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Equations de Vlasov-Poisson avec champ magnétique
extérieur fort. Régime du rayon de Larmor fini

Résumé : Nous abordons ici le régime asymptotique du rayon de Larmor fini pour les
équations de Vlasov-Poisson avec champ magnétique extérieur fort. Un des points clé
consiste & remplacer la densité de particules par la densité de centres de Larmor. La limite de
ces densités vérifie une équation de transport dont la vitesse est donnée par la gyro-moyenne
du champ électrique.

Mots-clés : Equations de Vlasov-Maxwell, Rayon de Larmor fini, Gyro-moyenne
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1 Introduction

The dynamics of a population of charged particles interacting only through electro-magnetic
fields created collectively is described by the Vlasov-Maxwell equations. The Cauchy prob-
lem for this model is now well understood [13], [I7], [I8], [T9]. Nevertheless the existence of
global smooth solution for the three dimensional Vlasov-Maxwell system is still a classical
open problem. Conditional results for the global existence of strong solutions, depending
on the behavior of the support of the particle densities, have been obtained by different
approaches in [20], [T1], [26]. It is also worth mentioning the recent results when considering
data close to equilibrium [23], [3T] or reduced models [T2], [5].

The numerical resolution of the Vlasov-Maxwell equations is also a challenge problem
since we are working in a phase space with three spatial dimensions and three momentum
dimensions. Moreover new difficulties appear when studying asymptotic regimes due to
the multi-scale character of the problem. Motivated by the magnetic confinement fusion
(MCF) the study of strong magnetic field effect is now of crucial importance. Results
for the Vlasov or Vlasov-Poisson equations with large external magnetic fields have been
investigated recently [I5], [21], [I6], [8]. The guiding-center approximation for the Vlasov-
Maxwell system with strong initial magnetic field was studied in [7] by the modulated energy
method, see also [6], [9], [22] for other applications of this technique.

The asymptotic regime we wish to address here is the gyro-kinetic model with finite Lar-
mor radius. We consider a population of non relativistic electrons whose density is denoted
by f. We work in the two dimensional setting assuming that f = f(¢,x,p), (t,z,p) € R4 x
R? x R? and that the electro-magnetic field has the form (E, B) = (E1, E2,0,0,0, B3)(t, x),
(t,z) € Ry x R2. The particle density satisfies the Vlasov equation

1
Of + == -Vof —e (E(t,xHBg(t,x)_p) Yyl =0, 1)
Me Me
where —e < 0 is the electron charge, m. > 0 is the electron mass and the notation v stands
for (ve,—v;) for any v = (vi,vs) € R2. The self-consistent electro-magnetic field (E, B)
verifies the Maxwell equations

&
8tE — Cglszg - — if(t7x7p) dpa (2)
€0 Jr2Me
Oy Bs + div, T E = 0, (3)

div, E = % (n - /R2f(t7x7p) dp) . (4)

Here g is the vacuum permittivity, cg is the light speed in the vacuum and n is the con-
centration of the background ion distribution. We introduce the following characteristic
scales

t=Tt', x=Xpx', p=Pp’,
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4 M. Bostan

1/2
where \p = (%) / is the Debye length, Kp is the Boltzmann constant and Ty is

the temperature. Consider also the thermal momentum p¢, and the inverse of the plasma
frequency T, given respectively by

2
Pin 2 Me€o
—+ = KpTm, T, =——.
Me e2n

Let us denote by f’, E', B’ the dimensionless unknowns given by

n ,({t x p Apen _, [t =z Apenme _, [t x
= — = —, = E= E'|l =, — B=———B"=,—].
f P2f <T,/\D7P), €0 <T7)\D>7 8280P T,/\D

Observing that

ADE N Me  PthMe

eoP  Pel,’
we also have .
MePth
Bt = — .
o) = 5o p

In this case the equations become having dropped the primes

T P T pn p
Ohf+—=——p-Vof — =22 (B(t,2) + = Bs(t,z) ) - Vo f =0,
I+ g Vof = e (B + EBut)) Vs
1Tpth(meco>2L (Bg) T P
O E — -t Vo[ 2) = =—j(t,2),
! eT, P Pth € Tppthj( )
B T P
) <—3> +e——diviE=0,
€ T} ptn

div, E =1— p(t, ),
where p = [oof dp,j = [ppf dp. We choose the reference units such that

TP _1 Tpw_,

T,pn €2’ Tp?

)

which means Tl =L
P Pth

and the Larmor radius corresponding to this magnetic field and the reference velocity

= % Note that in this case the unit for the magnetic field becomes

1 me
e eTy

2
mi is given by R = T),22 = \p. Up to a multiplication constant (“;‘;‘f“) we obtain the

following system, known as the finite Larmor radius regime see [[14]

p P
s+ Vot = (B0 + Bi(tn) £ ) - V7 =0, )

INRIA



Régime du rayon de Larmor fini pour les équations de Viasov-Poisson 5

atEa_lj_vm (%) :.7 (tz,m)7 (6)
€ € €
B3 1
o <—3> + —divy Ef =0, (7)
5 5
div, E° =1 - p°(t,x). (8)

We address here the case of a large external constant magnetic field B§ = By 3 # 0 i.e., we
investigate the Vlasov-Poisson equations

i
D D
815,]0‘E + 8_2 . sza — (Ea(t, .T) —|— B013€—2) . fo€ = 0, (9)
div,E° =1 — p°(t,x), div,"E° =0, (10)
with the initial condition
(0,2, p) = f5 (=, p). (11)

In order to simplify our analysis we assume periodicity with respect to the space variable
x € T?, where T? = R?/Z? is equipped with the restriction of the Lebesgue measure of R?
on [0, 1[2. We are searching for electric fields E deriving from space periodic potentials ®¢
satisfying
Ef =V,0°, A0 =1-)p°(t,x), (t,z) € Ry x T2

The above problem has solution provided that the global neutrality condition is satisfied
i.e., f,ﬂ,z p°(t,x) de = 1. Note also that the solution is unique up to a constant. We consider
here zero average solutions sz ®°(t,x) dr = 0. There are in the literature a lot of studies
concerning the Cauchy problem for the Vlasov-Poisson system. The existence of weak so-
lutions has been studied in [I], [25]. For smooth solutions the reader can refer to [30], [24],
21, 29, 23, [28].

One of the key points when analyzing () is to replace the particle distribution functions
f¢ by the center distribution functions ¢g¢ given by

g°(t,y,p) = f°(t,z,p),

L
where y = x — WPS is the center of the Larmor circle. Performing the above change of

unknown yields the equation
By 3 1 ‘p tp
Oyt — —==1p-V,9°+ —1E° (t, — | -V,9° — E° | t, — | -V,9°=0.
tg -2 D-Vpg + Bo.s y+ Bo.s y9 Y+ Bo.s pY

Observing that

LI {LEE (t n Lp>} di {E (t + Lp)}
- AV 9 o = v ) B )
Bys 7 Y Bo3 b Y Bos

RR n° 0123456789



6 M. Bostan

the above equation can be written in the conservative form

LEs(t,x)
By 3

B
Org" — —5divy(¢71p) + div, (95 > — div, (¢°E°(t,2)) = 0, (12)

supplemented with the initial condition

1
p
9°(0,y,p) = f5 (y+ Box ,p> , (y,p) € T? x R%,
0,3

)

As € goes to zero, we expect that the limit of the center distributions (¢¢)c~¢ becomes
radial symmetric with respect to p € R?. Indeed, passing formally to the limit as ¢ \, 0 in
(@) we deduce that +p- Vpg = 0, where g = lim.\ o g°. Eventually, the transport equation
satisfied by g comes by writing the weak formulation of ([2) with test functions ¢ = (¢, y,p)
having radial symmetry with respect to p € R?, since in this case the singular term vanishes

B B
- < (;3 div, (9°*p), 1/1> - / / / %QELP - Vi dpdydt = 0.
£ D', D Ry JT2JR2 €

The evaluations of the other terms
LEe(t
<divy (fﬂ) ,¢> . (div, (6B (t,2)), V) p s p
‘ Bos DD ’

lead naturally to the gyro-average operator which will play an important role in the analysis
of the finite radius Larmor regime.

