
ar
X

iv
:0

81
1.

33
31

v1
  [

m
at

h.
A

P]
  2

0 
N

ov
 2

00
8

Visoelasti �uids in thin domains: a mathematial proof

Guy Bayada

1 ,2

, Laurent Chupin

2

and Bérénie Gre

3,*

Batiment Léonard de Vini - 21, avenue Jean Capelle

69 621 Villeurbanne edex - Frane

Abstrat

The present paper deals with non Newtonian visoelasti �ows of Oldroyd-B type in thin

domains. Suh geometries arise for example in the ontext of lubriation. More preisely, we

justify rigorously the asymptoti model obtained heuristially by proving the mathematial

onvergene of the Navier-Stokes/Oldroyd-B sytem towards the asymptoti model.
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1 Introdution

This paper onerns the study of a visoelasti �uid �ow in a thin gap, the motion of whih is

imposed due to non homogeneous boundary onditions.

When a Newtonian �ow is ontained between two lose given surfaes in relative motion, it is

well known that it is possible to replae the Stokes or Navier-Stokes equations governing the �uid's

motion by a simpler asymptoti model. The asymptoti pressure is proved to be independent

of the normal diretion to the lose surfaes and obeys the Reynolds thin �lm equation whose

oe�ients inlude the veloities, the geometrial desription of the surrounding surfaes and

some rheologial harateristis of the �uid. As a following step, the omputation of this pressure

allows an asymptoti veloity of the �uid to be easily omputed. Suh asymptoti proedure

�rst proposed in a formal way by Reynolds [2℄ has been rigorously on�rmed for Newtonian

stationary �ow [1℄, and then generalized in a lot of situations overing numerous appliations for

both ompressible �uid [14℄, unsteady ases [3℄, multi�uid �ows [15℄.

It is well known however that in numerous appliations, the �uid to be onsidered is a non

Newtonian one. This is the ase for numerous biologial �uids, modern lubriants in engineering

appliations due to the additives they ontain, polymers in injetion or molding proess. In all of

these appliations, there are situations in whih the �ow is anisotropi. It is usual to take aount

of this geometrial e�et in order to simplify the three-dimensional equations of the motion,
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trying to reover two dimensional Reynolds like equation with respet to the pressure only. Suh

proedures are more often heuristi ones. Nevertheless, some mathematial works appeared in the

literature to justify them. They inlude thin �lm asymptoti studies of Bingham �ow [9℄, quasi

Newtonian �ow (Carreau's law, power law or Williamson's law, in whih various stress-veloity

relations are hosen: [7℄, [6℄, [16℄) and also miro polar ones [5℄. It has been possible to obtain

rigorously some thin �lm approximation for suh �uids using a so alled generalized Reynolds

equation for the pressure.

However in the preeding examples, elastiity e�ets are negleted. Introdution of suh vis-

oelasti behavior is haraterized by the Deborah number whih is related to the relaxation time.

One of the most popular laws is the Oldroyd-B model whose onstitutive equation is an interpola-

tion between purely visous and purely elasti models, thus introduing an additional parameter

whih desribes the relative proportion of both behaviors. A formal proedure has been proposed

in [4℄. However, the asymptoti system so obtained laks the usual harateristi of lassial

generalized Reynolds equation as it has not been possible to gain an equation in the asymptoti

pressure only. Both veloity u∗ and pressure p∗ are oupled by a non linear system.

It is the goal of this paper to justify rigorously this asymptoti system. Setion 2 is devoted

to the preise statement of the 3-D problem. One di�ulty has been to �nd an existene theorem

for the general Oldroyd-B model, ating as a starting point for the mathematial proedure. Most

of the existene theorems, however, deal with small data or small time assumptions. To ontrol

this kind of property with respet to the smallness of the gap appears somewhat di�ult. So we

are led to onsider a more partiular Oldroyd-B model, for whih unonditional existene theorem

has been proved [13℄. Moreover, a spei� attention is devoted to the boundary onditions to be

introdued both on the veloity and on the stress. The goal is to use "well prepared" boundary

onditions so as to prevent boundary layer on the lateral side of the domain.

