform global solvability for small data ug
in F My (R3) = div(FMy(R3))3, where F My(R?) denotes the space of the finite Radon measures with no point
mass at the origin. The space F'M 1(R3) is an example of critical space for the 3D Navier-Stokes equations (NS)
((NSC) with 2 = 0), i.e., its norm is invariant by the scaling uo( ) = Aug(Ax), for all A > 0. The uniform global
well-posedness for small ug in the Sobolev space H 2 (Rg) was proved by Hieber and Shibata [12] and for small
initial data in the critical Fourier-Besov space FB (Rg) with 1 < p < oo and in F B, I(Rg) NE Bl L (R?) was
proved by Konieczny and Yoneda [18]. Iwabuchi and Takada [ 15] obtained the uniform global well-posedness with
small initial velocity in the Fourier-Besov F Bl_; (R?) as well as the ill-posedness in F'B ;;(R?’) for 2 < g < o0.
These results were extended to the framework of critical Fourier-Besov-Morrey spaces by Almeida, Ferreira and
Lima [1].

Concerning the asymptotic behavior for (1.1), we quote the work of Iwabuchi, Mahalov and Takada [17], where
they treated the high-rotating cases and proved the asymptotic stability of large time periodic solutions for large
initial perturbations. We also mention [9] where the reader can find convergence results of solutions towards a

two-dimensional model as |[€2| — oo (see also references therein).



It is worthy to highlight that global existence of strong, mild or smooth solutions for the Navier-Stokes equations
(2 = 0), without assume smallness conditions on ug, are outstanding open problems. Thus, global solvability
results for (1.1) with arbitrary data in suitable spaces show an interesting “smoothing effect” due to the Coriolis
parameter ().

In this paper, we show the global well-posedness of (1.1) for large 2| and arbitrary initial data uq belonging to
homogeneous Besov spaces Biq(R?’) where 1 < ¢ < coand 1/2 < s < 3/4. In fact, for the cases s € (1/2,3/4)
with ¢ = oo and s = 1/2 with ¢ € [2,00], we introduce the suitable initial-data classes Z and F (see (4.1)
and (4.12)), respectively, whose definitions depend on the Stokes-Coriolis semigroup and Besov spaces. Also, we
analyze the asymptotic behavior of solutions as 2] — oco. For the case 1/2 < s < 3/4, we use some space-
time estimates of Strichartz type for the Stokes-Coriolis semigroup, and also the condition of |Q2| being large with
respect to the Biq-norm (Z-norm for ¢ = oo) of the initial data ug (a power-type dependence). For the critical
case s = 1/2, || depends on initial data belonging to precompact sets D C Fy. In view of the strict continuous
inclusions H/2 ¢ F, and

Bs,CBs, CH*=Bs,CDBj, CBj,
for 1 < g1 <2 < g9 < o0, our results provide a new initial data class for the global well-posedness of (1.1) and,
in particular, a class larger than that of [14].

Throughout this paper, we denote by C' > 0 constants that may differ even on the same line. Also, the notation
C =C(aq,...,a) indicates that C' depends on the quantities as, ..., a.

The outline of this paper is as follows. Section 2 is devoted to review some basic facts about homogeneous
Besov spaces and certain mixed space-time functional settings. Estimates in Besov norms for the semigroup T
and the Duhamel integral term in (1.2) are the subject of Section 3. In Section 4, we state and prove our global

well-posedness and asymptotic behavior results for (1.1).

2 Function spaces

This section is devoted to some preliminaries about homogeneous Besov spaces and some mixed space-time
functional settings.

We start with the definition of the homogeneous Besov spaces. For this, let S(R?) and S’(R?) stand for
the Schwartz class and the space of tempered distributions, respectively. Let fdenote the Fourier transform of
f € S'(R?).

Consider a nonnegative radial function ¢y € S(R?) satisfying

0 < ¢o(€) < 1forall € € R, supp ¢ C {& € R?: % <l <2fand Y ¢;(€) =1 forall € € R¥\{0},

JEZ
where ¢;(x) = 237 ¢o(27z). For f € §'(R3), the Littlewood-Paley operator {A;};cz is defined by A; f = ¢; * f.

Lets € Rand 1 < p,q < oo and let P denote the set of polynomials with 3 variables. The homogeneous

Besov space, denoted by B;q(Rg), is defined as the set of all f € S'(R3)/P such that the following norm is finite

1l = {2718 f |z Yezlla () -

The pair (Bf) o |l -l 5s ) is a Banach space. We will denote abusively distributions in S’ (R3) and their equivalence
’ P,q
classes in S’'(R?)/P in the same way. The space So(R?) of functions in S(R3) whose Fourier transforms are

supported away from 0 is dense in B;’q(R?’) for 1 < p,q < oo. For more details, see [5].