The paper is organized as follows. In Section 2 we establish uniform estimates with
respect to the small parameter € > 0. These estimates come basically from the conservation
of the total energy, combined with Sobolev and interpolation inequalities. Section 3 is
devoted to the formal derivation of the limit model. We employ here the Hilbert method,
by expanding the solution in power series of some small parameter. The well-posedness of
the limit model is studied in the next section. We establish existence and uniqueness results
for the strong solution. The convergence towards the limit model is proved rigorously in
Section 5. We obtain strong convergence in L? for well prepared initial conditions. In the
last section we investigate higher order approximations. We identify formally the equations
satisfied by the first order correction terms.

2 Uniform estimates

We work with smooth solutions (f¢, E€).s¢ for the Vlasov-Poisson problem (@), (), ().
For further computations we establish a priori estimates with respect to the parameter € > 0.
Besides the smoothness of the initial conditions (f§)e>0 we make the following assumptions

INRIA



Régime du rayon de Larmor fini pour les équations de Viasov-Poisson 7

H1) f§ 20, [p[gef5(z,p)dpde=1,¥e>0;

H2) sup,. % szfRQ IpI2 f§ (z,p) dp dz < +o0 ;

H3) there is a bounded non increasing function Fy € L*°(Ry) N LY(Ry4; rdr) such that
f5(z,p) < Fo(lp)), ¥ (z,p) € T> x R?, £ > 0.

Integrating with respect to the momentum the Vlasov equation yields the continuity equation

1
O + 5 divaj® =0, (13)

where p® = [, f¢ dp, j° = fRQp f¢ dp. We deduce easily by H1 that the global neutrality
condition holds true for any ¢ € R

/ fe(t,x,p)dpde =1, Ve >0.
T2 JR2
By standard arguments we deduce that the total energy is conserved on R

2
L / / Ip2f=(t,2,p) dp da + / ES(t,2) da b = 0. (14)
dt 2 TQ RQ 2 '[r2

Usual computations involving interpolation inequalities provide an estimate for the L2 norm
of the charge densities (p)es0-

2 1/2
IOl < (a5l ([ [ B rp apae) L teRe, e>0
In particular H2, H3 imply that

sup || 5l 2 (1) < +o0, sup || Eg| g2y < +o0,
e>0 e>0

and by () we deduce that

1
ap AL [ rrtandirs [reof el < 09
O<e<l,teRy 2 Jr2JR2 T2

sup | B2 () | 1 (12) < 4-00. (16)
0<e<1,t€Ry

and

Actually following the ideas in [4] it is possible to obtain more uniform bounds with respect
to the parameter €. For any R > 0 we can write

p°(t ) = pi(t,x) + p5(t, x), (17)

RR n° 0123456789



8 M. Bostan

with p§ = [eo fS1{pi<2r} AP, P5 = [p2f L{pj>2r} dp. In order to estimate the charge
density p§ we combine the Hélder inequality and the bound for the kinetic energy. For any

n > 0 we denote by (2+7)’ the conjugate exponent of 2+ 7 i.e. + ﬁ = 1. We have

1 1

B 5 e 2+4n 72(24'7])/ 8 2+n)’

pi(t.x) < | f< dp [p| ™= f< dp :
lp|<2R |p|<2R

Taking into account that ||f¢||pe < || Fo|lr~ we have

1
7 24

i EDYCET N

’ 2
(2+n)
[ W d Bl [
[p|<2R 0

and therefore, by using the bound for the kinetic energy, we deduce that
195l 2 4n(rzy < CLR7#9, t€ Ry, 0<e<1, (18)

for some constant C7 not depending on R or t. For estimating the charge density p§ observe
that
[t @,p) = f6(X°(0st, 2, p), P*(0s £, 2, p)),
where (X¢, P¢) solve the characteristic system
dX®  P(s) dP®
ds &2 7 ds

_ (EE(&XS(S)) 4 Bo73LPE Z(S)) ,

and the conditions (X¢, P)(¢;t, z,p) = (x,p). Multiplying the second characteristic equa-
tion by P¢(s) we obtain easily that ‘d%|PE(S)| ’ < |IE%(s)[| oo (12)2 implying that

|P=(0;t,2,p)| > [p| — t [|E¥|| Lo jo,e[xT2)- (19)

We fix now ¢ > 0 and let us consider R = R(t) = t |[E¥||1~(o,¢(x12)- The hypothesis H3
yields for any s € [0, t]

p5(s,a) = / o FH 5., P02,
p|>

/ Fo(lp| — R) dp
|p|>2R

IN

+oo
< 471'/ Fo(r)r dr
R
—+oo
< 47T/ rFo(r) dr =: Cs. (20)
0

Finally combining ([[¥), @) and Sobolev inequalities we deduce

_2n
15O e < Cal O lzmsacen < ) (14 1B g ) ¥ 5 € 041

INRIA



Régime du rayon de Larmor fini pour les équations de Viasov-Poisson 9

and by taking 0 < 1 < 2 we obtain that the following estimate holds

sup || E®| Lo (o, xT2) < +00, t € Ry.
0<e<1

In particular, for any s € [0,¢],e €]0, 1[ we have
105 (8)l| oo 2y < 4m(R())? (| f5 | oo < 43| E% (| o0 g0 412y | Foll oe
and thus, thanks to (), @0) we deduce that

sup [l qo,eix2) < +00, t € Ry.
<e<1

Since f¢ belongs to L*®(Ry; LY (T? x R?)) N L>=(Ry; L>°(T? x R?)) we have also f¢ €
L (Ry; L*(T? x R?)). Multiplying the Vlasov equation () by f¢ it is easily seen that

/ / (f9)%(t,x,p) dp dez = / / (f&)*(x,p) dp dx, t € Ry, e>0.
T2 JR? T2 JR?
The above conclusions are summarized up in the following proposition

Proposition 2.1 Assume that (f5)e>0 are smooth initial conditions satisfying the hypothe-
ses H1, H2, H3. Let (f¢, E®)c>0 be the smooth solutions for the Viasov-Poisson system (),

(Id), {I@). Then we have

L Lrwwa= [ [ Groamda= [ [ @ ad. er. >0

1
sup {5/ / lp|*f*(t, x, p) dp dw+IIE€(t)||§p<qr2>} < +o0,
0<e<1,teRy T2 JR2

sup |[p%| Lo o,r[x12) < +00, sup |[E°||peeqo,rpwrar2y) < 400, T € Ry, 1 < ¢q < oo.
0<e<1 0<e<1

Remark 2.1 It is easily seen by using [I3) that if suppfS C T? x Bpg, then f¢(t) remains
compactly supported, uniformly for t in compact sets of Ry and

suppf(t) C T? x Bgr(ry, t€[0,T],

with R(T) = R+ T ||E%|| o, 7xT2) -

3 Formal derivation of the limit model
We consider the asymptotic expansions in powers of 2 (notice that €2 is the small parameter

appearing in ([{@))
fF=f+efhi+elfot ., (21)

RR n° 0123456789



10 M. Bostan

Ef =E+4&*E) +e'Ey + ... (22)
Plugging these ansatz in the Vlasov equation (@) yields
p-Vaof —Bos 'p-Vyf =0, (23)
Of —E(t,x) - Vpf+p-Vafi —Bos 'p-Vpfi =0, (24)
Oifr — B(t,x) - Vypfi — Ev(t,x) - Vpf +p-Vafo— Bos "p-Vypfa =0, (25)

From the Poisson equation we deduce also that
div, B =1—p, divpyE1 = —p1, ... (26)

where p = [o.f dp and p, = [p. fr dp for any k > 1. If we denote by j, (jx)r>1 the current
densities j = [popf dp, jx = [gapfr dp for any k > 1 it is easily seen that the following
continuity equations hold

div,j =0, Oip+divejs =0, Oip1 +divyjs =0, ... (27)

And finally notice that
div, *E=0, div, *E; =0, .. (28)

Introducing the differential operator 7 =p -V, — By 3 ip- V, the previous equations can
be written

Tf=0, (29)
Ouf — E(t,x) - Vof + Tfi =0, (30)
Oufi — E(t,x) - Vpfi — By(t,x) - Vof + T fo =0, (31)

Performing the change of coordinates (z,p) — (y = x — %, p) simplifies the expression of
the operator 7. Indeed, for any v = u(x,p) let us denote by v = v(y,p) the function

Lp

’U(y7p) = U($7p), Tr = y+ B—
0,3

Applying the chain rule yields

Vau(z,p) = Vyv(y,p), (32)

INRIA



Régime du rayon de Larmor fini pour les équations de Viasov-Poisson 11

1
Vyu(,p) = Vyuly,p) + 5— V,0(y, p). (33)
In particular we have
Tu(z,p) = —Bos “p- Vyu(y,p). (34)

The above change of coordinates facilitates the study of the operator 7.

