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Abstract

This paper is concerned with a non-conserved phase field system of Caginalp type
in which the main operators are fractional versions of two fixed linear operators A
and B. The operators A and B are supposed to be densely defined, unbounded,
self-adjoint, monotone in the Hilbert space L2(Ω), for some bounded and smooth
domain Ω, and have compact resolvents. Our definition of the fractional powers
of operators uses the approach via spectral theory. A nonlinearity of double-well
type occurs in the phase equation and either a regular or logarithmic potential, as
well as a non-differentiable potential involving an indicator function, is admitted in
our approach. We show general well-posedness and regularity results, extending the
corresponding results that are known for the non-fractional elliptic operators with
zero Neumann conditions or other boundary conditions like Dirichlet or Robin ones.
Then, we investigate the longtime behavior of the system, by fully characterizing
every element of the ω-limit as a stationary solution. In the final part of the paper
we study the asymptotic behavior of the system a as the parameter σ appearing
in the operator B2σ that plays in the phase equation decreasingly tends to zero.
We can prove convergence to a phase relaxation problem at the limit, in which an
additional term containing the projection of the phase variable on the kernel of B
appears.
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1 Introduction

Let Ω ⊂ R
3 denote a bounded, connected and smooth set. We deal with the Cauchy

problem for the evolutionary system

∂tϑ+ ℓ(ϕ)∂tϕ + A2rϑ = f (1.1)

∂tϕ+B2σϕ+ F ′(ϕ) = ϑ ℓ(ϕ) (1.2)

where A2r and B2σ, with r > 0 and σ > 0, denote fractional powers of the self-adjoint,
monotone and unbounded linear operators A and B, respectively, which are densely de-
fined in H := L2(Ω) and are supposed to have compact resolvents.

The above system is a generalization of the well-known phase field system, which
models a phase transition process taking place in the container Ω. In this case, one
typically has A2r = B2σ = −∆ with, e.g., zero Neumann boundary conditions if no flux
through the boundary is assumed for both variables. About the meaning of variables
in (1.1)–(1.2), let us notice that the first unknown function ϑ represents the relative

temperature near some critical value ϑc, while ϕ usually denotes the order parameter.
Moreover, the real function ℓ represents the latent heat density and f is a source term.
Finally, F ′ denotes the derivative of a potential F , which may have a double-well shape.

Thus, the coupled equations (1.1)–(1.2) yield a system of phase field type. From the
seminal work of Caginalp and coworkers (see, e.g., [13, 14]) it became clear that phase
field systems are particularly suited to represent the dynamics of moving interfaces arising
in thermally induced phase transitions. Typical and physically significant examples for
the potential F are the so-called classical regular potential, the logarithmic double-well

potential , and the double obstacle potential , which are given, in this order, by

Freg(s) :=
1

4
(s2 − 1)2 , s ∈ R, (1.3)

Flog(s) :=
(
(1 + s) ln(1 + s) + (1− s) ln(1− s)

)
− c1s

2 , s ∈ (−1, 1), (1.4)

F2obs(s) := −c2s
2 if |s| ≤ 1 and F2obs(s) := +∞ if |s| > 1. (1.5)

Here, the constants ci in (1.4) and (1.5) satisfy c1 > 1 and c2 > 0, so that flog and f2obs are
nonconvex. In cases like (1.5), one has to split F into a nondifferentiable convex part β̂
(the indicator function of [−1, 1], in the present example) and a smooth concave pertur-
bation π̂ (π̂(s) = −c2s

2, s ∈ R, in (1.5)). Accordingly, one has to replace the derivative
of the convex part by the subdifferential and interpret (1.2) as a differential inclusion
or, equivalently, as a variational inequality involving β̂ rather than its subdifferential.
Actually, we will mostly do the latter in this paper.

In fact, in the present paper we discuss the solvability of the initial value problem for
the system (1.1)–(1.2) in the framework when both r and σ are positive, by first proving
a well-posedness result. This is worked out in a suitable framework, first in the case of a
constant ℓ for general operators Ar and Bσ, then for a bounded and Lipschitz continuous
nonlinearity ℓ, under some restriction on the domains of Ar and Bσ; indeed, D(Ar) and
D(Bσ) have to be contained into appropriate Lebesgue spaces. Then, in a second part
of the discussion we show some regularity results and we also investigate the longtime
behavior of the system, by fully characterizing the ω-limit. In the final part of the paper
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we focus our attention on the analysis, which turns out to be rather delicate and not trivial
at all, of the asymptotic behavior of the system (1.1)–(1.2) as the coefficient σ playing in
(1.2) decreases to 0. We can prove convergence to a phase relaxation problem at the limit,
in the special case of a constant ℓ and also for a concave quadratic function π̂. However,
the full set of our results is precisely described in the next section, in great detail.

Thus, here we are dealing with fractional operators, which are nowadays a challenging
subject for mathematicians: in particular, different variants of fractional operators may
be considered and tackled. Let us mention some related contribution, starting from the
paper [26], which deals with several definitions of the fractional Laplacian, which is a
core example of a class of nonlocal pseudodifferential operators appearing in various areas
of theoretical and applied mathematics. We quote some contributions by Servadei and
Valdinoci: in [32], a comparison is made between the spectrum of two different fractional
Laplacian operators, of which the second one fits in our framework; in [33] the regularity
of the weak solution to the fractional Laplace equation is discussed; [31] is concerned
with the existence of nontrivial solutions for nonlocal semilinear Dirichlet problem; in [34]
the authors show a fractional counterpart to the well-known Brezis–Nirenberg result on
the existence of nontrivial solutions to elliptic equations with critical nonlinearities. In
[1] a construction of harmonic functions on bounded domains is given for the spectral
fractional Laplacian operator. In the paper [11], the authors investigate a nonlinear pseu-
dodifferential boundary value problem in a bounded domain with homogeneous Dirichlet
boundary conditions. Regularity results and sharp estimates are discussed in [12] for
fractional elliptic equations. Fractional Dirichlet and Neumann type boundary problems
associated with the fractional Laplacian are investigated in [23], by demonstrating reg-
ularity properties with a spectral approach; this analysis is extended to the fractional
heat equation in [24]. The contribution [28] deals with obstacle problems for the spectral
fractional Laplacian The authors of [29, 30] prove regularity up to the boundary for a
boundary value problem using the Caputo variant of an integral operator with the Riesz
kernel. Some nonlocal problems involving the fractional p−Laplacian and nonlinearities
at critical growth are examined in [9]. Fractional porous medium type equations are
discussed in [6, 7, 8]: [7] deals with existence, uniqueness and asymptotic behavior of
the solutions to an integro-differential equation related to porous medium equations in
bounded domains; uniform estimates for positive solutions of a porous medium equation
are derived in [8], where the spectral fractional Laplacian with zero Dirichlet boundary
data is considered; a quantitative study of nonnegative solutions of the same equation is
provided in [6], where decay and positivity, Harnack inequalities, interior and boundary
regularity, and asymptotic behavior are investigated.

We point out that there are already some contributions addressing nonlocal variants of
Allen-Cahn, Cahn–Hilliard and phase field systems. In [3], Akagi, Schimperna and Segatti
introduce a fractional variant of the Cahn–Hilliard equation settled in a bounded domain
and complemented with homogeneous Dirichlet boundary conditions of solid type; they
prove existence and uniqueness of weak solutions and investigate some significant singular
limits as the order of either of the fractional Laplacians appearing in the system approaches
zero. In this respect, their results can be compared with our results of Section 7: it is
worth mentioning that the authors of [3] use fractional operators not defined via the
spectal properties and actually different from ours. In the recent paper [4], for fixed
orders of the operators, the same authors show the convergence as time goes to infinity of
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each solution to a (single) equilibrium. The contribution [2] deals with a fractional Cahn–
Hilliard equation by considering a gradient flow in the negative order Sobolev space H−α,
α ∈ [0, 1], where the case α = 1 corresponds to the classical Cahn–Hilliard equation and
the choice α = 0 recovers the Allen–Cahn equation; existence and stability estimates are
proved. We also mention the articles [18, 19] that are concerned with nonlocal phase field
models for phase separations, using a free energy which arises naturally in the analysis of
the large scale limit of systems of interacting particles. Another interesting analysis of a
nonstandard and nonlocal Cahn–Hilliard system can be found in [16]. A non-local version
of the Cahn–Hilliard equation is treated in [20]; the papers [21, 22] investigate a doubly
nonlocal Cahn–Hilliard equation with special kernels in the operators, by focusing on the
interaction between the two levels of nonlocality in the corresponding terms. The paper
[25] studies numerical solutions to the Allen-Cahn equation with a fractional Laplacian:
the authors use the second-order Crank-Nicolson scheme to discretize the equation in
time and the second-order central difference scheme for discretization in space. A space-
time fractional Allen-Cahn phase-field model that describes the transport of the fluid
mixture of two immiscible fluid phases is discussed in [27]; the space and time fractional
order parameters control the sharpness and the decay behavior of the interface. We also
quote the contribution [15], where melting and solidification for metallurgical processes
concerned with phase transitions of pure metals are studied; during the solid phase the
metals show an evident ductility and these particular phenomena can be well described by
a phase field fractional model, whose evolution has to satisfy a Ginzburg-Landau equation.

In our approach, which follows closely the setting recently used in [17], we work with
fractional operators defined via spectral theory. By this, we can easily consider powers
of a second-order elliptic operator with either Dirichlet or Neumann or Robin boundary
conditions, as well as other operators, e.g., fourth-order ones or systems involving the
Stokes operator. The contents of the paper can be summarized here. In Section 2, a
precise statement of the problem along with a full set of assumptions is given and most of
the results proved in the paper are stated. Section 3 deals with the continuous dependence
of the solution on the data, while Section 4 introduces an approximating problem based
on the Moreau–Yosida regularizations of the convex function and on a Faedo-Galerkin
scheme, which is sharply discussed about existence of the approximating solution and the
proof of a priori estimates. In Section 5 the existence proof is terminated, by taking the
limits with respect to the Yosida approximation parameters, and the further regularity
results are derived. Section 6 brings the analysis of the long-time behavior and the
characterization of the ω-limit as set of stationary solutions to the system (1.1)–(1.2).
Finally, Section 7 is completely devoted to the study of the asymptotic behavior of the
system (1.1)–(1.2) as the parameter σ tends to 0: the convergence to a phase relaxation
problem at the limit is rigorously proved.