Using a duality argument, the norm ||u|| ;. can be estimated as follows
p.q

ullg, <C sup [(u, )] (2.1)
p.q s
(z)erl’q/

where Q %, (R?) denotes the set of all functions ¢ € S(R?)N B;fq, such that ||¢|| B < 1and (-,-) is defined by
o= Y [ Anu)Ayo(e) do
i=g1<1”®

foru € B;q(R?’) and ¢ € Q% (R3).

The next lemma contains a Leibniz type rule in the framework of Besov spaces.

Lemma 2.1 (see [7]). Let s > 0,1 < qg < ocoand1 < p,p1,p2,7r1,r2 < 00 be such that% = il + piz = % + %
Then, there exists a universal constant C > 0 such that
. < : . : ,
1915, < C (IfNemligllss, .+ llgllersll g, )
Considering in particular p = r and p; = r; in Lemma 2.1, we have that
e < r e r - .
1915, < C (Il lglg, , + llgllerallf s, )
Ifl= % — 3, then % = % — 5 and we can use the embedding Bfm(]R?’) < L"(IR?) to obtain
b < e b - .
1£9ll5, < Clflls, lolls, 22)

The reader is referred to [6] for more details on B;,q—spaces and their properties.

We finish this section by recalling some mixed space-time functional spaces. Let # > 1, we denote by
L%(0, oc; B;q (R3)) the set of all distributions f such that

< 0.
L{(0,00)

110 0 0esi, ) = |17 O 5.,
Also, we denote by L (0, co; B;q(R?’)) the set of all distributions f such that

) o lrois A :
7000y = [ 2083 Flaoomizny s ) < o0

As consequence of the Minkowski inequality, we have the following embeddings

0 LT 7o . T :
L7(0,00; By ;) = L7(0,00; B, ), if 0 < g,

70 58 0 58 : (23)
L7(0,00; By ;) = L7(0,00; B, ), if 0 > q.

3 Estimates

Firstly, we recall some estimates for the heat semigroup e** in Besov spaces [19] and the dispersive estimates
for T (t) obtained in [13].



Lemma 3.1 (see [19]). Let —00 < s9 < 51 <00, 1 <p,q<ocand f € B;?q(Rg). Then, there exists a positive

constant C = C|(sg, 1) such that
A _3(g1—
[ fll o1, < CE 20| £l oo, foratl t > 0.
Before stating the dispersive estimates of [13], we need to define the operators
. €3 v
G+ (1)f] = [eiwgf} , forT € R,

and the matrix R of singular integral operators

0 Rs —Ry
R=| —-Rs 0 Ry
Ry —-Ry O

Using (3.1) and (3.2), T(t) can be expressed as
1 1
Ta(t)f = 59+ ([ (I + R) f] + 5G- () [e>(I = R) f]

fort > 0and 2 € R.
Notice that the operators G4 (t€2) correspond to the oscillating parts of Tq ().

2

(3.1)

(3.2)

(3.3)

. s+3(1-2
Lemma 3.2 (see [13]). Let s,t € R,2<p<ooand f € B;, q( p) (R3) with % + 1% = 1. Then, there exists a

constant C = C(p) > 0 such that

log (e + \t\)) 5(-3)

GO g, < C< 1+t

HfHBers(l—%)'

p'q

In what follows, we establish our estimates in Besov spaces for T (¢) and the Duhamel term fg Ta(t —

T)PV f(7) dr. We start with three lemmas for T (t).

Lemma 3.3. Assume that s,Q € R, t>0,1<r<p <2<p<ooandl < q < oo, and let k be a multi-index.

Then, there exists a constant C' > 0 (independent of ) and t ) such that

1 2

log (e + [t€2]) 5(1_5) _m_é(l_l)

k .
Tolt . <C| —=———Z t 2 2\r p

9505y, < € (“ELEEL
forall f € B;iq(]R?’).
. . . .s+3<% l)
Proof. Using the representation (3.3), Lemma 3.2, the embedding B, 4 P/ (R3)

Lemma 3.1, we obtain

IVaTo(® 5, < ClG=D) Ve s,

. <log (e+ ymy)>%(1—i)

IN

ETTS] ,
P ,q
1 2
tog (e + 112\ 2 (3) |y
< =2~ v 7
<o(*E IVEC Ao

9

1—-2

IN

1+ [t

5

”V];etAfH .5+3(17%)

[l

c<w>2< B -Dy,



Lemma 3.4. Let 1 < g < oo. Consider s,p,0 € R satisfying

1 1 21
O§s<§,2<p<6 and §—i§—<min -1 ——,—>.
D 4 2p 0 2 P q

Then, there exists C' > 0 (independent of t > 0 and ) € R) such that

_1,3_3
1T N0 0015,y < CIAUT T2 1 f N5 (3.4)
forall f € Bg’q(R?’).