In Setion 3, after suitable saling proedure, asymptoti expansions of both pressure, visosity

and stress are introdued, taking into aount the previous formal results from [4℄. Setion 4 is

mainly onerned with the proof of some additional regularity properties for the formal asymptoti

solution. Assuming some restritions on the rheologial parameters, it will be proved that it is

possible to gain a Ck
regularity for p∗ , k > 1, whih in turn improves the regularity of u∗ and the

stress tensor σ∗. This result is obtained by introduing a di�erential Cauhy system satis�ed by

the derivative of p∗. Finally, setion 5, is devoted to the onvergene towards zero of the seond

term of the asymptoti expansions, whih in turn proves the onvergene of the solution of the

real 3-D problem towards u∗, p∗, σ∗ (Theorems 5.4 and 5.6).

2 Introdution of the problem and known results

2.1 Formulation of the problem

We onsider unsteady inompressible �ows of visoelasti �uids, whih are ruled by Oldroyd's law,

in a thin domain Ω̂ε = {(x, y) ∈ R
n, x ∈ ω and 0 < y < εh(x)}, where ω is an (n− 1)-dimensional

domain, with n = 2 or n = 3 (x = x1 or x = (x1, x2)), as in Figure 1.
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Figure 1: Domain Ω̂ε

The following hypotheses on h are required:

∀x ∈ ω, 0 < h0 ≤ h(x) ≤ hεM , and hε ∈ C1(ω̄).

Let ûε = (ûε1, û
ε
2, û

ε
3) be the veloity �eld in the three-dimensional ase, or ûε = (ûε1, û

ε
2) in the

two-dimensional ase, p̂ε the pressure, and σ̂ε
the stress symmetri tensor in the domain Ω̂ε

. Bold

letters stand for vetorial or tensorial funtions, the notation f̂ orresponds to a funtion f de�ned

in the domain Ω̂ε
, and the supersript

ε
denotes the dependene on ε.

Formulation of the problem The following formulation of the problem holds in (0,∞)× Ω̂ε
:





ρ ∂tû
ε + ρ ûε · ∇ûε − (1− r)ν∆ûε +∇p̂ε = ∇ · σ̂ε ,

∇ · ûε = 0 ,

λ (∂tσ̂
ε + ûε · ∇σ̂ε + g(σ̂ε,∇ûε)) + σ̂ε = 2rνD(ûε) ,

(2.1)

where the nonlinear terms g(σ̂ε,∇ûε), the vortiity tensor W (ûε) and the deformation tensor

D(ûε) are given by:

g(σ̂ε,∇ûε) = −W (ûε) · σ̂ε + σ̂ε ·W (ûε),

W (ûε) =
∇ûε − t∇ûε

2
and D(ûε) =

∇ûε + t∇ûε

2
.

In this formulation, the physial parameters are the visosity ν, the density ρ, and the relaxation

time λ. The parameter λ is related to the visoelasti behavior and the Deborah number. The

parameter r ∈ [0, 1) desribes the relative proportion of the visous and elasti behavior.

3



Initial onditions This problem is onsidered with the following initial onditions:

ûε|t=0 = ûε
0, σ̂ε|t=0 = σ̂ε

0, (2.2)

for ûε
0 ∈ L2(Ω̂ε), σ̂ε

0 ∈ L2(Ω̂ε). The bold notation L2(Ω̂ε) denotes the set of vetorial or tensorial

funtions whose all omponents belong to L2(Ω̂ε).