2 Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. First
of all, the set Ω ⊂ R

3 is assumed to be bounded, connected and smooth, and ν and ∂ν
denote the outward unit normal vector field on Γ := ∂Ω and the corresponding normal
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derivative, respectively. In order to simplify the notation, we set

H := L2(Ω) (2.1)

and endow H with its standard norm ‖ · ‖ and inner product ( · , · ). As far as our as-
sumptions are concerned, we first postulate that

A : D(A) ⊂ H → H and B : D(B) ⊂ H → H are

unbounded monotone self-adjoint linear operators with compact resolvents (2.2)

and introduce some function spaces and fractional operators. We avoid the background of
interpolation theory and give direct definitions. The above assumption implies that there
are sequences {λj} and {µj} of eigenvalues and orthonormal sequences {ej} and {ηj} of
corresponding eigenvectors, that is,

Aej = λjej , Bηj = µjηj and (ei, ej) = (ηi, ηj) = δij for i, j = 1, 2, . . . (2.3)

such that

0 ≤ λ1 ≤ λ2 ≤ . . . and 0 ≤ µ1 ≤ µ2 ≤ . . .

with lim
j→∞

λj = lim
j→∞

µj = +∞, (2.4)

{ej} and {ηj} are complete systems in H. (2.5)

These assumptions allow us to introduce the Hilbert spaces V r
A and V σ

B and the power
operators Ar and Bσ (for some arbitrary positive real exponents r and σ) as follows

V r
A := D(Ar) =

{
v ∈ H :

∞∑

j=1

|λrj(v, ej)|
2 < +∞

}
, (2.6)

V σ
B := D(Bσ) =

{
v ∈ H :

∞∑

j=1

|µσ
j (v, ηj)|

2 < +∞
}
, (2.7)

Arv =

∞∑

j=1

λrj(v, ej)ej and Bσv =

∞∑

j=1

µσ
j (v, ηj)ηj

for v ∈ V r
A and v ∈ V σ

B , respectively. (2.8)

Note that the series in (2.8) are convergent in the strong topology of H due to the
properties of the coefficients. We endow V r

A and V σ
B with the graph norms and inner

products

‖v‖2A,r := (v, v)A,r and (v, w)A,r := (v, w) + (Arv, Arw) (2.9)

‖v‖2B,σ := (v, v)B,σ and (v, w)B,σ := (v, w) + (Bσv, Bσw) (2.10)

for v, w ∈ V r
A and v, w ∈ V σ

B , respectively. If ri and σi are arbitrary positive exponents, it
is clear that

(Ar1+r2v, w) = (Ar1v, Ar2w) for every v ∈ V r1+r2
A and w ∈ V r2

A , (2.11)

(Bσ1+σ2v, w) = (Bσ1v, Bσ2w) for every v ∈ V σ1+σ2

B and w ∈ V σ2

B . (2.12)



6 Colli — Gilardi

Moreover, since Ar and Bσ are symmetric, for r, σ > 0 we also have

(∂tv, A
2rv) =

1

2

d

dt
‖Arv‖ and (∂tw,B

2σw) =
1

2

d

dt
‖Bσw‖ (2.13)

for every v ∈ H1(0, T ;H)∩L2(0, T ;V 2r
A ) and w ∈ H1(0, T ;H)∩L2(0, T ;V 2σ

B ), respectively.
We also remark that for every r, σ > 0

the embeddings V r
A ⊂ H and V σ

B ⊂ H are compact, (2.14)

as one immediately sees by using (2.4).

Remark 2.1. Let us mention some simple situation for possible operators A and B. In
view of (2.4) and (2.5), a standard elliptic operator with Dirichlet boundary conditions
provides an example with a strictly positive first eigenvalue. Another operator that can
be considered is the Laplace operator −∆ with Neumann boundary conditions, which
corresponds to the choice D(−∆) = {v ∈ H2(Ω) : ∂νv = 0}; in this case the first
eigenvalue is 0 and it is simple, with corresponding eigenfunctions that are the constant
functions.

Coming back to our system, we fix r and σ once and for all. Thus, we postulate that

r, σ ∈ (0,+∞). (2.15)

For the nonlinearities, we require the properties listed below and notice that they are
fulfilled by all of the significant potentials (1.3)–(1.5). We assume that

β̂ : R → [0,+∞] is convex, proper and l.s.c. with β̂(0) = 0, (2.16)

π̂ : R → R is of class C1 with a Lipschitz continuous first derivative. (2.17)

We set, for convenience,
β := ∂β̂ and π := π̂′. (2.18)

Moreover, we term D(β̂) and D(β) the effective domains of β̂ and β, respectively, and,
for r ∈ D(β), we use the symbol β◦(r) for the element of β(r) having minimum modulus.
We notice that β is a maximal monotone graph in R × R. We also remark that (2.17)
implies that π̂ grows at most quadratically and that π is linearly bounded. Finally, we
assume that

ℓ : R → R is bounded and Lipschitz continuous. (2.19)

However, in order to keep the operators Ar and Bσ as general as possible, we often assume
that ℓ is a constant. Indeed, the more general case (2.19) needs further assumptions.

At this point, we can state the problem we aim to discuss. While the first equation
coincides with (1.1), we present (1.2) as a variational inequality written in a weak form
on account of (2.12). For the data, we make the following assumptions:

f ∈ L2(0, T ;H) (2.20)

ϑ0 ∈ V r
A, ϕ0 ∈ V σ

B and β̂(ϕ0) ∈ L1(Ω). (2.21)

Then, we set
Q := Ω× (0, T ) (2.22)
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and look for a pair (ϑ, ϕ) satisfying

ϑ ∈ H1(0, T ;H) ∩ L∞(0, T ;V r
A) ∩ L

2(0, T ;V 2r
A ), (2.23)

ϕ ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ), (2.24)

β̂(ϕ) ∈ L1(Q) (2.25)

and solving the system

∂tϑ+ ℓ(ϕ)∂tϕ+ A2rϑ = f a.e. in Q , (2.26)

(
∂tϕ(t), ϕ(t)− v

)
+
(
Bσϕ(t), Bσ(ϕ(t)− v)

)
+

∫

Ω

β̂(ϕ(t)) +
(
π(ϕ(t)), ϕ(t)− v

)

≤
(
ϑ(t) ℓ(ϕ(t)), ϕ(t)− v

)
+

∫

Ω

β̂(v) for a.a. t ∈ (0, T ) and every v ∈ V σ
B , (2.27)

ϑ(0) = ϑ0 and ϕ(0) = ϕ0 . (2.28)

We notice that equation (2.26) has been written a.e. in Q and in this case the single
terms, including A2rϑ, are interpreted as functions of space and time; another way of
reading (2.26) could be a.e. in (0, T ) as the equality makes sense for all terms in the
space H as well. In our notation, here and in the sequel, we follow the former approach.
Concerning (2.27), we warn the reader that

∫

Ω

β̂(v) = +∞ whenever β̂(v) /∈ L1(Ω).

We follow a similar agreement for integrals of the type
∫
Q
β̂(v) whenever v ∈ L2(Q) but

β̂(v) /∈ L1(Q). We also remark that (2.27) is equivalent to the following time-integrated
version:

∫

Q

∂tϕ (ϕ− v) +

∫

Q

BσϕBσ(ϕ− v) +

∫

Q

β̂(ϕ) +

∫

Q

π(ϕ) (ϕ− v)

≤

∫

Q

ϑ ℓ(ϕ)(ϕ− v) +

∫

Q

β̂(v) for every v ∈ L2(0, T ;V σ
B ). (2.29)

Remark 2.2. According to the definition of subdifferential (cf., e.g., [10] or [5]), the pre-
cise meaning of the inequality (2.27) is that there exists some element ξ ∈ L2(0, T ; (V σ

B )
∗)

such that
ξ := ϑ ℓ(ϕ)− ∂tϕ− B2σϕ− π(ϕ) ∈ ∂Φ(y) a.e. in (0, T ),

where ∂Φ is the subdifferential of the convex function Φ : V σ
B → [0,+∞] defined by

Φ(v) :=

∫

Ω

β̂(v) if β̂(v) ∈ L1(Ω), Φ(v) := +∞ otherwise.

Indeed, we point out that the subdifferential ∂Φ is a maximal monotone operator from
V σ
B to (V σ

B )
∗. In this sense, (2.27) turns out to be a slight generalization of (1.2).

The assumptions (2.15)–(2.18) we have made till now on the structure are very general.
Nevertheless, they are sufficient to guarantee well-posedness and continuous dependence
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at least if ℓ is linear (the nonlinear case is discussed later on). In the result stated below
and in the rest of the paper, for v ∈ L1(Q), the symbol 1∗v denotes the function belonging
to L1(Q) that is defined by

(1 ∗ v)(x, t) :=

∫ t

0

v(x, s) ds for a.a. (x, t) ∈ Q. (2.30)

Theorem 2.3. Assume that (2.15)–(2.18) are satisfied and that ℓ is a constant. More-

over, let the assumptions (2.20)–(2.21) on the data be fulfilled. Then there exists a

unique pair (ϑ, ϕ) satisfying (2.23)–(2.25) and solving problem (2.26)–(2.28). Moreover,

if (fi, ϑ0i, ϕ0i), i = 1, 2, are two choices of the data and (ϑi, ϕi) are the corresponding

solutions, then we have

‖ϑ1 − ϑ2‖L2(0,T ;H) + ‖1 ∗ (ϑ1 − ϑ2)‖L∞(0,T ;V r
A
) + ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V σ

B
)

≤ K
(
‖1 ∗ (f1 − f2)‖L2(0,T ;H) + ‖ϑ01 − ϑ02‖+ ‖ϕ01 − ϕ02‖

)
(2.31)

with a constant K that depends only on ℓ, some Lipschitz constant for π, and T .

At this point, one can wonder whether both B2σϕ and β(ϕ) make sense in L2(Q) and
(2.27) yields something that is closer to (1.2), like

∂tϕ+B2σϕ+ ξ + π(ϕ) = ℓϑ a.e. in Q (2.32)

for some function ξ on Q satisfying ξ ∈ β(ϕ) a.e. in Q. This depends on the assumption

βε(v) ∈ V σ
B and

(
Bσβε(v), B

σv
)
≥ 0 for every v ∈ V σ

B and ε > 0 (2.33)

where βε denotes the Yosida regularization of β at the level ε > 0 (see, e.g., [10, p. 28]).
We notice that (2.33) does not follow from (2.15)–(2.18) as a consequence and is rather
restrictive. Essentially, it is fulfilled whenever B2σ is one of the more usual second order
linear elliptic operators with boundary conditions of a standard type, indeed. Therefore,
in the general case of fractional powers, the more proper formulation of the equation (1.2)
for ϕ is the variational inequality (2.27) (see also Remark 2.2).

Proposition 2.4. In addition to the assumptions of Theorem 2.3, suppose that (2.33)
is fulfilled and let (ϑ, ϕ) be the solution to (2.26)–(2.28). Then, ϕ enjoys the regularity

property

ϕ ∈ L2(0, T ;V 2σ
B ) (2.34)

and there exists ξ satisfying

ξ ∈ L2(0, T ;H) and ξ ∈ β(ϕ) a.e. in Q , (2.35)

such that the differential equation (2.32) holds true.

Independently of assumption (2.33) and of the above result, we can show some more
regularity for the solution if the datum ϕ0 satisfies some proper conditions, as stated
below.
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Theorem 2.5. In addition to the assumptions of Theorem 2.3, suppose that

ϕ0 ∈ V 2σ
B and β◦(ϕ0) ∈ H. (2.36)

Then, the solution (ϑ, ϕ) to problem (2.26)–(2.28) also satisfies

∂tϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V σ
B ). (2.37)

Remark 2.6. Of course, to each of our existence and regularity results one can associate
a bound for some norm of the solution through a constant that depends only on the
assumptions at hand and T . Such bounds are obtained from the construction of the
solution, directly. For instance, concerning Theorem 2.3, we have the following estimate

‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V r
A
)∩L2(0,T ;V 2r

A
) + ‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V σ

B
) ≤ K1 , (2.38)

where the constant K1 depends only on the structure of the system, the norms of the data
corresponding to (2.20)–(2.21), and T .

Concerning the case of a non-constant ℓ that satisfies just (2.19), we can show some
results which depend on further assumptions on the operators Ar and Bσ. Namely, we
require the following Sobolev-type embeddings:

there exist p, q ∈ [1,+∞] with
1

p
+

2

q
= 1 such that V r

A ⊂ Lp(Ω) and

V σ
B ⊂ Lq(Ω), the embeddings being continuous and compact, respectively. (2.39)

We notice that this implies the compactness inequality

‖v‖q ≤ δ ‖Bσv‖+ Cδ ‖v‖ for every v ∈ V σ
B and δ > 0, (2.40)

with some constant cδ depending on δ. Of course, ‖ · ‖q denotes the norm in Lq(Ω). This
notation is also used in the next sections.