Proof. By duality and estimate (2.1), notice that (3.4) holds true provided that

r=|[" NG () [ fl(x) Apd(x, t) dadt
I 3 dee ’“ 69

<O fll g 1160 1ot oo
= B3 NPNLY 0,00877 )

for all ¢ € C§°(R? x (0, 00)) with 0 ¢supp(¢ (&, 1)) for each t > 0, where 1/p+1/p/ =1,1/6 +1/¢' = 1 and
1/q+1/¢ =1.
For (3.5), we use Parseval formula, Holder inequality, the inclusion Bgz(R?’) < LP(R?) and Lemma 3.3 in

order to estimate

- 1 etA X X X
=3 |7 [ A0 @01e 8ot ) doat
_ T A (@) BRGSO () dadt
|j—zk:§1 /0 R o ‘
- 2,5(@) [ BRGSO ) deda
|j—§k:§1 /RJ /0 o
00 (3.6)
<C Y 1Al | [ Aga@nleto) ar
i—k|<1 0 L

<2l ST 20A g2 ke

li—k|<1

< CQMHfHB%q <Z 2—ksq/

keZ

/0 " ARG ()[R (2] dt

L2

1

7\ 7
L2)

/0 ARG () B o(1)] dt

Now, we are going to prove that
_1,.3_3
<o ot HAW\@Q,(O,M;L#),

where
I, = ‘

/0 - ARG+ (1) [ p(1)] dt

L2



In fact, using the Parseval formula, Holder inequality, the embedding 32’2 (R3) < LP(R?) and Lemma 3.3, we

have
= </0°° AG (@] 6(0)] di, /OOO DG Q) 6(7)] d7>
N /Ooo /OOO /R NG ()6 (1))(2) AxG (A7) [e™24(7)](2) dudrdt
- /ooo /ooo |8k o 188G (Ut — 7)) 2G()] |1 drdt
<C /0 N /0 N Ak 1o | ARG (Q(E — 7)) [T (7)) po , drdt

1 2
0o oo log (e + 2|t — 7[)\ 2 (1=3)
< Ard@)| (1A A t.
<o [T [T iawn, (RE eS80 13, drd

L2

P2
By Lemma 3.1 and the embedding L*' (R?) — Bg, o(R3) for p’ < 2, it follows that

€28 13y < Cle+ 1) 0D sotlz,

p’,2
_3(1_2
<l — 720D A

Thus,

00 oo 1 it — 7))\ 2 (%)
pee [ HAm(t)llef(Ogl(iTgl||J|t_T|T|)> = ol 072 ) e

(3.7)

< C“Ak¢|’LG’ 0,00;L7") —T) ”Ak(b( )”Lp’dT

)

L9(0,00)

where

_ (logte+jon R a2
h(t)—< T ) It] .

We consider the cases 9 > g — 2% and 1 % — 2%. In the first case, notice that
__+___
kil 4 = Cl0f?
Therefore, using Young inequality in (3.7) and the above equality, we obtain
__+___
Ik <ClQ Tz p||Ak¢||L0, (0,00:L#")"

Now, multiplying by 27*, applying the lq’(Z)—norm and using (2.3), we arrive at

N 1
, a 1,3 3 —ksq’ g .
() oot (Se g, )

keZ keZ (3.8)

_1.3_3
SC’Q‘ 04 2PH¢”LGI(O,OO;B;,S(I,).
It follows from (3.6) and (3.8) that

I'< CIQI_#T?PHfHBs 191 0001857 ) (3.9)



with C' > 0 independent of ¢ and f.

_3(1-2
In the second case % = % — %, we use the fact h(t) < |t| 2 (1 P) and Hardy-Littlewood-Sobolev inequality

in (3.7) to obtain
II? < C||Ak¢”ie’(07oo;Lp’)' (3.10)

Thus, using (3.10) and proceeding as in (3.8), we obtain a constant C' > 0 (independent of ¢ and f) such that

I<CONfllgg Nl por 0,008 - (3.11)
»q »',q
Estimates (3.9) and (3.11) give the desired result.
o
.1
Lemma 3.5. Assume that 1 < g < 4and f € B227 q(R3). Then,
hm ITa(: )fH 1 =0. (3.12)

Q- 1(0,00:82,)