Proposition 3.1 Letu € L] (T?xR?). Then Tu = 0 in D' (T? xR?) iff there is a function
w € LL (T? x Ry;rdydr) such that u(z,p) = w(z — BLpr Ip|) for a.a. (z,p) € T? x R2.

loc

Proof. For any function ¢ € C}(T? x R?) we have

[ wtenTetw.p) dp =0, (35)
T2 JR2
Let us denote by v and v the functions
Lp Lp 2 2
v(y,p) =u (y+ —,p) , Y(y,p)=¢ (y+ —,p> , (y,p) € T xR
Bo3 Bos

After changing the variables (x,p) by (y,p) the equality ([BH) implies

/ / (y,p) “p- Vyt(y,p) dp dy = 0.

T2JR?

Notice that

d . n .
@w(y,rcos 0,rsinf) = ——p-V,(y,p), p= (rcosb,rsind)

and thus we obtain
2w d
/ dy/ r dr/v(y,rcos&,rsinﬁ)—dj(y,rcosﬁ,rsinﬁ) df =0,
T2 R, 0 de

saying that there is a function w € L (T? x Ry;rdydr) such that v(y,p) = w(y, |p|) for

loc

a.a. (y,p) € T? x R2. Therefore we have

1p 1p
u(z,p) =v <$— —,p) =w (:1: - |p|> , (x,p) € T? x R
BO,B Bog

)

RR n° 0123456789



12 M. Bostan

Remark 3.1 For any q € [1,+00] we can define T as linear unbounded operator on L?(T? x
R?), with the domain

D, ={u e LYT? xR?) : p-Vuu— Bos'p Vyuec LY T? x R?)}

and Tu = p - Vyu — Boatp - Vyu for any u € Dy. Obviously, if u € D, satisfies Tu = 0
then u € L{ (T? x R?) and Tu = 0 in D'(T? x R?). Therefore, thanks to Proposition [Z1]

loc

the kernel of the operator T in L(T? x R?) setting is given by
1

{ue LYT?* x R?) : Jwe LYT? x Ry;rdydr), u(z,p) =w (:17 - B—p, |p|> a.e. (z,p)}
0,3

)

We introduce now the gyro-average operator () given by

1 [ |p| sin @ |p| cos@
(u) (y,p) = %/()U(yﬁ Bes T B,

for any function u = u(z,p). Actually, with the notation

A(0) = < cosf —sinf >7 0cR

,|p| cos B, |p| sin 9) de

sin @ cos

we have for any 6y € R

(u) (y,p) = % /Ozj(y + w,fl(e - 90)p> d. (36)

In particular (taking 6y such that A(6y)p = (—|pl,0)*) we have

1 [ sin 0 cos @ .
) ) = o= [ <y _lplsing | pleost  cost, — sme) . (37)
0

2m By 3 Bo 3

) )

The gyro-average operator has the following properties

Proposition 3.2 i) The gyro-average operator is linear and continuous from L9(T?xR?) —
LI(T? x R?) and || () | c(ze(r2 xr2),La(12 xr2)) < 1 for any q € [1, +o00].
ii) For any function u € L4(T? x R?), q € [1,+o0] satisfying Tu = 0 we have

1
(u) (y,p) = u (y+ B—p,p> . (y,p) € T? x R2.

)

i) For any function u € WH(T? x R?) satisfying Tu = 0 and E € L*(T?) satisfying
div, 1 E = 0 we have

(E-Vpu) (y,p) = — <%> (y,p) - Vau (y+ B%)m) :

i) If Opu,u € L]0, T[xT? x R?), q €]1,+00|, then
O {u) € L]0, T[xT? x R?), 04 {u) = (Opu).

INRIA



Régime du rayon de Larmor fini pour les équations de Viasov-Poisson 13

Proof. i) The case ¢ = 400 is immediate and we have || (u) ||~ < |lu|lLe for any u €
L*>(T? x R?). If g € [1, +00[ we have by Holder inequality

I sin 6 cos 6 .
[{(u)[1(y,p) < o= [ |ul? (yl + | JY2 — p , |p| cos 8, |p| s1n0> do
21 Jo Bo,s Bo,s

)

and after integration over T? x R? one gets

0 0
/ / /|u|q ( |p|s1n Y2 — Ipl cos ,|p| cos 8, |p| sin9> de dp dy
T2 JR2 Bo,s By 3

27
= — / / |u|?(z, |p| cos b, |p|sin @) dp dx db
2 0 T2 .JR2

2m
/// |u|?(z, 7 cos @, rsinO)r dr df dx
T2 Jo JRy

= llullf.

IN

() I2a

Therefore we have || () || £(za(T2 xR2),La(T2xR2)) < 1 for any ¢ € [1, 4-oc].
ii) Let u € L9(T? x R?) be a function such that 7u = 0. Therefore by Proposition Bl (see

also Remark Bl) we know that (y,p) — u (y + %, p) has radial symmetry with respect
to p € R2. We have

1 27 inb
(u) (y,p) = %/Ou (y1+ |pl|;012 Y2 — |p]|9(;(fs ,|p| cos 8, |p| sm&) do

1

P
= —'——7 .
u(y Bo,3 p>

)

iii) We start by checking the statement for smooth functions u € C}(T? x R?) and F €
C%(T?). We have

1 2 sin 6 cos .
(E-Vyu) (y,p) = 5= /(E “Vpu) | y1 + [ Y2 — o ,|p| cos B, |p|sind | db.
21 Jo Bo,3 B3

) )

By formula [B3) we obtain

€L €

1
p) = V,u(y,p) + Bos Vyu(y,p), v(y,p) =u(x,p), y=x— L

L

b
Vpu |y + ——,
b ( Bos

and therefore

1 [ sin 0 cosf .
(E-Vpu) = —/ (y1 + [ Y2 — L) - Vpu(y, |p| cos b, |p| sin6) do
0

2 Bo,3 Bos
1 T |p| siné |p| cos 6
— E s __— . v , 97 . 9 d9
27TBO,3/0 (yl + By s Y2 Bos yU(y, [p| cos b, |p|sin @)
= I — I.

RR n° 0123456789



14 M. Bostan

Since 7u = 0 we deduce by Proposition Bl that v has radial symmetry with respect to
p € R?, that is, there is w € C}(T? xR, ) satisfying 9,w(-,0) = 0 such that v(y, p) = w(y, |p|)-
Therefore

Vpu(y,p) = Orw(y, Ipl)ﬁ-

Let us denote by ® the potential of E, i.e., E = V,®, ® € C'(T?). Notice that we have the
equality

d ® n rsin 6 rcosf\ E n rsin 6 rcosf
a0 Y Bo.s ) Y2 Bos = Bo.s Y Bo.s ) Y2 Bos

) - (rcosf,rsin).

Combining these computations we deduce that I; vanishes

1 [ |p| sin @ |p| cos @ .