Remark 2.7. It is worth noting that assumption (2.39) is satisfied in the case of standard
second order operators A and B provided that r and σ are not too small. Assume, for
instance, that A and B are the Laplace operators with either Dirichelt or Neumann
boundary conditions. Then, for r, σ ∈ (0, 1), the spaces V r

A and V σ
B are embedded into the

fractional Sobolev spaces H2r(Ω) and H2σ(Ω), respectively. Therefore, by also assuming
r, σ < 3/4 for simplicity, we see that the three-dimensional embeddings required in (2.39)
hold true provided that

2r −
3

2
≥ −

3

p
and 2σ −

3

2
> −

3

q
, or

1

p
≥

1

2
−

2r

3
and

2

q
> 1−

4σ

3
.

Hence, the existence of p and q as in (2.39) is ensured if in addition it is assumed that

(1
2
−

2r

3

)
+
(
1−

4σ

3

)
< 1 , i.e., r + 2σ >

3

4
.

Theorem 2.8. Besides (2.15)–(2.18), assume that (2.19) and (2.39) are fulfilled. More-

over, let the assumptions (2.20)–(2.21) on the data be satisfied. Then, the same conclu-

sions of Theorem 2.3 hold true, but with a constant K also depending on the norms of

the data (fi, ϑ0i, ϕ0i), i = 1, 2, in (2.20)–(2.21).
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Proposition 2.9. In addition to the assumptions of Theorem 2.8, suppose that (2.33) is
fulfilled. Then, the same conclusions of Proposition 2.4 hold true.

Theorem 2.10. In addition to the assumptions of Theorem 2.8, assume (2.36). Then,

the same conclusions of Theorem 2.5 hold true.

The subsequent aim of this paper is the study of the longtime behavior of the solution.
Precisely, under the structural assumptions postulated in one of Theorems 2.3 and 2.8
and the assumptions (2.21) on the initial data, if f is defined on the whole half-line t ≥ 0
and satisfies (2.20) for every T > 0, the existence of a unique global solution defined in
[0,+∞) and satisfying (2.23)–(2.25) for every T > 0 is guaranteed. However, in order
to treat its longtime behavior, we need further assumptions that do not follow from the
other hypotheses and are commented in the next remarks. First of all, we postulate the
following coercivity condition

there exist some positive constants α and C such that

β̂ε(r) + π̂(r) ≥ α r2 − C for every r ∈ R and for ε > 0 small enough, (2.41)

where β̂ε is the Moreau regularization of β̂ at the level ε (see, e.g., [10, Prop. 2.11 p. 39]).
If ℓ is a constant, we do not need anything else on the structure of the system. On the
contrary, if ℓ just satisfies (2.19), we have to reinforce the condition (2.39) on the operators
Ar and Bσ by requiring that

there exist p, q ∈ [1,+∞] with
1

p
+

1

q
=

1

2
such that V r

A ⊂ Lp(Ω) and

V σ
B ⊂ Lq(Ω), the embeddings being continuous and compact, respectively. (2.42)

Remark 2.11. We notice that (2.41) is satisfied by all of the examples (1.3)–(1.5). More
generally, if π̂(s) = −C0 s

2 with C0 > 0 (up to an additive constant) like in the quoted

examples, in order that (2.41) holds true it is sufficient to assume that β̂(s) + π̂(s) ≥
2α s2 − C with the same α and C. Indeed, we have for every s ∈ R

β̂ε(s) = min
τ∈R

( 1

2ε
(τ − s)2 + β̂(τ)

)

≥ min
τ∈R

( 1

2ε
(τ − s)2 + (2α + C0)τ

2 − C
)
=
(
2α + C0 +O(ε)

)
s2 − C,

whence

β̂ε(s) + π̂(s) ≥
(
2α +O(ε)

)
s2 − C ≥ α s2 − C

if ε is small enough.

We also remark that (2.41) can be weakened by replacing s2 with |s| on the right-hand
side under proper assumptions on the operator B that ensure a Poincaré type inequality
(see [17, Prop. 3.1] for a similar situation regarding the operator A). However, we assume
(2.41) in order to keep the linear operators as general as possible.

Remark 2.12. In the same framework of Remark 2.7, (2.42) is satisfied if r + σ > 3/4.
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Remark 2.13. We show that (2.42) actually is a reinforcement of (2.39), i.e., that the
former implies the latter. Given a choice (p0, q0) of (p, q) satisfying (2.42), we construct
(p, q) fulfilling (2.39). We take q = q0, so that V σ

B is compactly embedded in Lq(Ω); then,
we observe that q0 ≥ 2 and define p ∈ [1,+∞] by means of the equality 1/p = 1− (2/q0),
so that (1/p) + (2/q) = 1. Moreover, we have that

1

p
−

1

p0
=
(
1−

2

q0

)
−
(1
2
−

1

q0

)
=

1

2
−

1

q0
≥ 0

whence p ≤ p0. Hence the continuous embedding V r
A ⊂ Lp0(Ω) we are assuming implies

the continuous embedding V r
A ⊂ Lp(Ω).

Concerning the source term f , we require that it tends to zero in a weak sense as time
tends to infinity. Namely, we assume that

f ∈ L1(0,+∞;H) ∩ L2(0,+∞;H). (2.43)

Under these assumptions, we study the ω-limit of (ϑ, ϕ) in the weak topology of H ×H .
This is defined as follows:

ω :=
{
(ϑω, ϕω) ∈ H ×H : there esists {tn} ր +∞ such that

(ϑ(tn), ϕ(tn)) → (ϑω, ϕω) weakly in H ×H
}
. (2.44)

We notice that the above definition is meaningful since both ϑ and ϕ are H-valued con-
tinuous functions. However, the ω-limit might be empty. Our results states that this is
not the case and that every element of ω is a pair (ϑs, ϕs) satisfying

ϑs ∈ V r
A and ϕs ∈ V σ

B (2.45)

and solving the problem

Arϑs = 0 a.e. in Ω (2.46)
(
Bσϕs, B

σ(ϕs − v)
)
+

∫

Ω

β̂(ϕs) +
(
π(ϕs), ϕs − v

)

≤
(
ϑs ℓ(ϕs), ϕs − v

)
+

∫

Ω

β̂(v) for every v ∈ V σ
B . (2.47)

We note that this system simply means that (ϑs, ϕs) is a stationary solution to problem
(2.26)–(2.27), since, given any r1 > 0, in particular r1 = 2r, (2.46) is equivalent to
Ar1ϑs = 0. Indeed, such equations respectively mean the conditions λrj(ϑs, ej) = 0 for
every j and λr1j (ϑs, ej) = 0 for every j, and the latter conditions are equivalent to each
other. However, we keep (2.46) in that form for convenience. The result we state covers
both cases regarding ℓ.

Theorem 2.14. Assume (2.15)–(2.18), (2.41) and either that ℓ is a constant or that

(2.42) and (2.19) are fulfilled. Moreover, assume (2.21) on the initial data and (2.43) on
the source term, and let (ϑ, ϕ) satisfy (2.23)–(2.28) for every T > 0. Then, the ω-limit

(2.44) is nonempty and every element of it is a pair (ϑs, ϕs) satisfying (2.45)–(2.47), that
is, it is a stationary solution.
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The last set of results is concerned with the asymptotic behavior of our system (2.26)–
(2.28) as the coefficient σ of the operator Bσ playing in (2.27) decreases to 0, with the
aim of deducing a phase relaxation problem in the limit. These results are obtained in
a special situation concerning the data, that is, with ℓ constant and also for a particular
choice of the function π (linear case). However, since we recognize that the present
section is already rather long and in this setting we need to change a bit the notation for
solutions, we prefer to postpone not only the proofs but also the statements for this part
of the theory at the last section.

The remainder of the paper is organized as follows. The uniqueness and continuous
dependence result is proved in Section 3, while the existence of a solution and its regularity
are shown in Section 5 and are prepared by the study of the approximating problem
introduced in Section 4. Section 6 is devoted to the longtime behavior of the solution.
Finally, Section 7 is concerned with the study of the limiting problem as the exponent σ
of the operator Bσ tends to 0.

Throughout the paper, we widely use the notation

Qt := Ω× (0, t) for t ∈ (0, T ], with Q := QT , (2.48)

as well as the Hölder inequality and the elementary Young inequality

ab ≤ δa2 +
1

4δ
b2 for every a, b ≥ 0 and δ > 0 (2.49)

and we follow the general rule we explain at once concerning the constants. The small-case
italic c without subscripts stands for possibly different constants that may only depend
on the operators Ar and Bσ, the shape of the nonlinearities β, π and ℓ, the properties of
the data involved in the statements at hand, and the final time T , unless some warning
is given in the opposite direction. Thus, the values of such constants do not depend on
further parameters (like the regularization parameter ε we introduce in Section 4), and it
is clear that they might change from line to line and even in the same formula or chain of
inequalities. If δ is any parameter (e.g., ε), the symbol cδ stands for (possibly different)
constants that depend on δ, in addition. In contrast, we use other symbols (e.g., capital
letters) for precise values of constants we want to refer to.

3 Uniqueness and continuous dependence

In this section, we prove the uniqueness part of Theorem 2.3 and the continuous depen-
dence estimate. Moreover, we sketch how to modify our argument for the case considered
in Theorem 2.8. By noticing that uniqueness follows from (2.31) provided that this is
shown for every pair of solutions, we prove just the latter. We fix a pair of data as in the
statement and any pair of corresponding solutions and set for convenience

f := f1 − f2 , ϑ0 := ϑ01 − ϑ02 , ϕ0 := ϕ01 − ϕ02

ϑ := ϑ1 − ϑ2 and ϕ := ϕ1 − ϕ2 .

Assuming that ℓ is a constant, we write (2.26) for both solutions and integrate the differ-
ence with respect to time. We obtain

ϑ+ ℓϕ+ A2r(1 ∗ ϑ) = 1 ∗ f + ϑ0 + ℓϕ0 a.e. in Q. (3.1)
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At this point, we multiply the above equality by ϑ and integrate over Qt, with an arbitrary
t ∈ (0, T ). On account of (2.11) and (2.13), we get

∫

Qt

|ϑ|2 + ℓ

∫

Qt

ϕϑ+
1

2
‖Ar(1 ∗ ϑ)(t)‖2

=

∫

Qt

(1 ∗ f)ϑ+

∫

Qt

(ϑ0 + ℓϕ0)ϑ. (3.2)

At the same time, we write (2.27) for both solution and choose v = ϕ2(t) and v = ϕ1(t)
in the inequalities we obtain, respectively. Then, we sum up and integrate with respect
to time. As the contributions involving β̂ cancel each other, we obtain

1

2
‖ϕ(t)‖2 +

∫ t

0

‖Bσϕ(s)‖2 ds

≤
1

2
‖ϕ0‖

2 −

∫

Qt

(
π(ϕ1)− π(ϕ2)

)
ϕ + ℓ

∫

Qt

ϑϕ. (3.3)

Now, we add (3.2) to (3.3) and notice that the terms containing ℓ disappear. With the
help of the Lipschitz continuity of π (see (2.17)) and of the Young inequality, we deduce
that

∫

Qt

|ϑ|2 +
1

2
‖Ar(1 ∗ ϑ)(t)‖2 +

1

2
‖ϕ(t)‖2 +

∫ t

0

‖Bσϕ(s)‖2 ds

≤
1

2

∫

Qt

|ϑ|2 +

∫

Qt

|1 ∗ f |2 +

∫

Qt

|ϑ0 + ℓϕ0|
2 +

1

2
‖ϕ0‖

2 + c

∫

Qt

|ϕ|2. (3.4)

Thus, (2.31) immediately follows by applying the Gronwall lemma. �

In the nonlinear case of Theorem 2.8, the equality (3.1) has to be replaced by

ϑ+ ℓ̂(ϕ1)− ℓ̂(ϕ2) + A2r(1 ∗ ϑ) = 1 ∗ f + ϑ0 + ℓ̂(ϕ01)− ℓ̂(ϕ02)

where ℓ̂(s) :=

∫ s

0

ℓ(τ) dτ for s ∈ R.