S— 1
Proof. Slnce So(R3) By — = B3 ', for ¢ # oo (see Section 2), there exists (wg)gen in So(IR?) such that

wy — fin B2 R3) as k — oo. Next, using Lemma 3.4, we obtain
2,q

lim sup || To () f|] 1 < limsup [[To()(f — w)]] .1+ limsup [|To(-)ws|| !
Q| — 00 L4(0,00B3,)  |Q—oo L4(0,00B3,)  |Q|—oo L4(0,00;B3 ) 3.13)
< Clhue = 1 4 —I—hmsupHTQ( | N '
Q] =00 4(0,00;B,)
Choosing p € (%, 3), we have the conditions
3 3 1 1
- ——< =K 1——-,=- d -——<0
1 92 4 mm{ ’ } 27 2
.—143 1
Then, we can use By; *(R3) < B?f (R?) and Lemma 3.4 to estimate
limsup | T (- | , < Climswp |[ToChuel _y.s
9fro0 L3005iB2,) T [0) o Li(00ciByg 7)
(3.14)
<C]Q\2 ZPHwkH _143 — 0, as [Q] — oo
2,q P
By (3.13), (3.14) and [|wy, — f|| .y — 0, it follows (3.12).
B2,
o

The next two lemmas are concerned with the Duhamel term fg To(t — 7)PVf(7) dr

Lemma 3.6. Let s € R and Q2 € R\{0} and let p,r, q,0 be real numbers satisfying

6
2<p<3, g<r<2, 1<g< o0, 1-

1 3/1 1
maxq0, = — - (—-——| —
{ 2 2<7“ p)



Then, there exists a universal constant C > 0 such that

t _1+§<1_1)+1
/Tg(t—T)]P’Vf(T) dr CcoprtG (3.15)
0 L9(0,00;B5 ,,) 100357,
Proof. Using Lemma 3.3 it follows that
¢ ¢
To(t —7)P < Ta(t —7)P o
1(1_2 (3.16)
E ia(ii) (log(e+ |t — ) 073)
< — 2 2(7‘ ) .
<o| [e-n i) (e BTV ), ar

L9(0,00)

We are going to prove (3.6) in two cases. First we consider the case % = % —

N9V

(% - %) Here, we note that

<1og (c+ |ﬂ||t—f|>>%<l—%>

<1
1+ |Q||t — 7| -

and employ Hardy-Littlewood-Sobolev inequality to estimate

t ~1-3(2-1) (log (e + 19|t — 7]) 5(1-3)
t— 2 2\ 5 d <C ..o @Ga7
[e-n (B gy, ar| g GID
L9(0,00)
Consider now the case % < % — % (% - %) . Selecting ¢ such that % = % + % — 1, a direct computation gives
~1-3(L-1) (log (e + ||t — 7]) 5(-3) ol 1-1+3(2-1) 318
t— T = "), .
(t 1) (Rate =) 9 619
L4(0,00)
By Young inequality and (3.18), we have that
t —1.3(1_1) /log(e+ [Q|t —7|) %(1_%)
[e-niEm) ( ) IOl ar
‘ 0 1+ (Qt — 7] a 19(0.00)
L s(11) (log (e + 20\ 2 (1F)
g I iy a1
1+ |Qt L2(0,00;B7 )
L£(0,00)
1_1,3(1_1
_ 5—§+§<F")
= cla) 120
The proof is completed by substituting (3.17) and (3.19) into (3.16).
o
Lemma 3.7. Let 5,2 € Rand 2 < g < oo. Then, there exists a universal constant C' > 0 such that
t
/0 To(t—71)Vf(r)dr < C”f”L2(0,oo;B§q)‘ (3.20)

L*(0,00;B3 ,)NL*(0,00;B3 )



Proof. We denote X = X; N Xy where X; = LOO(O,oo;Biq) and Xy = L4(0,oo;B§’q). We start with
estimates for the X;-norm. We have that

/t To(t—T1)VA;f(T) dr

0

HA]- /OtTQ(t—T)Vf(T) dr

L? ‘

<C

L2

t o~ —~
/ IR 13,6 F ()] dr
0 L2

< C |[Iem 1 120, N5 (€ TPz 0.

L2
< ClA;j fll2(0,00512)

Multiplying by 257, applying [%(Z)-norm and using inequality (2.3), we arrive at
1
+ q

| Tatt =V ar| <0 [ SN g
0 Bg,q jEZ
< Ollflzqo,00:5.,
and then .
/ Tolt — )VI(r) dr|| < Ollfll sy, (321)
0 X )

In order to estimate the X5-norm, we use Lemma 3.3 and Hardy-Littlewood-Sobolev inequality to obtain

t

t
; To(t —7)Vf(r)dr |TQ(t—T)Vf(T)||B§Vq dr

L4(0,00)
<o|[@-n b Do)y, ar 622
0 ’ L4(0,00)
< Cllfllz20,005., )
Putting together (3.21) and (3.22), we arrive at (3.20).
o

4 Global existence

In this section we state and prove our results about existence and uniqueness of global solutions to (1.1).
Basically, we have two cases 1/2 < s < 3/4 and s = 1/2. We start with the former.