Boundary onditions Dirihlet boundary onditions are set on top and bottom of the domain,

and the onditions on the lateral part of the boundary Γ̂ε
L, de�ned by

Γ̂ε
L = {(x, y) ∈ R

n, x ∈ ∂ω and 0 < y < εh(x)} ,

will be spei�ed later (in setion 4.2). Therefore, it is possible to write the boundary onditions

in a shortened way:

ûε|∂Ω̂ε = Ĵε, (2.3)

where Ĵε
is a given funtion suh that Ĵε ∈ H1/2(∂Ω̂ε) and satisfying Ĵε|y=hε = 0, Ĵε|y=0 = (s, 0).

This funtion will be fully determined in Subsetion 4.2.

Sine σ̂ε
satis�es a transport equation in the domain Ω̂ε

, it remains to impose boundary onditions

on σ̂ε
on the part of the boundary where ûε

is an inoming veloity. Let us de�ne Γ̂ε
+ the part of

Γ̂ε
L suh that Ĵε|Γ̂ε

+

· n < 0, and Γ̂ε
− = Γ̂ε

L \ Γ̂ε
+. We set

σ̂ε|Γ̂ε
+

= θ̂ε, (2.4)

where θ̂ε
is a given funtion in H1/2(Γ̂ε

+) whih will also be determined in Subsetion 4.2.

Moreover, sine the pressure is de�ned up to a onstant, the mean pressure is hosen to be zero:∫

Ω̂ε

p̂ε = 0.

Notations Let us introdue the following funtion spae:

V =
{
ϕ̂ ∈ H1

0 (Ω̂
ε), ∇ · ϕ̂ = 0

}
,

and the following notations, that will be used in the following. For f̂ de�ned in Ω̂ε
:

• |f̂ | denotes the L2
-norm in Ω̂ε

,

• |f̂ |p denotes the Lp
-norm in Ω̂ε

, for 2 < p ≤ +∞,

• the spaes Cm(Ω̂ε) for m ≥ 1 are equipped with the norms ‖f̂‖Cm = |f̂ |∞ +
m∑
i=1

|f̂ (i)|∞.

For f̂ de�ned in R
+ × Ω̂ε

, ‖f̂‖Lα(Lβ) denotes the norm of the spae Lα(0,∞, Lβ(Ω̂ε)), with 1 ≤
α, β ≤ ∞.
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2.2 Existene theorem in the domain Ω̂
ε

Theorem 2.1. For ε > 0 �xed, problem (2.1)-(2.3) admits a weak solution

ûε ∈ L2
loc(0,∞,H1(Ω̂ε)) , p̂ε ∈ L2

loc(0,∞, L2(Ω̂ε)) , σ̂ε ∈ C(0,∞,L2(Ω̂ε)) .

Proof. This result is proved in [13℄.

Remark 2.2. Let us emphasize that for the following, it is essential to know the global (in time)

existene of a solution for problem (2.1)-(2.3). Other existene theorems have been proved for this

problem, for example in [12℄, [11℄, [10℄, but these theorems are either loal in time (on a time

interval [0, T ε]), or a small data assumption is needed. In this work, these theorems annot be

used, sine there is no ontrol on the behavior of T ε
(or equivalently of the data) when ε tends to

zero, in partiular T ε
may tend to zero.

Consequently, this work is restrited to the spei� ase treated in [13℄, taking one parameter of

the Oldroyd model to be zero. In all generality, the non-linear term reads g(σ,∇u) = −W (u) ·
σ + σ ·W (u)− a (σ ·D(u) +D(u) · σ), whih is alled objetive derivative. Here the parameter

a is taken to be zero. This ase orresponds to the so-alled Jaumann derivative.

Remark 2.3. The following omputations are made in the two-dimensional ase (i.e. ω = (0, L) is

a one-dimensional domain) for the sake of simpliity. However, note that exept for the regularity

obtained for the limit problem in Setion 4.3, all estimates are independent of the dimension, thus

the orresponding omputations should apply to the three-dimensional ase.