Moreover, the last term of (3.3) has to be modified in an obvious way. Hence, the
cancellation of the integrals involving ℓ does not occur any longer in summing up, and the
main difference with respect to the previous case is the following: as a further contribution
to the right-hand side of the final inequality, we have the integral over Qt of the sum

(
ℓ̂(ϕ2)− ℓ̂(ϕ1)

)
ϑ+

(
ϑ1 ℓ(ϕ1)− ϑ2 ℓ(ϕ2)

)
ϕ

= ϑ1

(
ℓ̂(ϕ2)− ℓ̂(ϕ1)− ℓ(ϕ1)(ϕ2 − ϕ1)

)
+ ϑ2

(
ℓ̂(ϕ1)− ℓ̂(ϕ2)− ℓ(ϕ2)(ϕ1 − ϕ2)

)
.

However, this can be treated with the help of our assumptions. We write the Taylor
expansion of ℓ̂ around any point s ∈ R and see that (2.19) implies

|ℓ̂(r)− ℓ̂(s)− ℓ(s)(r − s)| ≤ c |r − s|2 for every r, s ∈ R.

Hence, we deduce that
∫

Qt

((
ℓ̂(ϕ2)− ℓ̂(ϕ1)

)
ϑ+

(
ϑ1 ℓ(ϕ1)− ϑ2 ℓ(ϕ2)

)
ϕ
)
≤ c

∫

Qt

(|ϑ1|+ |ϑ2)|ϕ|
2 .
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At this point, we invoke (2.39) and apply (2.40). Thus, we can estimate the right-hand
side of the above inequality and obtain

∫

Qt

((
ℓ̂(ϕ2)− ℓ̂(ϕ1)

)
ϑ+

(
ϑ1 ℓ(ϕ1)− ϑ2 ℓ(ϕ2)

)
ϕ
)

≤ c

∫ t

0

‖|ϑ1(s)|+ |ϑ2(s)|‖p ‖ϕ(s)‖
2
q ds

≤ c
(
‖ϑ1‖L∞(0,T ;V r

A
) + ‖ϑ2‖L∞(0,T ;V r

A
)

) ∫ t

0

‖ϕ(s)‖2q ds

≤
1

2

∫ t

0

‖Bσϕ(s)‖2 ds+ c

∫ t

0

‖ϕ(s)‖2 ds

where the last value of c also depends on the norms of ϑ1 and ϑ2 just written. Therefore,
we can come back to the modified (3.4) and conclude as in the previous proof by applying
the Gronwall lemma.

4 Approximation

In this section, we prepare some auxiliary material that will be used to perform the
proofs of the existence parts of Theorems 2.3 and 2.8 of the next section. We introduce an
approximating problem by fixing ε > 0 and replacing the function β̂ and its subdifferential
β by their Moreau-Yosida regularizations β̂ε and βε at the level ε (see, e.g., [10, p. 28 and
Prop. 2.11 p. 39]). Thus, βε is monotone and Lipschitz continuous and coincides with the

derivative of β̂ε. Moreover, by also accounting for (2.16), it holds that

0 ≤ β̂ε(r) ≤ β̂(r), β̂ε(r) ≤ β̂ε′(r) if ε′ < ε, and lim
εց0

β̂ε(r) = β̂(r) (4.1)

for every r ∈ R. We set for convenience

Fε := β̂ε + π̂, whence F ′
ε = βε + π. (4.2)

Hence, the approximating problem consists in finding a pair (ϑε, ϕε) satisfying

ϑε ∈ H1(0, T ;H) ∩ L∞(0, T ;V r
A) ∩ L

2(0, T ;V 2r
A ) (4.3)

ϕε ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ) ∩ L

2(0, T ;V 2σ
B ) (4.4)

and solving the system

∂tϑε + ℓ(ϕε)∂tϕε + A2rϑε = f a.e. in Q (4.5)

∂tϕε + B2σϕε + F ′
ε(ϕε) = ϑεℓ(ϕε) a.e. in Q (4.6)

ϑε(0) = ϑ0 and ϕε(0) = ϕ0 . (4.7)

Notice that we have approximated the strong form (1.2) rather than (2.27). The aim of
this section is to prove that the above problem is well-posed. We first treat the case that
ℓ is a constant. The more general situation is considered later on in the section.
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Theorem 4.1. Under the assumptions of Theorem 2.3, the approximating problem (4.5)–
(4.7) has a unique solution (ϑε, ϕε) satisfying (4.3)–(4.4).

As far as uniqueness is concerned, it suffices to observe that (4.6) implies the analogue

of (2.27) obtained by replacing β̂ by β̂ε and that β̂ε satisfies (2.16). Thus, we can appy
what we have just established in Section 3. In order to prove the existence part, we use
a Faedo-Galerkin scheme depending on the parameter n ∈ N and then we let n tend to
infinity. By recalling (2.3)–(2.5), we introduce the subspaces

VA,n := span{e1, . . . , en} and VB,n := span{η1, . . . , ηn} (4.8)

and look for a pair (ϑn, ϕn) ∈ H1(0, T ;VA,n × VB,n) satisfying

(
∂tϑ

n + ℓ∂tϕ
n + A2rϑn, v

)
= (f, v)

a.e. in (0, T ) for every v ∈ VA,n (4.9)
(
∂tϕ

n +B2σϕn + F ′
ε(ϕ

n), v
)
= ℓ(ϑn, v)

a.e. in (0, T ) for every v ∈ VB,n (4.10)

(ϑn(0), v) = (ϑ0, v) and (ϕn(0), v) = (ϕ0, v)

for every v ∈ VA,n and v ∈ VB,n, respectively . (4.11)

Since ε is fixed at the moment, we did not stress the dependence of (ϑn, ϕn) on ε in the
notation. First of all, we establish the existence of a global solution to the above problem.
We represent (ϑn, ϕn) in terms of the bases of VA,n and VB,n as follows:

ϑn(t) =
n∑

j=1

ϑnj (t)ej and ϕn(t) =
n∑

j=1

ϕn
j (t)ηj

where the functions ϑnj and ϕn
j are looked for in H1(0, T ;R). If we equivalently let v = ei

in (4.9) and v = ηi in (4.10) with i = 1, . . . , n, we see that the system (4.9)–(4.10) becomes

(∑n
j=1 ∂tϑ

n
j ej + ℓ

∑n
j=1 ∂tϕ

n
j ηj +

∑n
j=1 λ

2r
j ϑ

n
j ej , ei

)
= (f, ei)

a.e. in (0, T ) for i = 1, . . . , n
(∑n

j=1 ∂tϕ
n
j ηj +

∑n
j=1 µ

2σ
j ϕ

n
j ηj + F ′

ε(
∑n

j=1 ϕ
n
j ηj), ηi

)
= ℓ
(∑n

j=1 ϑ
n
j ej , ηi

)

a.e. in (0, T ) for i = 1, . . . , n.

So, by introducing the n-column vectors Θ := t[ϑn1 , . . . , ϑ
n
n] and Φ := t[ϕn

1 , . . . , ϕ
n
n], we

obtain the following compact form of the system

Θ′ + EΦ′ + ΛΘ = g and Φ′ +MΦ + F(Θ,Φ) = 0 or

Θ′ − E
(
MΦ + F(Θ,Φ)

)
+ ΛΘ = g and Φ′ +MΦ + F(Θ,Φ) = 0 (4.12)

where the matrices E, Λ and M and the functions g ∈ L2(0, T ;Rn) and F : (Rn)2 → R
n
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are defined by

E := ℓ [(ηj, ei)]i,j=1,...,n , Λ := diag(λ2r1 , . . . , λ
2r
n ) , M := diag(µ2σ

1 , . . . , µ
2σ
n )

g(t) := [(f(t), ei)]i=1,...,n for a.a. t ∈ (0, T )

F(r, s) :=

[(
F ′
ε

(∑n
k=1 skηk

)
− ℓ

∑n
j=1 rjej , ηi

)]

i=1,...,n

for r = (r1, . . . , rn) ∈ R
n and s = (s1, . . . , sn) ∈ R

n.

Since the Lipschitz continuity of F ′
ε (see (4.2)) implies the same property for F and the

function g belongs to L2(0, T ;Rn), every Cauchy problem for (4.12) has a unique global
solution (Θ,Φ) ∈ H1(0, T ;Rn×R

n). On the other hand, (4.11) yields an initial condition
for (Θ,Φ). Therefore, coming back to problem (4.9)–(4.11), we conclude that it has a
unique solution (ϑn, ϕn) ∈ H1(0, T ;VA,n × VB,n).

At this point, we are ready to prove the existence part of Theorem 4.1. This will be
done by performing a number of a priori estimates and passing to the limit by compactness
arguments.

First a priori estimate. We test (4.9) written at the time s by v = ϑn(s) and integrate
with respect to s over (0, t), with an arbitrary t ∈ (0, T ). In the same way, we test (4.10)
by ∂tϕ

n, integrate with respect to time and add the same quantity
∫
Qt
ϕn∂tϕ

n to both
sides. Then, we sum up and observe that the terms involving ℓ cancel each other. Hence,
on account of (2.11)–(2.13), we obtain

1

2
‖ϑn(t)‖2 +

∫ t

0

‖Arϑn(s)‖2 ds+

∫ t

0

‖∂tϕ
n(s)‖2 ds+

1

2
‖ϕn(t)‖2B,σ +

∫

Ω

β̂ε(ϕ
n(t))

=
1

2
‖ϑn(0)‖2 +

1

2
‖Bσϕn(0)‖2 +

∫

Ω

β̂ε(ϕ
n(0))

+

∫ t

0

(f(s), ϑn(s)) ds+

∫ t

0

(
ϕn(s)− π(ϕn(s)), ∂tϕ

n(s)
)
ds. (4.13)

By also recalling (4.1), we see that all the terms on the left-hand side of (4.13) are
nonnegative. The sum of the last two integrals on the right-hand side is estimated, owing
to assumption (2.17) and the Young inequality, as follows:

∫ t

0

(f(s), ϑn(s)) ds+

∫ t

0

(
ϕn(s)− π(ϕn(s)), ∂tϕ

n(s)
)
ds

≤ ‖f‖2L2(0,T ;H) +

∫ t

0

‖ϑn(s)‖2 ds+
1

2

∫ t

0

‖∂tϕ
n(s)‖2 ds+ c

∫ t

0

‖ϕn(s)‖2 ds+ c .

Concerning the other terms, we observe that ϑn(0) and ϕn(0) are the H-projections of ϑ0
and ϕ0 on VA,n and VB,n, respectively, due to (4.11). By also accounting for the Lipschitz
continuity of βε, we obtain for two of them

‖ϑn(0)‖2 +

∫

Ω

β̂ε(ϕ
n(0)) ≤ ‖ϑ0‖

2 + cε
(
‖ϕn(0)‖2 + 1

)
≤ ‖ϑ0‖

2 + cε
(
‖ϕ0‖

2 + 1
)
≤ cε .