L = —|FE - : 0,sin 6)0,w(y, |p|) do
1 27r/0 (yl-i- Bos Y2 Bos (cos 6, sin 0)d,w(y, |p|)
Bos 1 /%d |p| sin @ |p| cos @
= —=0w(y,|p|)=— — Y2 — ———— | do
|p| w(y |p|)27‘r 0 do Y1+ B013 Y2 B013

= O_

In order to compute the second integral I», observe that V,v has also radial symmetry with
respect to p € R? and thus

1 [*LE |p| sin @ |p| cos @
L = ~- [ = - df
2 Vyv(ym)%/o Boa (y1+ Bos " Boa )
+E
= <B—>(y,p)-Vyv(y7p).
0.3

Finally we obtain

(E-Vyu) (y,p) = — <%> (y,p) - Vau (y+ %m) :

It remains to prove that the above formula holds true for u € W11 (T? xR?) such that 7u = 0
and E € L°(T?). By regularization arguments we construct the sequences (Ey), C C°(T?)
such that limy_. 4 oo Fx = E weakly x in L>(T?) and (uy)r C CL(T? x R?) such that Tuy, = 0
for any k, limy_, | oo ux, = u strongly in W1(T? x R?). Indeed, since 7u = 0 there is w such

that u(z,p) = w (x - %, |p|) satisfying w, V,w, 9,w € L*(T? x Ry ;rdydr). Take now a

sequence of smooth functions (wy )y, verifying

kEI-Poo wE = w, kEr-lr-loo Vywy = Vyw, kEr-lr-loo Orwy, = Orw in L™ (T% x Ry ; rdydr)

and observe that the sequence (uk(:v,p) = wg (:v - %7 |p|))]C belongs to the kernel of 7°

and converges towards u strongly in W11(T? x R?). By the previous computations we have

INRIA



Régime du rayon de Larmor fini pour les équations de Viasov-Poisson 15

for any k

(Bk - Vpur) (y,p) = — <;—?;> (y,p) - Vaou (y + %,p) : (38)

It is easily seen that limg_, o (E) - Vyug) = E - Vpu weakly in L!(T? x R?). Since the gyro-
average is strongly continuous from L!(T? x R?) to L!(T? x R?) it is also weakly continuous
from L'(T? x R?) to L'(T? x R?) (see [T0] Theorem III 9, pp. 39) and therefore

lim (Ey - Vyug) = (E-V,u) weakly in L'(T? x R?). (39)

k—-+oo

It is easily seen that <J-Ek>k converges weakly % in L>(T? x R?) towards <J-E> Indeed, for
any function ¢ € L(T? x R?) we have

27 .
sin 6 cosf
2”/ /<LEk> : sodpdy=/ /‘P'/LEI@ (y1+ |p]|3 Y2 — ng ) df dp dy
T2 JRR2 T2JR2 Jo 0,3 0,3
27 .
sin 0 cosf
= / lEzg(:c)/ /cp (xl — |p]|3m , To + |pj|9 ,p> de dp dx
T2 Rr2.Jo 0,3 0,3
27 .
0 0
— / lE(CC) / /<P (331 — |pgsm , Lo + |p|BCOS ,p> df dp dx
T2 R2.Jo 0,3 0,3

= 27r//<J‘E>-cpdpdy
T2 JR?

since limy_ 4 oo Ex, = E weakly x in L>°(T?) and the function

27 .
0 0
I—>/ /w(a?l— lplsin , T2 + Iplcos ,p> df dp
r2.J0 Bo3 By

belongs to L'(T?). Combining now the weak % convergence in L>(T? x R?) of (* E},), with
the strong convergence in L!(T? x R?) of (V ux)r we deduce that

o) = (i) o) 9o (v 350)
lim (=) (y,p) Vatk (y+ 5—0) =(5— ) ) Vou [y + 5—, 40
kﬁ+w<3073> (Y,p) - Vaus (y Bos? Bog /) WP Yt g?) 10

weakly in L!(T? x R?). Putting together (B5), (B9), @) yields our conclusion.
iv) Let € > 0 and h € R such that |h| < . Then

IN

T—e¢
/ u(t + h) _“(t)Hqu(qrszz) dt
1>

e

T—e
/ I (e + R)) = @0 [, o)

IN

0,T[xT2xR2)

saying that 9, (u) belongs to L(]0, T[xT? x R?) and ||0; (u) ||z« < ||Osul|re. Take now a
sequence of smooth functions (uy)x such that uy — u and dyuy, — dpu in LI(]0, T[x T? x R?).
Since (ux)r are smooth we have 9 (ur) = (Jyux). By the above computation we have

10 (u) — O (ug) ||La < ||Osu — Osug||e — 0 as k — 400
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16 M. Bostan

and therefore

O (u) = lim 0 (ug) = lim (Qyuy) = (Opu) in LI(J0, T[xT? x R?).

k—-+oo k—-+oo

We introduce also the operator

1 27 lp
[v](z,p) = — /v (:17 — ——,|p|cosa, |p| sina> do.
21 0 BQ 3

)

Proposition 3.3 i) The operator [] is linear and continuous from L1(T? x R?) to L(T? x
R?) and ||[]|| z(za(r2xr2),La(r2 xr2)) < 1 for any q € [1,+00].
i) For any functions u € LI(T2xR2?),v € L1 (T2 xR2?), 1/q+1/q" = 1 we have the equality

/T?/Rz (u) (y, p)v(y,p) dp dy = AQ/RQU(I’I’)[U](LP) dp de.

iii) For any functions u € LI(T? x R2),v € L1 (T2 x R?), 1/q+ 1/q' = 1 with radial
symmetry with respect to p € R? we have the equality

// (y,p)v(y,p) dpdy—// u(z,p) (v) (z,p) dp du.
T2 JR2 R2

i) If ¢ = 2 the adjoint of the gyro-average operator is [ ] and the gyro-average operator is
symmetric on the subspace of radial symmetric functions with respect to p € R2.

Proof. i) The assertion is clear for ¢ = +00. Assume now that ¢ € [1,4+o0[. By Holder
inequality we have

1 27 J_
q < _ q _ d
[[W]|9(z,p) < o |U| (w —Bo,g , || cos a, |psma> o

and thus after integration over T2 x R? one gets

/ / /|v|‘1 <x—— |p| cos v, |p| smoz) da dp dx
T2 JR2 0.3

/2/2/ (y, p| cos v, |p| sin @) dax dp dy

T2JR

||”||Lq(11*2x]1g2)-

Il %o
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Régime du rayon de Larmor fini pour les équations de Viasov-Poisson 17

Therefore we have ||[ ]|l £(ra(12xR2),L9(T2xR2)) < 1 for any ¢ € [1, 4-oc].
ii) For any functions u € LI(T? x R?),v € L (T? x R?), 1/q+1/q’ = 1 we can write

27T/ / (u) (y, p)v(y,p) dp dy
T2 JR2
2 .
sin 0 cos .
= / / U(yap)/u <y1 + [ Y2 — |p|B , |p| cos 6, |p| sm@) de dp dy
T2 JR2 0,3 0,3
27r
0 0
/// ,|p| cos 8, |p| sin §)v < |p|sm — 7o+ Ipl cos ,p) de dp dy
T2 JR2 BOB B0,3
27 p27
0 0
/dm /rd7f /u(z,rcos&,rsin&)v (xl _ rsind , T + reosy ,rcosoz,rsina)d@doz
Ry Bo3 Bos
27r
/ / / x,p)v <x—— |p| cos v, |ps1na> da dp dx
T2 JR2 B
2 [ [ uten)lep) dp
T2 JR2

iii) If v € L9 (T? x R?) has radial symmetry with respect to p € R? then

tp
v|(z,p)=v|r— =—,—
e =v (- 52 ).
Since u(x, p) = a(x, |p|) we obtain by the previous assertion and (B1)
// (v, p)v (yp)dpdy—// (z,p)[v](z, p) dp dz
T2 JR? T2 JR?
= // u(zx, p)v <x——p—p> dp dz
T2 JR2 BO 3
2w :
6 0
/ / /ﬁ(m,r)v (wl _ e , Ty + reos ,—rcosf,—r sin@) r dfdrdx
T2 JR, By,3 By s
/ / z, [pl) (v) (z, p) dp du
T2
://ﬁmmmmm@m
T2 JR?

iv) It is a direct consequence of ii) and iii) with ¢ = 2. =

In the following proposition we determine the range of the operator 7.