Theorem 4.1. (i) For 1 < q < oo, consider s,p and 0 satisfying

1 3 1 s 1 2 s

25T 379,537 ®
s_1_.1 .5 3 s 5_3 1<mm{1_21}'
2 2 0 8 2p 4 4 0 p’q

Let Q € R\ {0} and ugy € Bg’q(Rg) with V - ug = 0. There is a constant C' = C(s,p,0) > 0 such that if
||U0HB§ < C’|Q|%_%, then there exists a unique global solution u € C([0, c0); B q(R?’)) to(1.1).
,q ’

10



(1) For q = oo, consider s,p and 0 satisfying

o< 3 1 n s - 1 - 2 s
p— S p— p— p— p— —_ ——
2 43 9 p 3 3
s 1 - 1 5 3 i S
2 2p 60 8 2p A4
Let Qo > 0 and uy € T with V - ug = 0, where
13,3
- {f e S'(R3): ||fllz := |S;u% Q|73 % | To (¢ )fHL(’(O,oo;B;;OO) < oo}. 4.1)
>80 ’

There is a constant C = C(s,p,0) > 0 such that if ||upl|lz < C’|Q|%_% for |Q| > Qq, then the system
(1.1) has a unique global solution v € L°(0, oo; B;oo(R?’)). Moreover, if in addition uy € BS’OO (R?) then
u € Cy,([0, 00); Bioo (R3)) where C,, stands to time weakly continuous functions.

Remark 4.2. Notice that the space T depends on the parameters Sy, 0, p and s, but for simplicity we have omitted

them in the notation.

Proof of Theorem 4.1.
Part (7): By Lemma 3.3, it follows that

_1,3_3
1Ta®)uoll o005, < Col2 272 fJuoll ;- (4.2)

Now, we define the operator I" and the set Z by

[(u)(t) = Ta(t)uo — B(u,u)(t) (4.3)
and
Z ={ue 190,00, B3, (R?)) : <20,/ 7T —
= {w € L(0,00: By (B) ¢ [l sy < 2C0l 55 Jull sy, 7w =0}
Taking % = % — 5, we can employ Lemma 3.6 and (2.2) to estimate I'(-) as follows

Hr<u>—r<v>||Le<o,w;B;,q>=H / Talt =BV -@® @w=v)(n) +u=v)@vi)r| =

11
<C]Q\9 3+3 (T P lu® (u—v +(u—v)®vHL2(OOOBS )

1,3(1_1
SC!Q\G H(-) (HU”LG(()ooBS 0l 0,005, )HU_U”LG(O’O";BISW)
4.4)
1.3(1_1 1,3 (
< 1 A0 aculor B ol vl ooy

11 (1_;> 1,33
202|Q|0 r p 0" a QPHUOHBS(IHU_UHL&(O,OO;B;,Q)

1_s
= C2‘Q’4 2 ”UOHBSH Hu - UHL9(0700;B§,¢1)’
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for all u,v € Z, where Cy = Cs(s, p, #). Moreover, using (4.2) and (4.4) with v = 0, we obtain

1,3 3 1s
< Col€[ o7 2p|’u0HB;7q+C2’Q‘4 2HUOHBSHHUHL9(O7OO;B§’(1)

3 3 1,3
22 _§+Z_

L L. 4.5)
< Cold 7T 21’||U0\|B§q‘|'C2|Q|4 2\|u0|IB§q2C’0|Q|

21
ol
_1,.38_3 1_s
— COHUO”BS(]’Q‘ 0T1 2p (1 + 202’9‘4 2 Huo”ng)
for all u € Z. Thus, for 2 and u satisfying
1_s 1
Gl 2 Jluollgy | = 5
we get
_143_3 1
HF(U)HLQ(O,OO;B;,Q) < 2Co[Q o HUOHBS,q and [|I'(u) — F(”)HL@(O,OO;B;,q) < 5”“ - UHL@(O,OO;B;,Q)'
Then, Banach fixed point theorem implies that there exists a unique mild solution v € Z to (1.1), i.e.,

u(t) = To(t)ug — B(u,u)(t).