Finally, we have that

Bσϕn(0) = Bσ

n∑

j=1

(ϕ0, ηj)ηj =

n∑

j=1

µσ
j (ϕ0, ηj)ηj
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whence also

‖Bσϕn(0)‖2 =
n∑

j=1

|µσ
j (ϕ0, ηj)|

2 ≤
∞∑

j=1

|µσ
j (ϕ0, ηj)|

2 = ‖Bσϕ0‖
2 .

Thus, coming back to (4.13) and applying the Gronwall lemma, we conclude that

‖ϑn‖L∞(0,T ;H)∩L2(0,T ;V r
A
) + ‖ϕn‖H1(0,T ;H)∩L∞(0,T ;V σ

B
) ≤ cε . (4.14)

Second a priori estimate. We test (4.9) by ∂tϑ
n and integrate with respect to time

as before. Thanks to (2.11)–(2.13) once more, we obtain

∫ t

0

‖∂tϑ
n(s)‖2 ds+

1

2
‖Arϑn(t)‖2 =

1

2
‖Arϑn(0)‖2 +

∫ t

0

(
f(s)− ℓ∂tϕ

n(s), ∂tϑ
n(s)

)
ds.

By arguing as before in order to estimate the first term on the right-hand side and using
the Young inequality and (4.14) for the second one, we immediately conclude that

‖ϑn‖H1(0,T ;H)∩L∞(0,T ;V r
A
) ≤ cε . (4.15)

Limit. By (4.14)–(4.15) and standard weak star compactness results, we have for a (not
relabeled) subsequence

ϑn → ϑε weakly star in H1(0, T ;H) ∩ L∞(0, T ;V r
A), (4.16)

ϕn → ϕε weakly star in H1(0, T ;H) ∩ L∞(0, T ;V σ
B ). (4.17)

In view of the compact embeddings (2.14) and applying a proper strong compactness
result (see, e.g., [35, Sect. 8, Cor. 4]), we deduce that

ϑn → ϑε and ϕn → ϕε strongly in C0([0, T ];H). (4.18)

This implies, in particular, that F ′
ε(ϕ

n) converges to F ′
ε(ϕε) in the same topology, just

by Lipschitz continuity. We want to deduce that the following integrated version of the
approximating problem

∫ T

0

(
∂t(ϑε + ℓϕε)(s)− f(s), v(s)

)
ds+

∫ T

0

(
Arϑε(s), A

rv(s)
)
ds = 0, (4.19)

∫ T

0

(
∂tϕε(s) + F ′

ε(ϕε(s))− ℓϑε(s), v(s)
)
ds+

∫ T

0

(
Bσϑε(s), B

σv(s)
)
ds = 0 (4.20)

is fulfilled for every v ∈ L2(0, T ;V r
A) and every v ∈ L2(0, T ;V σ

B ), respectively. We start
from the following integrated versions of the equations (4.9) and (4.10):

∫ T

0

(
∂t(ϑ

n + ℓϕn)(s)− f(s), v(s)
)
ds+

∫ T

0

(
Arϑn(s), Arv(s)

)
ds = 0, (4.21)

∫ T

0

(
∂tϕ

n(s) + F ′
ε(ϕ

n(s))− ℓϑn(s), v(s)
)
ds+

∫ T

0

(
Bσϑn(s), Bσv(s)

)
ds = 0, (4.22)
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which obviously hold for every v ∈ L2(0, T ;VA,n) and every v ∈ L2(0, T ;VB,n), respectively,
due to (2.11)–(2.12). We fix m ∈ N and take any v ∈ L2(0, T ;VA,m). For every n ≥ m,
we have that VA,m ⊂ VA,n, whence (4.21) holds for v. By arguing similarly for (4.22)
and then letting n tend to infinity, we deduce that (4.19)–(4.20) are satisfied for every
v ∈ L2(0, T ;VA,m) and v ∈ L2(0, T ;VB,m), respectively. By a simple density argument,
we conclude that the same equations hold true for every v ∈ L2(0, T ;V r

A) and every
v ∈ L2(0, T ;V σ

B ), respectively. We deduce that (ϑε, ϕε) solves the equivalent problem

(
∂t(ϑε + ℓϕε)− f, v

)
+
(
Arϑε, A

rv
)
= 0 a.e. in (0, T ), for every v ∈ V r

A , (4.23)(
∂tϕε + F ′

ε(ϕε)− ℓϑε, v
)
+
(
Bσϑε, B

σv
)
= 0 a.e. in (0, T ), for every v ∈ V σ

B , (4.24)

so that (4.5)–(4.6) follow from the lemma given below. Finally, as (4.18) implies that ϑn(0)
and ϕn(0) converge to ϑε(0) and ϕε(0) strongly in H , we see that the initial conditions
(4.7) follow from the theory of orthogonal projections, and the proof of Theorem 4.1 is
complete. �

Lemma 4.2. Assume that u ∈ V r
A and ψ ∈ H satisfy

(Aru,Arv) = (ψ, v) for every v ∈ V r
A. (4.25)

Then, we have that

u ∈ V 2r
A and A2ru = ψ. (4.26)

Moreover, the same result hold if A and r are replaced by B and σ, respectively.

Proof. We have that

u =

∞∑

j=1

(u, ej)ej , ψ =

∞∑

j=1

(ψ, ej)ej and

∞∑

j=1

|λrj(u, ej)|
2 +

∞∑

j=1

|(ψ, ej)|
2 < +∞.

Moreover, (4.25) written with v = ei implies that λ2ri (u, ei) = (ψ, ei) for every i, whence
also

∑∞
j=1 |λ

2r
j (u, ej)|

2 < +∞. Thus, both conditions (4.26) immediately follow.

Now, we consider the case of a nonlinear function ℓ. To this concern, we have the
analogue of Theorem 4.1, namely

Theorem 4.3. Under the assumptions of Theorem 2.8, the approximating problem (4.5)–
(4.7) has a unique solution (ϑε, ϕε) satisfying (4.3)–(4.4).

Proof. The argument follows the same line of the previous proof and we just stress the
modifications that are needed. Concerning the choice of the Faedo-Galerkin scheme, it
suffices to replace ℓ by ℓ(ϕn) in equations (4.9) and (4.10). However, the existence of a
global discrete solution is no longer clear. Indeed, the corresponding system of ordinary
differential equations still takes the form (4.12), but E has to be replaced by E(Φ), i.e.,
by a function depending on Φ, and the definition of F has to be modified. Precisely, we
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have to set

E(s) :=

[(
ℓ
(∑n

j=1 skηk

)
ηj, ei

)]

i,j=1,...,n

F(r, s) :=

[(
F ′
ε

(∑n
k=1 skηk

)
− ℓ
(∑n

k=1 skηk

)∑n
j=1 rjej , ηi

)]

i=1,...,n

for r = (r1, . . . , rn) ∈ R
n and s = (s1, . . . , sn) ∈ R

n.

Thus, if ℓ′ does not vanish identically, the derivatives of F with respect to sj have a
linear growth with respect to r and the Lipschitz condition that is needed to ensure the
existence of a global solution fails. For this reason, we can only conclude that the system
has a unique maximal solution (Θ,Φ) defined in some interval [0, Tn) ⊆ [0, T ]. Thus, in
principle, the maximal solution (ϑn, ϕn) to the discrete problem (4.9)–(4.11) exists and
is defined in the same interval. However, the estimates we can perform show that, for
every n, (ϑn, ϕn) is bounded in L∞(0, T ;VA,n×VB,n) by a constant that depends on T but
not on Tn. Thus, the same happens for (Θ,Φ) ∈ L∞(0, T ;Rn × R

n), so that the general
theory of ordinary differential equations ensures the existence of a solution in the whole
interval [0, T ].

Coming to the estimates, the first one goes exactly as we did to obtain (4.14). Indeed,
by testing the equations in the same way, the terms involving ℓ cancel each other also
in the nonlinear case. Concerning the second estimate, we only have to recall that ℓ is
bounded, so that ℓ(ϕn)∂tϕ

n is bounded in L2(0, T ;H) exactly as ℓ∂tϕ
n was before. So,

the analogue of (4.15) follows. Furthermore, in taking the limit as n tends to infinity, it
suffices to add to the above argument the following convergence property: ℓ(ϕn) converges
to ℓ(ϕε) strongly in C0([0, T ];H), as a consequence of (4.18) and the Lipschitz continuity
of ℓ. Recalling (4.17) as well, it is easy to see that ℓ(ϕn)∂tϕ

n and ℓ(ϕn)ϑn are bounded
in L2(0, T ;H) and converge weakly in (L2(0, T ;L1(Ω)), thus in) L2(0, T ;H) to ℓ(ϕε)∂tϕε

and ℓ(ϕε)ϑε, respectively, so that we can take the limit of the corresponding terms in the
analogues of (4.21) and (4.22). Finally, Lemma 4.2 applies also in the present case. This
completes the proof.

5 Existence and regularity

In this section, we conclude the proofs of the existence and regularity results stated
in Section 2. In order to establish the existence parts of both Theorems 2.3 and 2.8,
we assume the general hypothesis (2.19) and avoid using (2.39). We start from the
approximating problem (4.5)–(4.7) (whose unique solution exists thanks to Theorems 4.1
and 4.3) and perform some a priori estimates.

Uniform estimates. We multiply (4.5) and (4.6) by ϑε and ∂tϕε, respectively, sum up
and integrate over Qt, with an arbitrary t ∈ (0, T ). We notice that the terms involving ℓ
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cancel each other and add the same term
∫
Qt
ϕε∂tϕε to both sides. We obtain

1

2
‖ϑε(t)‖

2 +

∫ t

0

‖Arϑε(s)‖
2 ds+

∫

Qt

|∂tϕε|
2 +

1

2
‖ϕε(t)‖

2
B,σ +

∫

Ω

β̂ε(ϕε(t))

=
1

2
‖ϑ0‖

2 +
1

2
‖ϕ0‖

2
B,σ +

∫

Ω

β̂ε(ϕ0) +

∫

Qt

(
f + ϕε − π(ϕε)

)
∂tϕε . (5.1)

We treat the right-hand side by first using the Young inequality and (4.1), then invoking
the assumptions (2.20)–(2.21) and the linear growth of π. Hence, by applying the Gronwall
lemma, we infer that

‖ϑε‖L∞(0,T ;H)∩L2(0,T ;V r
A
) + ‖ϕε‖H1(0,T ;H)∩L∞(0,T ;V σ

B
) + ‖β̂ε(ϕε)‖L∞(0,T ;L1(Ω)) ≤ c . (5.2)

Next, we multiply (4.5) by ∂tϑε and integrate over Qt as before. We obtain

∫

Qt

|∂tϑε|
2 +

1

2
‖Arϑε(t)‖

2 =
1

2
‖Arϑ0‖

2 +

∫

Qt

(
f − ℓ(ϕε)∂tϕε

)
∂tϑε .