Proposition 3.4 i) Let R belong to LY(T? x R?) for some q € [1,+00] and assume that
there is u € L9(T? x R?) such that Tu = R. Then (R) = 0.
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18 M. Bostan

ii) Let R belong to LI(T? x R?) for some q € [1,+o], satisfying (R) = 0. Then there is a
unique u € LI(T? x R?) such that (u) = 0,Tu = R. We have the a priori estimate

2

lull La(r2xr2) < mHR”Lq(WXW)

and if R € WH4(T? x R?) then u belongs to WH4(T? x R?) and

2w
Vol Lacre xrey < mHVzR”Lq('ﬂ‘?xR?)a IVpull Laer2xr2y < C(Bo3)|V (z,p) Rl La(r2 xR2)

for some constant depending on Bos. Moreover, if supp R C T? x Bg,, then supp u C
T? x Bgr,, where Br, = {p € R? : |p| < Ro}.
ii1) If ¢ = 2 we have the orthogonal decompositions
L*(T? x R?) = Ker7 @ Range7 = Ker7 @ Ker ().
Proof. i) Let us consider a sequence (ug)r C C1(T? x R?) such that limy_ o ux = u and

limy—, 00 Tup = Tu strongly in L9(T? x R?) if g € [1, +oo[ and weakly x in L>°(T? x R?) if
q = +0o. Let us denote by (vg)x the functions

u(y,p) = ur(z,p), y=2— =—.

By formula B4 we have

1

p

Tuy, <y + 5 ,p) =—Bos “p- Vyur(y,p)
0,3

and therefore

1 [ |p|sin @ |p| cos @
T = — | - 0,|p|sind ) do
Tuyr) = 5 [ Tond (1+ B0 0 = Py coso, sin

B 2T
= =52 [ (plsin6, ~|p| cos6) - Vyui(y, [p| cost, [p|sin6) db
T Jo
Bos [*"d
= %/0 @vk(y, |p| cos @, |p| sin6) db

= 0.
If ¢ € [1,+00], by using the continuity of the gyro-average in L(T? x R?) we obtain

(R)y={(Tu)= lim (Tux)=0.

k—-+o0
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Régime du rayon de Larmor fini pour les équations de Viasov-Poisson 19

If ¢ = 4+o00 we have for any ¢ € L(T? x R?), thanks to the weak x L>°(T? x R?) convergence
of Tuy, towards Tu

/]1‘2/R2<R> (. p)ely,p) dp dy = /P/WR(%P)[SD](%P) dp da

/ Tu(e, p)le)(z.p) dp da
T2 JR?2

~  lim / Tui(z,p)lel(z, p) dp dz
k— 400 T2 JR2

= lim //<Tuk>(y7p)<ﬁ(y,p)dpdy
— 400 T2 .JR2

= 0

saying that (R) = 0.
ii) For any p > 0 there is a unique solution u,, € L4(T? x R?) for

puy, +Tu, = R. (41)
Indeed, let us denote by (X, P)(s;z,p) the characteristics associated to T

dX dP
g = P(S,I,p), % = _B0,3LP(S;‘Tap)7 (X7 P)(O,l’,p) = (xap)

Since div(, ,)(p, —Bo,sp) = 0 the change of variables (z,p) — (X, P)(s;z,p) is measure
preserving for any s. It is easily seen that

J_P J_p
(X - —) (si2.p) =2 — —L P(sia,p) = A(sBos)p. (42)
By By 3

)

The equation I is formally equivalent to

%{e“suM(X(s; x,p), P(s;x,p))} = e"* R(X (s;z,p), P(s;z,p))
implying that
uu(@,p) = / e" R(X (s;x,p), P(s;z,p)) ds. (43)

We check easily that the function given by ([E3) belongs to LI(T? x R?), |Juy| pa(rzxr2) <
1R La(r2 xr2) and solves @I]). Moreover, applying the gyro-average operator to (EIl) we
deduce that

pup) = (puy + Tuy) = (R) =0

and thus (u,) = 0 for any p > 0. Actually we can prove that (u,),~o is bounded in
L4(T? x R?). We introduce the function

0
G(s,z,p) = / R(X (7;2,p), P(T;2,p)) dr, (s,7,p) € R x T? x R?.
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20 M. Bostan

Notice that G is BQ[:S‘ periodic with respect to s. Indeed we have by [E2), (B
27 5 tp  LP(r;2,p) >
G §— —5—,7T, —GS,SC, = / R<$— + - ,PT;I7 dT
( Bos p> (s,2,) s— 2T Bo 3 By ( p)
[ < p o “(AO)p) >
= — R(z— + , A0 do
Bos JsBys—2r Bo,s By 3 (@)

2 Ip >
= R - =,

Bo3< >( Bo3p
= 0.

Moreover for any s € [0, we have

21
[Bo,s| ]

|G(s,2,p)| < 8[| R Lo (r2xr2) < T | Rl Lo (r2xm2) if ¢ =400

2
[Bo.s]

//Sq_l/ |R|"(X (r;2,p), P(;2,p)) dr dp dx
T2 JR2 0
_ sq—l// |R|%(X, P) dPdXdr

0 T2 JR2

= Sq”R”%q(szRz)

2 \?
< (i) 1l

Thus for any ¢ € [1,4+00] and any s € R we have

2w
G ()l La(r2xr2) < mHR||L‘?(T2><R2)-

and if g € [1, +o00[

IN

] et dp o

Now we are ready for estimating ||u,||Lq(r2 xr2) uniformly with respect to p > 0. Observe
that

u#(Iap) = _/ GHSaSG(S,.T,p) ds = :u’/ eMSG(S7x7p) ds

and thus we obtain easily that
lupllLa(re xrey < ||G||L°°(R;Lq(1r2xR2))/ e uds < |B |||R||L‘1(T2><]R2)
R_

Take now a sequence (i), converging towards zero such that (u, )r converges to some
function u € L9(T? x R?) weakly in LI(T? x R?) if ¢ € [1,+o00], respectively weakly * in
L*°(T? x R?) if ¢ = +00. Notice that

2

lull La(r2xr2) < %Eli{.l(f % | La(r2 xR2) < Bo,

|||R||Lq('ﬂ‘2><]R2)
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Passing to the limit for £ — 400 in @Il) we obtain that 7w = R. Since (u,, ) = 0 for any k
we have also (u) = 0.

Assume now that R belongs to W14(T? x R?). In order to establish the Wh9(T? x R?)
regularity of u it is sufficient to estimate u, in W1?(T? x R?) uniformly with respect to
p > 0. By [#2) notice that

0X 0X 1 A( T oP oP

% = 12, 3_p = % —5) (A(SBO,B) - 12)7 3_56 = 0o, 3_1)

= A(SB())P,).
Taking the derivatives with respect to (z,p) in [E3) one gets

X \*
Vou, — / (—) V. R(X (s:2,p), P(s; 2. p)) ds
R ox

/ e* Ry (s, x,p) ds

Vou, = /e“s{<%—j>tVzR(X(s),P(s))+(%—i)tva(X(s),P(s))} ds

= /e”SRQ(S,I,p)ds
R_

with
Ru(s,2,p) = Vo R(X (s;2,p), P(s; 2,p))
and
Ry(s,z,p) = % (A (—g) (A(sBo,3) — Ig))t VoR(X (s;z,p), P(s;x,p))

+ A(sBos)' VpR(X(s;z,p), P(s;z,p)).

We introduce the functions G1, G2 given by
0
Gi(s,x,p) = / Ri(1,z,p) dr, (s,2,p) € RxT? x R?, ke {1,2}.