It remains to prove that u € C([0, 00); Bg q(Rg)). Basically, we need to estimate the B§ ,-norm of the linear and

nonlinear parts in (4.3). For the linear one, we use Lemma 3.3 to get
ITa®)uollz; < Colluollp; - (4.6)

For the nonlinear part, taking % = = — 5, we use Lemma 3.3, (2.2) and Holder inequality to obtain

2
p

/Ot To(t —7)PV - (u®u)(T) dr

t
<[ Tt =PV (e w)(r) s, dr
Bs 0 ’q

t

t 1_3(1_1 4.7

6
L2 (0,00)

where we need % < % — % + 7 in order to ensure integrability at 7 = ¢. From (4.6) and (4.7), it follows that
u(t) € Bg’q(Rg) for t > 0, and then we have that v € C'([0, 00); Biq(Rg)), as desired.
Part (i7): In view of (4.1), we have that

1.3 3
1T ()uoll Lo 0,005 ) < 11 57575 g 7, for all || > Q. (4.8)
Now, for [Q| > Qg consider
['(u)(t) = Ta(t)uo — B(u, u)(t) (4.9)

12



d
- 0 58 3 -3+3-2
7= {u € L(0,00; By oo (B?)) : [ull o g iy ) < 20771 |lugllz, V-u= 0} ,

Taking 1 = 2 — £, and proceeding similarly to Part (i), we obtain a constant Cy = Cy(s,p, H) such that

2
p

5 1_s
ID(w) = D)l ooy ) < CoAU5 ™ ozl = 0l o g cosss )
’ ' (4.10)

1 3

_,_;,_3_* 5 1_s
7)1 sy < Nuollz ] 5475 (14 2601035 uollz)
for all u,v € Z. Thus, for € and ug satisfying

2] > Qp and C~’2|Q|i_%\|u0||z <

N

we get

_143_3 1
T 00,0035,y < 2122742 [Juolz and [[T(w) = L)l o0 00;85 ) < 511t = Vllpogo 05 )

Again, we can apply the Banach fixed point theorem in order to obtain a unique mild solution v € Z to (1.1). As-
sume now that ug € Bg,oo (R3). Since (4.6) and (4.7) hold true for ¢ = oo, it follows that u € C,,([0, co); Bioo (R3)).

o
Before proceeding, for 25 > 0 and 1 < ¢ < oo we define the space
. 13y . . ,
Fis {f € SE): ISlr = op ITa(0)f s < oo} , @1
where, for simplicity, we have omitted the dependence on {2 and ¢ in the notation F. We also define
Fo = {f € F: limsup HTQ(t)f”L4(0 oo B3/2) = O} . (4.12)
|Q|— 00 e 2T
Both spaces F and Fy are endowed with the norm || - | z. The next theorem deals with the critical case s = 1/2.

Theorem 4.3. Let 2 < g < oo and ug € D with V - ug = 0 where D is a precompact set in Fy. Then, there
exist @ = Q(D) > 0 and a unique global solution w to (1.1) in L4(0,oo;B§7/qz(R3)) provided that || > Q.
Moreover, if in addition uy € Bé’/z(Rg) with ¢ # oo, then u € C’([O,oo);B;’/q2 (R®)). In the case ¢ = oo, we
obtain C,,([0, 00); 321/020 (R3)).

Proof. Let § be a positive number that will be chosen later. Given that D is a precompact set in Fy, there exist
L =1L(5,D) e Nand {gr} C Fy such that

L
D c | B(gr,9).
k=1
where B(gy,d) denotes the ball in F with center gj and radius §. On the other hand, using the definition (4.12),
there exists Q = Q(8, D) > Qg > 0 such that

<4

sup [ Ta()gl

=1,4,...4

1
4(0,00;B3,)
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provided that [Q| > €. Now, given g € D there exists k € {1,2,..., L} such that g € B(gy,d). Therefore, for

|| > Q we can estimate

< |[[Ta(t)(gx — 9

Tol(t + || Ta(t
[T )g”Lf*(O,oo;B;l’jq) L(0ooiBh,) [T )gk|!L4(07m;Béq)
< Cllgs — gllz + 6
< (C+1)é.
Thus, there exists C7 > 0 such that
sup [|Ta(t)gl| 1 < (10, forall | > Q. (4.13)
geD L*(0,00;B%,
Now, we consider the complete metric space Z defined by
1
_ 4 .R2 . L —
7 = {u e L*0,00;B2,) : H“"m(o,oo;séq) <2016,V -u= 0} , (4.14)
endowed with the metric d(u,v) = ||u — || I 1 ; Also, we consider the operator I" defined in the proof of
L O,OO;BS,Q

Theorem 4.1. For u,v € Z, using Lemma 3.7, (2.2) and Holder inequality, we can estimate

IT(w) = T(v)]

/0 Tot—7)PV - (u® (u—v)+ (u—v) ®v)(T) dr

1
B2 »
L4(O7oo,B3’q) L4(0700?B:3§,q)

<Clu@(u—v)+(u—-v)®
< Clus (o) =)@l

4.15)
gc(Mmy%m—vw% +Mm«%m—vw% )
B3, 3,011 12(0,00) Bsq 3,411 22(0,00)
S (e N | U
L (0700;3&(1) L4(0700§B3,q) L4(0700§B:3,q)