With the help of the boundedness of ℓ, the Young inequality and (5.2), we conclude that

‖ϑε‖H1(0,T ;H)∩L∞(0,T ;V r
A
) ≤ c . (5.3)

Limit. As in the previous section, we owe to weak star and strong compactness results
and deduce from (5.2)–(5.3) that (at least for a subsequence)

ϑε → ϑ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V r
A)

and strongly in C0([0, T ];H), (5.4)

ϕε → ϕ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V σ
B )

and strongly in C0([0, T ];H). (5.5)

We deduce that the initial conditions (2.28) hold true and that π(ϕε) → π(ϕ) and ℓ(ϕε) →
ℓ(ϕ) strongly in C0([0, T ];H) by Lipschitz continuity. It follows that ℓ(ϕε)∂tϕε → ℓ(ϕ)∂tϕ
and ℓ(ϕε)ϑε → ℓ(ϕ)ϑ weakly in L2(0, T ;H) (by boundedness in L2(0, T ;H) and weak
convergence in L2(0, T ;L1(Ω))). At this point, it is straightforward to show that (ϑ, ϕ)
satisfies the integrated version of (2.26) similar to (4.19). Then, it also satisfies the
analog of (4.23), so that both the full regularity (2.23) and the equation (2.26) follow
from Lemma 4.2. So, it remains to prove that ϕ also satisfies (2.25) and that (ϑ, ϕ) solves
the variational inequality (2.27). We recall that all the above convergence properties hold
for some subsequence εn ց 0, which we can assume to be strictly decreasing without loss
of generality. Moreover, we can assume that ϕεn converges to ϕ a.e. in Q. We first prove
that ∫

Q

β̂(ϕ) ≤ lim inf
n→∞

∫

Q

β̂εn(ϕεn). (5.6)

We take arbitrary indices n and m with n > m. Then, εn < εm and we can apply (4.1).
We deduce that

β̂εm(ϕεn) ≤ β̂εn(ϕεn) a.e. in Q, for every n > m.
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Since β̂εm is (Lipschitz) continuous, we thus have that

β̂εm(ϕ) = lim
n→∞

β̂εm(ϕεn) = lim inf
n→∞

β̂εm(ϕεn) ≤ lim inf
n→∞

β̂εn(ϕεn) a.e. in Q.

On the other hand, the last condition in (4.1) implies that

β̂(ϕ) = lim
m→∞

β̂εm(ϕ) a.e. in Q.

Therefore, (5.6) follows from the Fatou lemma. At this point, we can easily conclude.
From one side, (5.6) implies (2.25) due to (5.2). On the other hand, it is easily seen that
(4.6) implies the analogue of (2.27), i.e., the variational inequality obtained by replacing

β̂, ϑ and ϕ in (2.27) by β̂ε, ϑε and ϕε, respectively. Therefore, by also combining the strong
and weak convergence properties (5.4)–(5.5) and writing ε instead of εn for simplicity, we
have for every v ∈ L2(0, T ;V σ

B )

∫

Q

β̂(ϕ) +

∫ T

0

(
Bσϕ(t), Bσ(ϕ(t)− v(t))

)
dt

≤ lim inf
εց0

∫

Q

β̂ε(ϕε) + lim inf
εց0

∫ T

0

(
Bσϕε(t), B

σ(ϕε(t)− v(t))
)
dt

≤ lim inf
εց0

(∫

Q

β̂ε(ϕε) +

∫ T

0

(
Bσϕε(t), B

σ(ϕε(t)− v(t))
)
dt
)

≤ lim inf
εց0

(∫

Q

(
ℓ(ϕε)ϑε − ∂tϕε − π(ϕε)

)
(ϕε − v) +

∫

Q

β̂ε(v)
)

=

∫

Q

(
ℓ(ϕ)ϑ− ∂tϕ− π(ϕ)

)
(ϕ− v) +

∫

Q

β̂(v)

In the last equality we have used the last (4.1) as well. Hence, (2.27) is proved and the
proof is complete. �

Proofs of Propositions 2.4 and 2.9. Since we use just the boundedness of ℓ, the
same proof holds for both propositions. We start from the approximating problem once
more and, for a.a. t ∈ (0, T ), we write (4.6) at the time t in the form

(
Bσϕε(t), B

σv
)
+

∫

Ω

βε(ϕε(t)) v =
(
ϑε(t) ℓ(ϕε(t))−∂tϕ(t)−π(ϕ(t)), v

)
for every v ∈ V σ

B .

Thanks to (2.33), we can choose v = βε(ϕε(t)) and obtain

∫

Ω

|βε(ϕ(t))|
2 ≤

(
ϑε(t) ℓ(ϕε(t))− ∂tϕε(t)− π(ϕε(t)), βε(ϕε(t))

)
.

Then, the Young inequality, the boundedness of ℓ and (5.2) immediately yield

‖βε(ϕε)‖L2(0,T ;H) ≤ c .

As a consequence, we also have from (4.6) that

‖B2σϕε‖L2(0,T ;H) ≤ c .
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Therefore, coming back the the proof of Theorems 2.3 and 2.8 just performed, we see that
we can add to (5.4)–(5.5) the further convergence properties

βε(ϕε) → ξ and B2σϕε → B2σϕ weakly in L2(0, T ;H). (5.7)

At this point, it is clear that ϕ ∈ L2(0, T ;V 2σ
B ) and that (2.32) holds true. In order to

check the inclusion property in (2.35), it suffices to recall the strong convergence (5.5) of
ϕε and use the maximal monotonicity of β by applying, e.g., [5, Lemma 2.3, p. 38]. �

Finally, we prove Theorems 2.5 and 2.10. We start from the first of them, i.e., we
assume that ℓ is a constant. Clearly, it suffices to establish the estimates corresponding
to (2.37) on the solution (ϑε, ϕε) to the approximating problem (4.5)–(4.7).

Regularity estimate. We proceed formally, for brevity. We differentiate (4.6) with
respect to time and test the resulting equality by ∂tϕε. Then, we integrate over Qt, as
usual. We obtain

1

2
‖∂tϕε(t)‖

2 +

∫ t

0

‖Bσ∂tϕε(s)‖
2 +

∫

Qt

β ′
ε(ϕε)|∂tϕε|

2

=
1

2
‖∂tϕε(0)‖

2 +

∫

Qt

(
ℓ∂tϑε − π′(ϕε)∂tϕε

)
∂tϕε . (5.8)

The last integral can be trivially estimated owing to the Lipschitz continuity of π, the
Young inequality and (5.2)–(5.3) as follows

∫

Qt

(
ℓ∂tϑε − π′(ϕε)∂tϕε

)
∂tϕε ≤ c

∫

Qt

|∂tϕε|
2 + c

∫

Qt

|∂tϑε|
2 ≤ c .

On the other hand, we have from (4.6)

‖∂tϕε(0)‖ ≤ ℓ ‖ϑ0‖+ ‖B2σϕ0‖+ ‖βε(ϕ0)‖+ ‖π(ϕ0)‖ ≤ ‖β◦(ϕ0)‖+ c = c

since |βε(r)| ≤ |β◦(r)| for every r ∈ D(β) (see, e.g., [10, Prop. 2.6, p. 28]). Hence, we
conclude that

‖∂tϕε‖L∞(0,T ;H)∩L2(0,T ;V σ
B
) ≤ c . (5.9)

�

Proof of Theorem 2.10. We show how to modify the derivation of estimate (5.9) in
the nonlinear case (2.19) by also assuming (2.39). The difference is the right-hand side of
(5.8) one obtains by differentiating (4.6) with respect to time and then testing by ∂tϕε.
Namely, it contains the more complicated terms

∫

Qt

∂tϑε ℓ(ϕε)∂tϕε +

∫

Qt

ϑε ℓ
′(ϕε)|∂tϕε|

2 .

The first one is treated as before by using the boundedness of ℓ. About the second one,
we recall that ℓ′ is bounded by (2.19); then, owing to the Hölder inequality and (2.39),
and accounting for (5.3) and the compacness inequality (2.40), we have that

∫

Qt

ϑε ℓ
′(ϕε)|∂tϕε|

2 ≤ c

∫ t

0

‖ϑε(s)‖p ‖∂tϕε(s)‖
2
q ds ≤ c

∫ t

0

‖ϑε(s)‖A,r ‖∂tϕε(s)‖
2
q ds

≤ c

∫ t

0

‖∂tϕε(s)‖
2
q ds ≤

1

2

∫ t

0

‖Bσ∂tϕε(s)‖
2 ds+ c

∫ t

0

‖∂tϕε(s)‖
2 ds .
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By combining this with the modified (5.8) and applying the Gronwall lemma, we ob-
tain (5.9). Thus, the proof is complete.

6 Longtime behavior

In this section, we prove Theorem 2.14. Thus, in addition to the assumption (2.15)–(2.18)
on the structure and (2.21) on the initial data, we suppose that the other hypotheses of
the statement are in force and study the ω-limit of the unique global solution. In order to
show that ω is nonempty and for a further use, we need some global estimates on (ϑ, ϕ)
on the half line [0,+∞). In developping our argument, we start from the approximating
problem once more, which clearly has a unique solution (ϑε, ϕε) defined in the whole
of [0,+∞). We notice that the convergence of the approximating solution to (ϑ, ϕ) we
have proved in Section 5 holds for every T (and for the whole family, i.e., not only for a
subsequence), thank to our uniqueness result proved in Section 3.

First global estimate. As we did to prove (5.2), we test (4.5) and (4.6) by ϑε and ∂tϕε,
respectively, integrate overQt and sum up. However, in contrast to the previous argument,
we avoid adding the same term to both sides of the equality we get. Since the terms
involving ℓ cancel each other and (2.41) holds, we obtain

1

2
‖ϑε(t)‖

2 +

∫ t

0

‖Arϑε(s)‖
2 ds+

∫

Qt

|∂tϕε|
2 +

1

2
‖Bσϕε(t)‖

2 + α ‖ϕε(t)‖
2 − C

≤
1

2
‖ϑ0‖

2 +
1

2
‖Bσϕ0‖

2 +

∫

Ω

β̂ε(ϕ0) +

∫

Qt

fϑε .

The first three terms on the right-hand side are bounded uniformly with respect to ε by
the first condition in (4.1) and (2.21). Concerning the last one, we owe to (2.43) and
have that

∫

Qt

fϑε ≤ sup
0≤s≤t

‖ϑε(s)‖

∫ t

0

‖f(s)‖ ds ≤
1

4
sup
0≤s≤t

‖ϑε(s)‖
2 + ‖f‖2L1(0,+∞;H) .

At this point, it is straightforward to conclude that

‖ϑε‖L∞(0,+∞;H) + ‖Arϑε‖L2(0,+∞;H) + ‖ϕε‖L∞(0,+∞;V σ
B
) + ‖∂tϕε‖L2(0,+∞;H) ≤ c . (6.1)

Second global estimate. We test (4.5) by ∂tϑε. By integrating over Qt and using the
Young inequality, the boundedness of ℓ and assumption (2.43) on f , we obtain

∫

Qt

|∂tϑε|
2 +

1

2
‖Arϑε(t)‖

2 =

∫

Qt

(
f − ℓ(ϕε)∂tϕε

)
∂tϑε

≤
1

2

∫

Qt

|∂tϑε|
2 + c ‖f‖2L2(0,+∞;H) + c

∫

Qt

|∂tϕε|
2 .

Hence, (5.2) immediately yields

‖ϑε‖L∞(0,+∞;V r
A
) + ‖∂tϑε‖L2(0,+∞;H) ≤ c . (6.2)
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Basic global estimates. By letting ε tend to zero in (6.1)–(6.2), we see that the
solution (ϑ, ϕ) we are studying enjoys the properties

ϑ ∈ L∞(0,+∞;V r
A) and ϕ ∈ L∞(0,+∞;V σ

B ) ⊂ L∞(0,+∞;H) (6.3)
∫ +∞

0

‖Arϑ(s)‖2 ds+

∫ +∞

0

‖∂tϑ(s)‖
2 ds+

∫ +∞

0

‖∂tϕ(s)‖
2 ds < +∞ . (6.4)

In particular, the ω-limit ω is nonempty.