Observe that G1, Gy are |B27W3| periodic with respect to s. Indeed, by the previous compu-
tations we know that

/ R(X(7;2,p), P(t;2,p)) dr =0, (s,x,p) € R x T? x R?
s 27

" Bos

and thus by taking the derivatives with respect to (x,p) one gets

/ Ry(t,x,p)dr =0, k€ {1,2}, (s,2,p) € R x T? x R%
s— 27

Bo,3
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22 M. Bostan

From now on we can proceed exactly as before, when estimating the L? norms of u,. We
have

2T 2T

Gl Lo ®;ra(r2xr2)) < mllRlHLw(R;Lq(MR%) = mHVwRHLq(MR%

2
G2l Lo (r;La (T2 xR2)) < mHRﬂ\Lw(R;Lq(T?xR?)) < C(Bo3)|IV (@,p) Rl La(2 xRr2)

implying that

21

IVaoupllLacrzxrey < |G1ll Lo v;pa(r2xr2)) < mHVmRHLq(T?xR?)

and
IVpupllLa(rexrzy < G2l Lo ina(r2xr2)) < C(Bo3)|IV (2,p) RllLa(r2 xR2).-
Notice also by [3) that if supp R C T? x Bpg, then supp u, C T? x Bpg, for any > 0 and
therefore the solution u has also compact support in T? x Bg,.
It remains to prove the uniqueness of the solution w. Assume that there are wui,us €
L9(T? x R?) satisfying
<U1> = <’U,2> = O7 Tul = TUQ = R.

Since 7 (u1 — u2) = 0 we have by Proposition

1

0 = (u1 —u2) (y,p) = (u1 — u2) <y+ Kpg,p) , (y,p) € T? x R?

)

and thus u; = us.

iii) Assume that ¢ = 2. The operator 7 is densely defined, has closed graph and its adjoint
operator is given by D(7*) = D(7), 7* = —7. By the statements i), ii) we know that
Range7 = Ker () where () denotes the gyro-average operator on L?(T? x R?). Since () is
linear bounded operator on L?(T? x R?) we deduce that Range7 is closed. It is easily seen
that KerT is closed in L?*(T? x R?) and thus we have the orthogonal decomposition

L*(T? x R?) = KerT @ (Ker7)> .
But
(Ker7)* = (Ker7*)* = RangeZ = Range7 = Ker ()
and our conclusion follows. O

Based on the properties of the operators 7 and () we derive now the limit model for
the leading order terms (f, F) in the asymptotic expansions ([ZII), [22). We assume that
(f, E) are smooth, such that the equations below are understood in the classical sense. We
associate to f the center distribution function g given by

g(t7yap) = f(t>$>p)7 Yy=xr— ——.
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By Proposition Bl the equation () says that g has radial symmetry with respect to p € R2.
Combining ([B0) and Proposition B implies

(Ouf — E(t,x) - Vpf) =0. (44)
Since 7 f = 0 we have by Proposition

1
(O (op) = 1 (t,y n B—H) (45)

)

&Vt ) = = (L) 1)Vt 10+ ). (46)

Putting together [Z9), ), [EH), [EH) leads to the following equations

1 1

iR
p E(t)> ( p )
TF=0, 0:f (t,y+—=——,p)| +{ =LV (y,p)-Vuf [t,y+ =——.,p) =0
f tf( Yy Boa p) <Bo,3 (y,p) flty Boygp

which is equivalent to

LE(t)

1
Tf=0, 0f(t,x,p)+ <m> (:v— %7]9) -Vaf (t,z,p) = 0.

Actually it is sufficient to impose the constraint 7 f = 0 only for the initial condition. Indeed,
. 0)
Bo,3

by construction, the function (y,p) — < > (y,p) has radial symmetry with respect to

£
p € R? and therefore, by Proposition Bl the function (z,p) — BE(t)> (:1: - gops,p)

0,3

belongs to the kernel of 7. Since the operator 7 commutes with d; and V, we deduce that
J_E t i J_E t i
T(atf+< ()><$——p,p)~vzf> at:rf+< ()><x——p,p)-vﬂf
Bo3 Bo 3 Bo,s

Bos
= 0.
Therefore if 7£(0) = 0 then 7 f(¢) = 0 for any ¢ € R4. It remains to add the equations for
the electric field, cf. (20). Therefore the limit model is

L 1
Ouf + (520 (2 52 p) - V.of =0, (t,e.p) € Ry x T2 x B2
T/(0) =0, (z,p) € T? x R? 47)
divyE =1~ [puf dp, div,~E =0, (t,z) € Ry x T2

. . 1 o o . . . J‘E(iﬁ)
Since div,—~FE = 0 it is easily seen that div, Bos T —
equation of the above model can be written also in the conservative form
J_E t 1
Of + divy << ( )> <x— —p,p) f> =0, (t,z,p) € Ry x T2 x R2, (48)
Bos By 3

Remark 3.2 If the density f satisfies (Z4), {Z0) in the sense of distributions, we obtain the
same limit model which, in this case, has to be understood in the sense of distributions too.

;_0:,03 ,p) = 0 and thus the transport
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4 Well-posedness of the limit model

In this section we construct strong solutions for the limit model (). We only sketch
the main arguments, the other details being left to the reader. We indicate how to get a
priori bounds for the solution (f, F), which, after standard manipulations, will allow us to
construct strong solutions, at least locally in time. Actually, employing similar techniques
as those used for the Vlasov-Poisson system it is possible to construct global in time strong
solutions cf. [B0], [27], [28], [3] but we do not go further into these directions. In the sequel
the notation C stands for various constants depending on the initial conditions, which can
change from line to line.

We assume that the initial condition fj satisfies the hypotheses

H4) fo >0, [ [pefo(z,p) dpde=1;
H5) fo, Vafo € LI(T? x R?) for some q €]2,+00], 7 fo =0 ;
H6) supp fo C T? x Bp for some R > 0, where Br = {p € R? : |p| < R}.

For any smooth field E € L*(]0,T[;W°(T?)) we associate the characteristics X =
X (s;t,x,p) given by

L
%X(S,t,l’,p) = VE' (S,X(S;t,l’,p) - Boz;ap) ’ s € [O7T] (49)
X(t;t, x,p) =z,

with the notation Vg(t,y,p) = <LB€F§)> (y,p), (y,p) € T? x R%2. Notice that Vg is also

smooth with respect to (y,p) and we have
OE(t)
Ox

, tel0,T].
Loo(T2)

H IVe(t)
Ay, p)

Therefore the characteristics in (@) are well defined for any (¢,z,p) € [0,T] x T? x R? and
there are smooth with respect to (z,p). The solution of the transport equation in (HZ) is
given by

<¢|

Lo° (T2 xR2)

f(t,(E,p) = fO(X(O7t7x7p)up)7 (t,ﬂ?,p) € [07T] X T2 X R2'
Since div, Vg = 0 we have |det (a—X)} =1 and thus

X

/Tz/RJf(t,z,p)lq dp dx = /Tz/Rzlfo(:zr,qu dp dz, te[0,T].

By the hypothesis H6 we deduce that supp f(t) C T2 x Bg for any t. By Hélder inequality
we have, with the notation p = [i,f dp and 1/g+1/q" =1

/ Iplt, 2)| dx < / / (2, p)|7 dp da (xR?)P/s”
T2 T2 JR2
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implying that
o) Laerzy < (TR || f ()| Lacrxre)y = (TR2Y ) foll pacre xre)-

By elliptic regularity results and Sobolev inequalities we deduce the following bound for the
electric field

IE@ L2y < CIE®)lwracrey < CA+[lp(t)||acr2))
< C(1+ (WR2)1/(1,”fOHLq('Jl‘?xR?))-
Similarly one gets
e IR LI
< O@R)Y | Vaf ()| acrexas). (50)

In order to estimate the norm ||V, f(t)|| La(r2xr2) we multiply the transport equation

OVE

t

by V. f|V.f|9~? and after standard computations one gets

1d 1 E(t
‘8 ) //Ime(twm)lq dp dx.
Leo(T2) JT2J/R?