Taking v = 0 in (4.15), for u € Z it follows that

r <|Ir(o +||IT(u) = T(0
| (u)HH(OM;Béq)_H ()”m(o,oo;séq) 1T (w) ()”m(o,m;géq) o
< [[Ta(t)uol .y + Coflul 1
L4(0,00;B5 ) L4(0,00;B3 )

Choosing 0 < § < Wl@, estimates (4.13), (4.15) and (4.16) yield

|IT ()] 1 <2CH4, forallu € Z,
L4(0,00;B3 )
1
IIT(u) — T'(v)]| 1 < —|lu—2 1, forall u,v € Z,
L4(0,00;B3,) 2 L*(0,00;B,

provided that || > Q). Therefore, we can apply the Banach fixed point theorem to obtain a unique global solution
.1
u € L0, 00; B3 ).

L1
Moreover, using Lemma 3.3, Lemma 3.7 and u € L4(O, 00; B32, q), we have that

lu@Il .3 =TI,

< Clluoll .1 +Cllul)? 1 < oo, (4.17)
B LA 2

1
2
2,q9
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for a.e. t > 0. Since ||ul| . < 2C10and § < gio, it follows that
L4( 102

.R2
0 B3,

lu(®)]| . ) < (HuoH 3 +1) <oo, forall [Qf > Q, (4.18)
2 2 ,q
L1 1
and sou(t) € By q(R?’) fora.e. t > 0. Using this and above estimates, standard arguments yield u € C([0, o0); By, (R?))
1
for ¢ # oo and u € C,, ([0, 0); Bf’q(Rij’)) for ¢ = o0

Theorem 4.4. Let 2 < q < oo and ug € Fog with'V - uy = 0. Then, there exist Q= Q(uo) and a unique global
L1 -
solution u € L*(0, 0o; B327q(R3)) to (1.1) provided that | > €.

Proof. 1t is sufficient to apply Theorem 4.3 to the set D = {ug}.
o

1
Corollary 4.5. Let 2 < q < 4 and ug € D with V - ug = 0 where D is a precompact set in By q(R3 ). Then, there

- L1 1
exist (D) > 0 and a unique global solution u to (1.1) in the class C(]0,00); Biq(Rg)) N L*(0, oo; B?iq(R?’))
provided that || > Q(D).

Proof. In view of Lemma 3.5, we have that B : q < Foforl < ¢ < 4. Now the result follows by applying
Theorem 4.3.

5 Asymptotic behavior as [Q)| — oo

In this section we study the asymptotic behavior of the mild solutions as |[{2| — oo. For convenience, we denote

CL 13 s 1303
W=Tg Ty Ty, Ty MEAT T T

First, we consider the case 1/2 < s < 3/4.

Theorem 5.1. (i) Let 0 < e < % and 1 < ¢ < oo, and suppose that s, p and 0 satisfy

1 3 1 1
- +3e<s < -, + -
3

s s
2 43 9 3 3’
S 1<1<5 3+s € 3<1< 1 21
- < =< == — = — = ——<-<min<1l-——, -

2 2p 6 8 2p 4 4 4 — 0 p q
Let u and v be solutions of (1.1) with initial data ug and vg in Bg,q(Ri”), respectively. Then, for o < 203

|Ql‘1m |2 | u(t)—v(t )HBHE =0 if and only zf hm QYN Tt )(UO—UO)HB;+E =0, for each fixed t > 0.
»q
S.D

(17) Let0 <e< % and 1 < q < oo. Assume that s, p and 0 satisfy

LS 3 1 s_1_2 s
272 1 3795,53 7%
s_ Lt _1_5 3 s §_3<l<mm{1_21}
2 2p 0 8 2p 4 4 2p 0 p q



Let o < g +2f3p — 5 and assume that u and v are solutions of (1.1) with initial data uo and vy in Bg,q(Ri”),
respectively. Then, for each fixed t > 0,

|Ql\igloo | Ju — U||L9(0,oo;B;f§f) =0 ifand only if |Ql\i£>noo || T (t) (uo — Uo)HLg(Om;Bne) =0. (5.2)

Proof. First we write

u—uv="To(t)(up —vo) + B(u,u)(t) — B(v,v)(t). (5.3)

we estimate the Bgze—norm of the nonlinear term in (5.3) as follows

Considering % = % T

19 (u, u)(t) = B0, 0)()| e < C /0 (t =772 7207 )]|es0 A we (u—v) + (u = v) @ 0)(r)]| ggye A7