The next step consists in proving the properties of the elements of ω we have stated.
Thus, we fix (ϑω, ϕω) ∈ ω and a corresponding sequence {tn} as in the definition (2.44),
and, for every n, we study the limits on a fixed time interval (0, T ) of the functions ϑn

and ϕn defined by

ϑn(t) := ϑ(t + tn) and ϕn(t) := ϕ(t+ tn) for t ∈ [0, T ]. (6.5)

The global estimates (6.3)–(6.4) immediately yield that

‖ϑn‖L∞(0,T ;H) + ‖ϕn‖L∞(0,T ;V σ
B
) ≤ c

lim
n→∞

(∫ T

0

‖Arϑn(s)‖2 ds+

∫ T

0

‖∂tϑ
n(s)‖2 ds+

∫ T

0

‖∂tϕ
n(s)‖2 ds

)
= 0 .

By standard compactness results it follows that

ϑn → ϑ∞ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V r
A) (6.6)

ϕn → ϕ∞ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V σ
B ) (6.7)

at least for a subsequence, where ϑ∞ and ϕ∞ satisfy

Arϑ∞ = 0, ∂tϑ
∞ = 0 and ∂tϕ

∞ = 0 a.e. in Q. (6.8)

In particular, both ϑ∞ and ϕ∞ are time-independent, so that we can define the elements
ϑs ∈ V r

A and ϕs ∈ V σ
B by setting

ϑs := ϑ∞(t) and ϕs := ϕ∞(t) for every t ∈ [0, T ].

Our aim is to show that (ϑω, ϕω) = (ϑs, ϕs) and that (ϑs, ϕs) solves (2.46)–(2.47). By the
weak convergence in C0([0, T ];H) implied by the weak convergence in H1(0, T ;H), we
have that

ϑs = ϑ∞(0) = lim
n→∞

ϑn(0) = lim
n→∞

ϑ(tn) = ϑω

where the limits are understood in the weak topology of H . Similarly, we obtain that
ϕs = ϕω. As far as the limiting system is concerned, equation (2.46) follows from the
first equality in (6.8). It remains to prove (2.47). To this end, we observe that the pair
(ϑn, ϕn) obviously satisfies (2.27), whence also (2.29). On the other hand, we can invoke
the compact embedding V σ

B ⊂ H (see (2.14)) and apply, e.g., [35, Sect. 8, Cor. 4] to obtain

ϕn → ϕ∞ strongly in C0([0, T ];H). (6.9)

By Lipschitz continuity, it follows that

π(ϕn) → π(ϕ∞) strongly in C0([0, T ];H). (6.10)
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Now, we prove that

ϑn ℓ(ϕn) → ϑ∞ ℓ(ϕ∞) weakly star in L∞(0, T ;H) (6.11)

by distinguishing the cases of the statement that concern ℓ. If ℓ is a constant, then (6.11)
trivially follows from (6.6). In the opposite case, we invoke (2.42) and apply [35, Sect. 8,
Cor. 4]. Hence, from (6.6)–(6.7) we deduce that

ϑn → ϑ∞ weakly star in L∞(0, T ;Lp(Ω)),

ϕn → ϕ∞ strongly in C0([0, T ];Lq(Ω)), whence

ℓ(ϕn) → ℓ(ϕ∞) strongly in C0([0, T ];Lq(Ω)).

Thus, (6.11) follows also in this case since (1/p) + (1/q) = 1/2. We remark that (6.10),
(6.11) and (6.9) imply (at least)

π(ϕn)ϕn → ϕ(ϕ∞)ϕ∞ and ϑn ℓ(ϕn)ϕn → ϑ∞ ℓ(ϕ∞)ϕ∞ weakly in L1(Q).

At this point, we can easily let n tend to infinity in (2.29) written for (ϑn, ϕn). By also

accounting for the lower semicontinuity of the convex function v 7→
∫
Q
β̂(v) in L2(Q), we

have that

∫

Q

β̂(ϕ∞) +

∫ T

0

(
Bσϕ∞(t), Bσ(ϕ∞(t)− v(t))

)
dt

≤ lim inf
εց0

∫

Q

β̂(ϕn) + lim inf
n→∞

∫ T

0

(
Bσϕn(t), Bσ(ϕn(t)− v(t))

)
dt

≤ lim inf
n→∞

(∫

Q

β̂(ϕn) +

∫ T

0

(
Bσϕn(t), Bσ(ϕn(t)− v(t))

)
dt
)

≤ lim inf
n→∞

(∫

Q

(
ϑnℓ(ϕn)− ∂tϕ

n − π(ϕn)
)
(ϕn − v) +

∫

Q

β̂ε(v)
)

=

∫

Q

(
ϑ∞ℓ(ϕ∞)− ∂tϕ

∞ − π(ϕ∞)
)
(ϕ∞ − v) +

∫

Q

β̂(v)

where we have kept ∂tϕ
∞ for clarity, even though it vanishes. Thus, (2.29) holds true for

(ϑ∞, ϕ∞). This implies that (2.27) holds as well. But the latter coincides with (2.47) and
the proof is complete.

7 Convergence to a phase relaxation problem

In this section we discuss the asymptotic behavior of the solution to our problem as σ ց 0.

We assume that (2.15)–(2.18) are satisfied,

ℓ is a constant, (7.1)

π(v) = − γ v for all v ∈ R, with a fixed constant γ ≥ 0, (7.2)
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and there exist some σ0 > 0 and some family of data {fσ, ϑ0,σ, ϕ0,σ} such that

fσ → f in L2(0, T ;H) as σ ց 0, (7.3)

ϑ0,σ → ϑ0 in V r
A as σ ց 0, (7.4)

ϕ0,σ ∈ V σ
B and ‖ϕ0,σ‖V σ

B
+ ‖β̂(ϕ0,σ)‖L1(Ω) ≤ c for all σ ∈ (0, σ0],

ϕ0,σ → ϕ0 in H as σ ց 0. (7.5)

Concerning (7.5), we just note that if ϕ0 ∈ V σ0

B with β̂(ϕ0) ∈ L1(Ω) (cf. (2.21)), then the
constant sequence ϕ0,σ = ϕ0 directly works in (7.5).

We are dealing with the solution (ϑσ, ϕσ) to the system (cf. (2.26)–(2.28))

∂tϑσ + ℓ ∂tϕσ + A2rϑσ = fσ a.e. in Q , (7.6)

(
∂tϕσ(t), ϕσ(t)− v

)
+
(
Bσϕσ(t), B

σ(ϕσ(t)− v)
)
+

∫

Ω

β̂(ϕσ(t))−
(
γ ϕσ(t), ϕσ(t)− v

)

≤
(
ℓ ϑσ(t), ϕσ(t)− v

)
+

∫

Ω

β̂(v) for a.a. t ∈ (0, T ) and every v ∈ V σ
B , (7.7)

ϑσ(0) = ϑ0,σ and ϕσ(0) = ϕ0,σ , (7.8)

where (ϑσ, ϕσ) satisfies (cf. (2.23)–(2.25))

ϑσ ∈ H1(0, T ;H) ∩ L∞(0, T ;V r
A) ∩ L

2(0, T ;V 2r
A ), (7.9)

ϕσ ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ), (7.10)

β̂(ϕσ) ∈ L1(Q). (7.11)

The convergence theorem we prove is as follows.

Theorem 7.1. Under the assumptions (2.15)–(2.18) and (7.1)–(7.5), the family of solu-

tions (ϑσ, ϕσ) to the problem (7.6)–(7.11) satisfies

ϑσ → ϑ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V r
A) ∩ L

2(0, T ;V 2r
A )

and strongly in C0([0, T ];H), (7.12)

ϕσ → ϕ weakly in H1(0, T ;H) (7.13)

as σ ց 0, where the limit pair (ϑ, ϕ) is the unique solution to the problem

∂tϑ+ ℓ ∂tϕ+ A2rϑ = f a.e. in Q , (7.14)

∂tϕ+ ϕ− Pϕ+ ξ − γ ϕ = ℓ ϑ, for some ξ ∈ L2(0, T ;H) satisfying

ξ ∈ β(ϕ) a.e. in Q , (7.15)

ϑ(0) = ϑ0 , ϕ(0) = ϕ0 (7.16)

and, in (7.15), P denotes the H-projection operator on the kernel of the operator B.

Remark 7.2. With reference to Remark 2.1, let us point out that in the case whether
B is the Laplace operator −∆ with Neumann boundary conditions, the operator P maps
any element v ∈ H into a constant function, which is proportional to the mean value of
v as the first eigenfunction of B is η1 = |Ω|−1/2.
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Remark 7.3. It turns out that Theorem 7.1 works under the special assumption (7.2)
of a linear function π that is the derivative of a concave quadratic function π̂. This is of
course a special situation, but let us point out that all the three significant examples of
potentials (1.3)–(1.5) contemplate exactly a quadratic concave perturbation, along with a
convex and possibly singular or nonsmooth function.

The whole section is devoted to the proof of this theorem. About the uniqueness of
the limit (ϑ, ϕ) and the related continuous dependence property with respect to the data
(f, ϑ0, ϕ0), it is not difficult to somehow reproduce the proof given in Section 3 for the
case of a constant ℓ and derive an estimate similar to (3.4), which leads to

Proposition 7.4. Assume that (2.15)–(2.18) and (7.1)–(7.2) are satisfied. Moreover, let

the data f , ϑ0 and ϕ0 satisfy (7.3)–(7.5) for some family {fσ, ϑ0,σ, ϕ0,σ}. Then, there

exists a unique solution

(ϑ, ϕ) ∈
(
H1(0, T ;H) ∩ L∞(0, T ;V r

A) ∩ L
2(0, T ;V 2r

A )
)
×H1(0, T ;H)

to the problem (7.14)–(7.16). Moreover, if (fi, ϑ0i, ϕ0i), i = 1, 2, are two choices of the

data and (ϑi, ϕi) are the corresponding solutions, then we have

‖ϑ1 − ϑ2‖L2(0,T ;H) + ‖1 ∗ (ϑ1 − ϑ2)‖L∞(0,T ;V r
A
)

+ ‖ϕ1 − ϕ2‖L∞(0,T ;H) + ‖ϕ1 − Pϕ1 − ϕ2 + Pϕ2‖L2(0,T ;H)

≤ K
(
‖1 ∗ (f1 − f2)‖L2(0,T ;H) + ‖ϑ01 − ϑ02‖+ ‖ϕ01 − ϕ02‖

)
(7.17)

for some constant K depending only on ℓ, γ, T .

Now, we concentrate our efforts on the proof of the remaining convergence properties
stated in Theorem 7.1. We start by proving the following auxiliary result.

Lemma 7.5. Assume that v ∈ V σ0

B for some σ0 > 0. Then we have that Bσv is well

defined for all σ ∈ [0, σ0] and

Bσv → v − Pv strongly in H as σ ց 0, (7.18)

where, as above, P denotes the H-projection on {v ∈ D(B) : Bv = 0}.

Proof. The first part of the statement follows easily from (2.7) and (2.8). In particular,
we note that

Bσv =
∞∑

j=1

µσ
j (v, ηj)ηj for all 0 < σ ≤ σ0, v − Pv =

∑

µj>0

(v, ηj)ηj.

Then, we have to prove that

Bσv − (v − Pv) =
∑

µj>0

(
µσ
j − 1

)
(v, ηj)ηj → 0 strongly in H as σ ց 0.

In view of (2.3)–(2.5), it is sufficient to verify that

‖Bσv − (v − Pv)‖2 =
∑

µj>0

(
µσ
j − 1

)2
|(v, ηj)|

2
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tends to 0 as σ ց 0. We observe that
(
µσ
j − 1

)2
≤ 1 if µj ≤ 1 and

(
µσ
j − 1

)2
≤ µ2σ0

j if
µj > 1. Hence, we have that

∑

µj>0

(
µσ
j − 1

)2
|(v, ηj)|

2 ≤
∞∑

j=1

(
1 + µ2σ0

j

)
|(v, ηj)|

2 = ‖v‖2 + ‖Bσ0v‖2 < +∞.