-, VLIJ ta 9 qd d S
th/W/RJ )l dp ds < | 220

Applying Gronwall lemma yields

1 HoE(s)
«f (¢ < |IVa ds | . 1
HV f( )”Lq(']l‘?xR?) > ||V f0||Lq(']1‘2><]R2)eXp <|Bo,3|/o Oz L) S (5 )
Combining (B), (&1 we deduce that
t
H[)E(t) < Cexp 1 / OE(s) ds (52)
Oz || poo (12 [ Bo,s| Jo Oz || oo (12

which provides a local in time bound for |22 HLOO(TQ) and also for ||V f| La(r2xr2), cf. &I
and ||0; f|| La(r2xr2) = |[VE - Va fll La(r2xr2). The estimate for 9; £ follows by taking the time
derivative of the Poisson equation

div,0,E = —0,p, div,d,TE =0
and by elliptic regularity results
10: E(t) | oo (z2) < ClOE®)|[wracrzy < CllOep()] pocrey < C(xR2)Y|00f ()] Larexre).-

Based on these a priori estimates we establish the following result.
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Proposition 4.1 Assume that the initial condition fo satisfies the hypotheses Hj, H5, HG.
Then there is T > 0 and a local in time strong solution (f, E) on [0,T] for the limit model
#A). The solution is unique and satisfies

2o, [ [ ftopdpdo=1 teip
T2 JR2
Fo0uf, Vo f € L2(0,T[; LY(T? x R?)), suppf(t) C T? x Br, t€[0,T]
E e Wh>=(]0,T[xT?), |E(t,z)|* do = / |Eo(z)|? dz, t €[0,T).
T2 T2
Moreover if V, fo € LY(T?xR?) then V, f € L>(]0, T[; LY(T? x R?)) and if the initial kinetic
enerqgy is finite sz fRzgfo(x,p) dp dx < 400 then the kinetic energy is conserved too

PP vt 2 p) dp i = PP e op) dpdo, t e [0,7]
- 2 (axap p ar = 2 )2 2 o\Z,p p ax, ) .

Proof. We justify only the conservations of the electric and kinetic energies, the estimate
for V, f and the uniqueness of the strong solution. Using the continuity equation

(’%/ fdp—&-divw/ Vefdp=20
R2 R2

we obtain easily that

L

BeoPd = [ B [ ve(no-gEo) st o
T R )

iR
p
— //E(t,y+—B )VE(t,y,p)g(t,ym) dp dy
T2 JR2 0,3

)

1d
2dt Jrz

where g(t,y,p) = f(t,2,p), y = x — %”’3. Recall that Vg(t,y,p) and g(¢,y,p) have radial

symmetry with respect to p € R? and thus we can write

1d 2 rsind 7 cos 6
—— [ |EfPdx = Veg)(t,y, /E t, — Yy — df dr d
5 dt ']1‘2| | dz /T2/R+( r29)(t,y,)r ) ( Y1+ Bos Y2 Boa ) T ay

= —DBygs /2/29(1@y7p)VE(t,y,p)LVE(t,y7p) dp dy = 0.
T2 JR

The conservation of the kinetic energy follows immediately by integrating with respect to

(z,p) the equation
p|? (Il _
at Tf + lem TVEf =0.
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Assume now that V,, fo belongs to L9(T? x R?). Multiplying the transport equation

N t
OV of + (Ve - Vo)V, f = — o :;p ) V,f

by V,f|V,f|972 yields after usual manipulations

1d OE(t)
- q < i S
thA2A2|fo(t,x,p)| dpd:c_C’H e

Applying Gronwall lemma yields

/ IV, f(t 2, p)|? dp do.
Leo(T2) /T2 JR?

OE(s)
Ox

t
Hvz)f(t)||Lq(T2><]R2) < ||vaO||Lq(‘]1‘2><]R2) exp <C/ dS) , t € [O,T].
0 )

Loo (T2

Assume now that (f1, E1),(f2, E2) are two smooth solutions on [0,7] verifying f1(0) =
f2(0) = fo. Since f1, fo € L>=(]0,T[; LY(T? x R?)) are compactly supported, ¢ > 2, we have
also fi, fo € L°°(]0, T[; L*(T? x R?)) and

d d
d—/ |f1(t, z,p)|* dp dz = —/ / | f2(t, z,p)|? dp dz = 0.
t T2 JR2 dt T2 JR2

Multiplying by f2 the equation
Ofi+V2-Vyfi =02 =V1) - Vufi

we obtain

d

S [ ppavde— [ [ pon+ve Vo dpde= [ [ po2-v) Vapidpda.
dt 'JI‘2 R2 ']1‘2 Rz 'JI‘2 R2

Since div, (V2 — V1) = 0 we have ng fR2 fi(V2 = V1) - V. f1 dp dz = 0 and thus the previous
equality can be written

1d

d
—— — folPdpdx = ——/ dp d 53
2dt/Tz |fr = f2l” dp dx Gt Jou J 12 P 0 (53)

- _/ / (fi = f2) V1 = Va) - Vo fil(jp <y dp dz
T2 JR2
1(f1 = fo) Ol L2(r2 xr2) Vi = VallLir2x Bo) | Ve f1ll La(r2 xr2)

IN

with 1/14+1/q¢ =1/2. A direct computation shows that

TR2 1/1
103 =V Ollonmg < ST - E) Ol 54
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Combining now the Poisson equations
div,(E1 — E2) = — /2(f1 — f2) dp = —(p1 — p2), divy"(Ey — E3) =0 (55)
R
one gets by Sobolev inequality

1(E1 — E2) ()|l icrzy < Cllor — pallrarzy < CrR*)Y2|(f1 — f2)(8)]| 22 xre)- (56)

Putting together the inequalities (B3), @4, @H) yields

/11‘2/1R2|(f1 —f2)(?f,m,l?)|2 dp dx < C’/O /11*2/R2|(f1 —fg)(s7x7p)|2 dp de ds, t € [0,T]

saying that fi(t) = fa(t) for any ¢ € [0,7]. Coming back in (Bf) we deduce also that
Eq(t) = E5(t) for any ¢t € [0, T7. ]

By similar arguments we can prove further regularity results for the strong solution of the
limit model (). The proof is standard and is left to the reader.

Proposition 4.2 Assume that the initial condition fo belongs to W*4(T? x R?) for some
q €]2,+00] and verifies T fo = 0 and the hypotheses Hj, H6. Then the local in time strong
solution (f, E) constructed in Proposition [{-]] satisfies

Vi apf € L2010, T LYT? x R?)), E € W>*(]0, T[xT?).

5 Convergence results

We justify now the convergence of the solutions (f¢, E€).~¢ for the Vlasov-Poisson system
@), (@), (1) towards the solution (f, E) for the limit problem (@) when e goes to zero. We
assume that the initial conditions (f§)c>0o satisfy H1 and H3 with F; compactly supported
in [0, R] for some R > 0. Notice that in this case H2 is automatically verified. Moreover we
suppose that

HT7) sup < || f5llw2ar2xr2y < +00 for some ¢ €]2, +o0].

Thanks to the compact inclusion W24(T? x Br) < L?(T? x Bg) one gets the convergence

lim fg* = fo, strongly in L?(T? x R?)
k— 400

for some sequence (eg); converging towards zero and some function fj satisfying

fo >0, / / fodpdr =1, fo € W?9T? x R?), suppfo C T? x Bg.
T2 JR2
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Moreover we suppose that fo belongs to the kernel of the operator 7 and thus, by Proposition
E there is T > 0 and a local in time strong solution (f, E') on [0,7] for the limit model
@7). We intend to prove the convergence of (f+, E°* ), towards (f, E) in L>(]0, T[; L*(T? x
R?)) x L]0, T'[; L*(T?)).

Theorem 5.1 Assume that the initial conditions (f§)e>o satisfy H1, H3 (with suppFy C
[0, R] for some R > 0), H7 and have a limit point fo € L?*(T? x R?) in the kernel of the
operator T

3 (ek)k, klim ex =0, kEIJIrloo f5k = fo strongly in L*(T? x R?), T fo =0.