<0 [t =y 0D gy, + lulgy = o)l dr

1_2_3 _e
<crrmi3(G3) 2(||UHL0(0,OO;B;,(1)‘|‘HU‘|L0(0,OO;35M))||U—UHLe(o,oo;Bqu),

where we have the integrability at 7 = ¢ due to the condition

Thus,

Since a0 < 20, it follows that

im  [QYB (u, u)(t) — %(v,v)(t)||3-5+6 =0, foreach t > 0. (5.4)

1
|| —o00
In view of (5.3) and (5.4), we obtain the desired property.
For item (i7), we proceed similarly as in the proof of Lemma 3.6 by taking f =« ® (u —v) + (u — v) @ v in
1_3(1_1 e

the nonlinear term of (5.3). Since % <3-3% (; — 5) — 5, We can estimate

— £
198 (s, 10) — B0, 0) | o 0 ey < ISl o0 sty ) + 1001000553 )1 = 0l 00 ey

and then
9B w) — B0 0) o g gy < CIT 5250, for all 0] > 0. (5.5)
Finally, we obtain (5.2) by letting |©2| — oo and using (5.5) and (5.3).
o
Remark 5.2. Let 1 < q < oo, and consider s,~y2,p and 0 such that
1 3 1 1 1 1 s 1 2 s
—<s<S, O<mp<=(1—=- — (=== <-<z-—= 5.6
9 S 4’ V2 2( €>7 2/72 <8 4+’Y2> = 3 37 ( )
s 1 1 5 3 s 3 3 1 1 2 5.7)
2 2p 0 8 2p 4 4 2p— 0 P '
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Since < 3 =3 (1 =1) =2 (1-2) and

< (o =03

)

<log (e+ \Qyt)>%(1—i) _log(e+ (-3 1
(1+1[9t) Vl( %) 1+|Q|t)72<1‘§>

where 1,72 >0, v1 + 72 = % and vy < 1 (1 - —) we can estimate (similarly to Lemma 3.6)

1B 1,) = B0, 0) o0y < 105 sy + 1000y ) = 0l 0
which implies
Q0 1B 0) — B0, )l oo ey < ClT 02 (75) 2
Thus, for o < g + 20 + Vo (1 — %) we obtain the property (5.2).
In what follows, we address the asymptotic behavior of solutions in the critical case (s = 1/2).

Theorem 5.3. Let 2 < q < oo and let u and v be mild solutions of (1.1) with initial data ug and vy in Fy,
respectively. Then, for all « > 0

lim |Q%||u — v \ 1 =0 ifand only if hm QN T(t) (uo — vo) | 1 =0. (5.8)

|Q2[—o00 (0,00;B2,, L4(0,00;B3 )

Moreover, for each t > 0, we have that

dm 191 utt) = (o), =0 (5.9)
provided that
Jim [ <||Tﬂ(t)(u0—vo)||3éq+||TQ(t)(u0—U0)||L4(OOO_B% )-o (5.10

1
Proof. By the proof of Theorem 4.3, we know that u € L*(0, oc; B3 ) with

[[ull L < 2040, forall |Q] > Q,

L4(0,00;B% )

and similarly for v. Thus,

sup ||u H 1 <2Cidand sup HUH 1 <2046 (5.11)
Q>0 LH000Bgy) Q>0 L0e0iBgy)
Next, we estimate
=l g S IT2O0 =l g Colll o el el
which yields
(=4O =l < QT — w0, (512

where (', C5 and § are as in the proof of Theorem 4.3. Since 1 — 4C1C56 > 0 and the term on the right side

converges to zero (by hypothesis), it follows the “if” part in (5.8). For the reverse, we write (5.3) as
To(t)(uo — vo) = u — v — [B(u, u)(t) — B(v, v)(t)] (5.13)
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and proceed similarly.
.1

Next, we turn to (5.9). Applying the B3 -norm and using Lemma 3.7, we obtain

[u(®) =v@ .1 < [[Ta(t)(uo —vo)ll .

B2, B2,q

+ Ol 1 Aol .3 e =l 3
L (0700333,(1) L4(0700§Bg,q) L4(0700§Bg, )

for each t > 0. Multiplying (5.14) by |

“, letting || — oo, and using (5.11), (5.10) and (5.8), we get (5.9).

Remark 5.4. Notice that we can take vg = 0 and v = 0 in Theorems 5.1 and 5.3 and obtain asymptotic behavior

properties for u = ugq as |Q| — oco. In particular, in Theorem 5.3, we have that

lim  [Q]Y||uq]| .1 = 0 provided that Qlllgloo |Q|°‘HTQ(7§)1L0||L4 = 0. (5.15)

1 .1
| —o00 L4(0,00:B3,) \ (0,008 )

In the case o = 0, notice that the latter limit holds true for ug € Bé’/f (R?) with 1 < q < 4 (see Lemma 3.5) and
for all ug € Fo.
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