Therefore, the reader can realize that it is possible to apply the Lebesgue dominated
convergence theorem, with respect to the counting measure #, to the family of functions

fσ(j) =

{
0 if µj = 0

(µσ
j − 1)2 |(v, ηj)|

2 if µj > 0
, j ∈ N.

Since

fσ → 0 pointwise in N as σ ց 0 ,

0 ≤ fσ(j) ≤ g(j) :=
(
1 + µ2σ0

j

)
|(v, ηj)|

2 for all j ∈ N ,

and g is summable with respect to # by the above calculation, we can conclude that

‖Bσv − (v − Pv)‖2 =

∫

N

fσ(j) d#(j) → 0

and (7.18) and the lemma are completely proved.

Next, we recall and take advantage of the uniform estimates pointed out in Section 5.
Arguing as in the derivation of (5.2), recalling (2.10) and using the lower semicontinuity
properties when passing to the limit as εց 0, from (5.1) we obtain

1

2
‖ϑσ(t)‖

2 +

∫ t

0

‖Arϑσ(s)‖
2 ds+

1

2

∫

Qt

|∂tϕσ|
2

+
1

2

(
‖ϕσ(t)‖

2 + ‖Bσϕσ(t)‖
2
)
+

∫

Ω

β̂(ϕσ(t))

≤ c+
1

2
‖ϑ0,σ‖

2 +
1

2

(
‖ϕ0,σ‖

2 + ‖Bσϕ0,σ‖
2
)

+

∫

Ω

β̂(ϕ0,σ) +
1

2

∫ t

0

‖fσ(s) + (1 + γ)ϕσ(s)‖
2 ds .

Hence, by virtue of (7.3)–(7.5) and applying the Gronwall lemma, we deduce that

‖ϑσ‖L∞(0,T ;H)∩L2(0,T ;V r
A
) + ‖ϕσ‖H1(0,T ;H)

+ ‖Bσϕσ‖L∞(0,T ;H) + ‖β̂(ϕσ)‖L∞(0,T ;L1(Ω)) ≤ c . (7.19)

Now, we can test (7.6) by ∂tϑσ and integrate with respect to time obtaining
∫

Qt

|∂tϑσ|
2 +

1

2
‖Arϑσ(t)‖

2 =
1

2
‖Arϑ0,σ‖

2 +

∫

Qt

(
fσ − ℓ ∂tϕσ

)
∂tϑσ .

Then, the Young inequality, (7.19) and (7.3)–(7.4) enable us to infer that

‖ϑσ‖H1(0,T ;H)∩L∞(0,T ;V r
A
) ≤ c . (7.20)
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Moreover, in view of (7.3) and by a comparison in (7.6) we have that

‖ϑσ‖L2(0,T ;V 2r
A

) ≤ c . (7.21)

Due to (7.19)–(7.21), we can pass to the limit as σ ց 0, at the beginning for a subsequence,
by using standard weak and known strong compactness results (see, e.g., [35, Sect. 8,
Cor. 4]). Hence, we find out the convergence (7.12)–(7.13) to ϑ and ϕ, along with

Bσϕσ → ζ weakly star in L∞(0, T ;H). (7.22)

In a first verification, inspired by Lemma 7.5, we aim to check the weak star limit ζ in
(7.22) is nothing but ϕ− Pϕ. Actually, we show that

Bσϕσ → ϕ− Pϕ weakly in L2(0, T ;H), (7.23)

by verifying this property with respect to a dense subset of L2(0, T ;H). Indeed, thanks
to (2.5) it suffices to prove that

∫ T

0

(Bσϕσ(t), ψ(t)ηj) dt→

∫ T

0

(ϕ(t)− Pϕ(t), ψ(t)ηj) dt

for all ψ ∈ L2(0, T ) and j ∈ N. (7.24)

Note that the integrals in (7.24) all vanish if the index j is such that the eigenvalue µj is
equal to 0. If instead µj > 0, then with the help of (2.8) and (7.13) we have that

∫ T

0

(Bσϕσ(t), ψ(t)ηj) dt = µσ
j

∫ T

0

(ϕσ(t), ψ(t)ηj) dt→

∫ T

0

(ϕ(t), ψ(t)ηj) dt

as σ ց 0. Moreover, ηj is orthogonal to the kernel of B. All this means that in both

cases there is convergence to
∫ T

0
(ϕ(t)− Pϕ(t), ψ(t)ηj) dt and (7.24) is ensured.

At this point, it remains to prove that the limiting pair (ϑ, ϕ) solves the system
(7.14)–(7.16). The initial conditions (7.16) hold true by virtue of (7.12)–(7.13), (7.8) and
(7.4)–(7.5). In particular, note that (7.13) guarantees at least that

ϕσ(t) → ϕ(t) weakly in H , for all t ∈ [0, T ]. (7.25)

On the other hand, recalling (7.3) and passing to the limit in (7.6) we arrive at (7.14).
Next, we let the test function v in (7.7) to depend also on time, taking v ∈ L2(0, T ;V σ0

B ),
and multiply the inequality by e−2γt, then integrating over (0, T ). We obtain

∫ T

0

(
e−γt(∂tϕσ(t)− γ ϕσ(t)), e

−γt(ϕσ − v)(t)
)
dt

+

∫ T

0

e−2γt
(
Bσϕσ(t), B

σ(ϕσ − v)(t)
)
dt+

∫ T

0

∫

Ω

e−2γtβ̂(ϕσ(t)) dt

≤

∫ T

0

e−2γt
(
ℓ ϑσ(t), (ϕσ − v)(t)

)
dt+

∫ T

0

∫

Ω

e−2γtβ̂(v(t)) dt

for every v ∈ L2(0, T ;V σ0

B ) . (7.26)
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Let us introduce the family of functions

ρσ(t) := e−γtϕσ(t), t ∈ [0, T ],

and point out that (cf. (7.13) and (7.25))

ρσ → ρ weakly in H1(0, T ;H), where ρ(t) := e−γtϕ(t), t ∈ [0, T ], (7.27)

ρσ(t) → ρ(t) weakly in H , for all t ∈ [0, T ]. (7.28)

Then, we observe that

∫ T

0

(
e−γt(∂tϕσ(t)− γ ϕσ(t)), e

−γt(ϕσ − v)(t)
)
dt

=

∫ T

0

(
∂tρσ(t), ρσ(t)− e−γtv(t)

)
dt

=
1

2

∥∥ρσ(T )
∥∥2 − 1

2

∥∥ϕ0,σ

∥∥2 −
∫ T

0

(
∂tρσ(t), e

−γtv(t)
)
dt

and, on account of (7.5), (7.27), (7.28) and the weak lower semicontinuity of norms, we
have that

∫ T

0

(
e−γt(∂tϕ(t)− γ ϕ(t)), e−γt(ϕ− v)(t)

)
dt

=

∫ T

0

(
∂tρ(t), ρ(t)− e−γtv(t)

)
dt

=
1

2

∥∥ρ(T )
∥∥2 − 1

2

∥∥ϕ0

∥∥2 −
∫ T

0

(
∂tρ(t), e

−γtv(t)
)
dt

≤ lim inf
σց0

{1
2

∥∥ρσ(T )
∥∥2 − 1

2

∥∥ϕ0,σ

∥∥2 −
∫ T

0

(
∂tρσ(t), e

−γtv(t)
)
dt
}

= lim inf
σց0

∫ T

0

(
e−γt(∂tϕσ(t)− γ ϕσ(t)), e

−γt(ϕσ − v)(t)
)
dt . (7.29)

Similarly, we recall (7.23) and point out that Bσv → v − Pv strongly in L2(0, T ;H):
indeed, this is a consequence of Lemma 7.5, the bounds

‖Bσv(t)‖ ≤ ‖v(t)‖B,σ ≤ c ‖v(t)‖B,σ0
for a.a. t ∈ (0, T ) and every σ ∈ (0, σ0],

along with

∫ T

0

‖v(t)‖2B,σ0
dt = ‖v‖2

L2(0,T ;V
σ0
B

)
< +∞ ,

and the Lebesgue dominated convergence theorem. Hence, as ϕ − Pϕ is orthogonal to
every element of the kernel of B, we infer that

∫ T

0

e−2γt
(
(ϕ− Pϕ)(t), (ϕ− v)(t)

)
dt

=

∫ T

0

e−2γt
(
(ϕ− Pϕ)(t), (ϕ− Pϕ)(t)− (v − Pv)(t)

)
dt

≤ lim inf
σց0

∫ T

0

e−2γt
(
Bσϕσ(t), B

σ(ϕσ − v)(t)
)
dt . (7.30)
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Next, we observe that the function

v 7→

∫ T

0

∫

Ω

e−2γtβ̂(v(t)) dt

is convex and lower semicontinuous in L2(0, T ;H), as one can easily verify. Therefore,
since ϕσ weakly converges to ϕ in L2(0, T ;H) (see (7.13)), we have that

∫ T

0

∫

Ω

e−2γtβ̂(ϕ) dt ≤ lim inf
σց0

∫ T

0

∫

Ω

e−2γtβ̂(ϕσ(t)) dt. (7.31)

Now, we take advantage of (7.29)–(7.31) and, in view of (7.12) and (7.13), from (7.26)
we deduce that

∫ T

0

(
e−γt(∂tϕ(t)− γ ϕ(t)), e−γt(ϕ− v)(t)

)
dt

+

∫ T

0

e−2γt
(
(ϕ− Pϕ)(t), (ϕ− v)(t)

)
dt+

∫ T

0

∫

Ω

e−2γtβ̂(ϕ) dt

≤ lim inf
σց0

(∫ T

0

(
e−γt(∂tϕσ(t)− γ ϕσ(t)), e

−γt(ϕσ − v)(t)
)
dt

+

∫ T

0

e−2γt
(
Bσϕσ(t), B

σ(ϕσ − v)(t)
)
dt+

∫ T

0

∫

Ω

e−2γtβ̂(ϕσ(t)) dt

)

≤

∫ T

0

e−2γt
(
ℓ ϑ(t), (ϕ− v)(t)

)
dt+

∫ T

0

∫

Ω

e−2γtβ̂(v(t)) dt

for every v ∈ L2(0, T ;V σ0

B ) .

Therefore, at the end we derive the same inequality as (7.26) for the limit functions ϑ
and ϕ. Moreover, it is not difficult to check that this inequality is equivalent to

(
∂tϕ(t), ϕ(t)− v

)
+
(
ϕ(t)− Pϕ(t), ϕ(t)− v

)
+

∫

Ω

β̂(ϕ(t))−
(
γ ϕ(t), ϕ(t)− v

)

≤
(
ℓ ϑ(t), ϕ(t)− v

)
+

∫

Ω

β̂(v) for a.a. t ∈ (0, T ) and every v ∈ V σ0

B . (7.32)

Then, by a density argument it is straightforward to infer that (7.32) holds true for all
v ∈ H , whence the definition of subdifferential for the convex functional

v ∈ H 7→

∫

Ω

β̂(v) ∈ [0,+∞]

enables us to conclude that for a.a. t ∈ (0, T )

ξ(t) := (ℓ ϑ− ∂tϕ− ϕ+ Pϕ+ γ ϕ)(t) ∈ β(ϕ(t)) a.e. in Ω . (7.33)

It is easy now to see that (7.33) finally leads to (7.15).
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