——40c0

Let us denote by (f, E) the local in time solution of the limit model {74). Then the solutions
(fex, E°*)y, of the Viasov-Poisson system (@), {Id), (1) with € = €, converge towards (f, E)
strongly in L>(]0, T[; L?(T? xR?)) x L*>°(]0, T'[; L>(T?)) and there is a constant Cr depending
on the initial conditions and T such that we have for any t € [0,T], € > 0

1(F5 = £)O)l 2(r2xre) + 1 (EF = E)(¢)|| 2212y < Cr (/5 — foll L2(rexrey +€2) -

Proof. Observe that the gyro-average of 9, f — E(t,x)-V,, f vanishes. Indeed, by Proposition
B2 we have

(Of — E(t,z)-Vpf)(y,p) =0 (f) (y,p) — (E-Vpf) (y,p)

P
iR 1 iR
p E(t)> ( p )
= Of(t,y+ =, >+< ) Vof [t,y+ —=—.,p) =0.
tf( Yt g? Bos (y,p) - Vaf |ty Bos'?

Therefore, Proposition Bl implies that 9, f — E(t,z) - V,, f € RangeT for any t € [0, T]. Let
u such that
Of—E({t,z) - Vpf+Tu=0, (u(t))=0, te[0,T].

The regularity of the solution (f, E) (cf. Proposition EE2) implies that 0,f — E(t,z) -V, f €
L]0, T[; WH4(T? x R?)) and thus, thanks to the regularity result in Proposition B4 we
deduce that u € L>(]0, T[; Wh4(T? x R?)). Moreover we have
supp(d;f — E(t,x) - V,,f) C T? x Bg
implying that supp u(t) C T? x Bpg for any t € [0,T]. Observe also that
Towu = —(02f —E-Vyof —E-V,0.f) € L=(]0,T[; LY(T? x R?)), (dyu(t)) =0

and therefore applying again the regularity result in Proposition Bl one gets d;u € L>(]0, T'[; L9(T?x
R?)). Multiplying by f¢ — f — eu the transport equation

(Op +e7 2T — E°-V,)(f* — f —*u) = —*Qu+ *E° - Vyu+ (E° — E) -V, f
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one gets after integration with respect to (z,p) € T? x R?

1d

__/ |f* = f = *ul* dp dz = 82/ /(—atU—I—EE'Vpu)(fE — f —&%u) dp dx
2dt T2 JR2 T2 JR?

+ /Tz/Rz(fs—f—szu)(Es—E)~fo dp dz

4 e p_ 212
C’(a —|—/T2/R2|f f—ey| dpdm) (57)

+ Clf* = flleeexen 1 £ = f — €2ull L2(r2xr2).-

IN

In the last line of the above estimate we have used that dyu, Vyu € L (]0, T[; L*(T? x R?)),
that (E¢).~o are uniformly bounded in L>(]0, T[xT?) (cf. Proposition Bl and that for
1/l+1/q = 1/2 the following inequalities hold

[ 5= £ =) (B = BV, dp el <15 = = Pz
IVpfllLarexre) |1 E° = EllLi(r2x Br)
Clfs—f- €2u||L2(T2 x1R2)||PE - P||L2(1r2)
Clfs—f- €2u||L2(T2 x1R2)||fE - f||L2('JI‘2><R2)-

ININ X

Using the trivial inequality || f€— f”%?(?r?xR?) <Cc(fe-r- 52u||2L2(T2X]R2) +¢%) the formula
(D) implies that

105 = f = 2u) ) Taroxmzy < CUE = follFa(rexme) +€7)
e AR EECT -
and thus by Gronwall lemma we deduce that
(= = F = W) (Ol L2z ey < CUSE — foll L2 (ro ey +€%)-
Finally we obtain for any ¢ € [0,7] and € > 0
1(F2 = POl L2(r2xrz) + [(B° = E)O)l|2(r2) < CUIFS = foll 2(rexre) + %)
In particular taking € = ¢, one gets the convergences

lim f = f in L>(0,T[; L*(T*> x R?)), lim E =E in L>(]0,T[; L*(T?)).

k—-+oo k—-+oo
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6 Higher order approximation

In the previous section we have justified rigorously the approximations
fe=F+0(@%) i L(0,T[; L*(T* x R?)), E°=E+O(*) in L*(J0,T[; L*(T?))

for initial conditions satisfying f§ = fo + O(e?) in L*(T? x R?). We intend now to establish
higher order approximations. More precisely we want to determine the correction terms
f1, E1 such that

fE=f+e2fi+0(Y, E°=E+%E +0(h).

Naturally, a complete theoretical study can be carried out following the same steps as before.
However the purpose of the present section is only to provide the mathematical model
governing (f1, E1), based on formal considerations. In the sequel we denote by 7 the operator
p- Vi — Bostp-V, in the L%(T? x R?) setting. By Proposition B4 for any ¢ € [0, 7] there

are f1(t), f1(t) € L*(T? x R?) such that
A0 = O+ 10, Tho =0 (Aw)=0. [ [ (Fif)ear) dpar=o.
Therefore, by equation @) we deduce that f; satisfies
ThH(t) = =0f + E(t,2) - V,f, (fi(t) =0. (58)

Recall that (—=0,f + E(t,z) - V,f) = 0 and therefore, by Proposition B4 the function fl is
well defined. It remains to determine the function f; € Ker7. Applying the gyro-average
operator to (BIl) yields

o (1) = (B-Vpfi) = (E-V,fi) = (B -V, f) = 0.
By Proposition we find the following expressions for the gyro-averages in the above

equality
Lp

<f1(t)>(y7p) = fi (f y+5— By 7]9) since 7 f; =0

N LE#) . tp . z I
<Evpf1>(yap):_ 1 (yvp)vzfl tay+—7p SlnCGTflzo,dIVz E=0
Bos 30,3

L
<E1.fo>(y,p)——<§Tlit)>( Vf<t y+ >s1nceTf—() div,tE; = 0.

Therefore we obtain the following equation for f; € KerT

<3t+<%?>(y,p)-vz) A (ty+m ) <lE1 >(y,p)~sz (t,y+%,p)

= (B®-V,f1) (w.p). (59)
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Notice also that if 7 f1(0) = 0, then 7 fy(t) = 0 for any t € R,. Indeed, the equation ()
becomes in variables (¢, z, p)

€1

Lp 5 p
<8t+VE' <t,117— %71)) : vx> fl(tvxvp) + VEI (t,CC— Eﬁ,p) sz(t7x7p)
- 1
— (B0 V) (5= 520)  ©0)

where Vi (t,y,p) = (Z£OY (4. p), Vi, (¢ _ (I1BO By the definition of th
RS Bo.s Yy,p), VE; 7yap) Bos (yap) y € dennition o €

gyro-average, the function (y,p) — <E (t) -V, f1> (y,p) has radial symmetry with respect

to p € R%. Therefore by Proposition Bl the function (z,p) — <E(t) . fo:1> (:1: — %,p)

belongs to the kernel of 7. Similarly Vg (t, T — %,p), Vg, (t, T — %,p) belong to the
kernel of 7 and thus

Lp z Lp :
T<VE (tax_—ap> vwfl) :VE (tux_—up) vafl
Bos Bo3

tp tp
T<VE1 (taf— 7]9) 'me> =Vg, (t,x— ,p) -V,Tf=0 sinceTf=0.
Bo,3 Bo,3
Applying now the operator 7 in () one gets easily
WTfi+Ve-VoTfi=0

saying that 7 f1(t) = 0 for any ¢ € R if 7 f1(0) = 0. Finally we obtain that (f; = fl—l-fl, Ey)
solve the system

ThH(t) = ~0f + Et,2)- Yy f, (Hi(t)) =0

~ Lt €1 ~ LB (t € = €L

8tjjl+< BOFS)><I B Btfs ,p)-fo1+<#(3)>($ B BOI,)B ,p)-vxf: <E~fo1>(x B BOI,)B ,p)

TF(0)=0 )

div, By = — fRZ (fl + fl) dp7 diVmLEl =0.
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