Regularizing the system In the proof of the preeding theorem, the existene of a solution is

ahieved by regularization. Therefore, this study only onerns solutions obtained as the limit of

a regularized problem approximating (2.1), in whih an additional term −η∆σ̂εη
is added to the

Oldroyd equation, with η > 0 a small parameter. Here a regularization of the form −η∆(σ̂εη−Ĝ)

is hosen, with Ĝ a symmetri tensor in H2(Ω̂ε) independent of η and ε whih will be preised

later. After obtaining the needed energy estimates uniformly in η, we will let η tend to zero. This

approah allows to multiply the Oldroyd equation by σ̂εη
, sine σ̂εη

is regular enough. Of ourse,

one an hoose another regularization whih leads to energy estimates whih are uniform in the

regularization parameter.

Furthermore, beause of the regularizing term, boundary onditions on the whole boundary are

needed. Let us write σ̂εη|∂Ω̂ε = θ̂εη
, where θ̂εη

is now a funtion of H1/2(∂Ω̂ε), whih will be

determined later by equation (4.3).
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3 Asymptoti expansions

3.1 Renormalization of the domain

Introduing a new variable z =
y

ε
, the system (2.1) an be rewritten in a �xed re-saled domain:

Ω = {(x, z) ∈ R
n, x ∈ ω and 0 < z < h(x)} .

For a funtion f̂ de�ned in Ωε
, f is de�ned in Ω by f(x, z) = f̂(x, εz). For a funtion f ∈ Lp(Ω),

|f |p still denotes the Lp
-norm in Ω, and similar notations hold for the other norms. Moreover, the

regularizing term η∆σεη
is introdued. Denoting σεη =

(
σεη11 σεη12
σεη12 σεη22

)
, and similar notations for

the omponents of G, it holds in (0,∞)× Ω :





ρ δtu
εη
1 − (1− r)ν∆εu

εη
1 + ∂xp

εη − ∂xσ
εη
11 −

1

ε
∂zσ

εη
12 = 0 ,

ρ δtu
εη
2 − (1− r)ν∆εu

εη
2 +

1

ε
∂zp

εη − ∂xσ
εη
12 −

1

ε
∂zσ

εη
22 = 0 ,

∇ε · uεη = 0 ,

λ
(
δtσ

εη
11 − Ñ(uεη, σεη12)

)
+ σεη11 − η∆ε(σ

εη
11 −G11)− 2rν∂xu

εη
1 = 0 ,

λ

(
δtσ

εη
12 +

1

2
Ñ(uεη, σεη11 − σεη22)

)
+ σεη12 − η∆ε(σ

εη
12 −G12)− rν

(
∂xu

εη
2 +

1

ε
∂zu

εη
1

)
= 0 ,

λ
(
δtσ

εη
22 + Ñ(uεη, σεη12)

)
+ σεη22 − η∆ε(σ

εη
22 −G22)− 2rν

1

ε
∂zu

εη
2 = 0 ,

(3.1)

where the onvetive derivative δt is given by δt = ∂t + uεη · ∇ε. The derivation operators are

de�ned as follows: ∇ε =

(
∂x,

1

ε
∂z

)
and ∆ε = ∂2x +

1

ε2
∂2z . The non-linear terms Ñ are given by

Ñ(u, f) =

(
∂xu2 −

1

ε
∂zu1

)
f .

3.2 Asymptoti expansions

It has been proposed in [4℄ that when η, ε tend zero, (uεη, pεη,σεη) tends formally to a triplet

(u∗, p∗,σ∗) satisfying a system that will be given later in (4.1). This analysis leads to the intro-

dution of the following asymptoti expansions:

uεη1 = u∗1 + vεη1 and uεη2 = εu∗2 + εvεη2 , (3.2)

pεη =
1

ε2
p∗ +

1

ε2
qεη, (3.3)

σεη =
1

ε
σ∗ +

1

ε
τ εη, (3.4)

with σ∗ =

(
σ∗11 σ∗12
σ∗12 σ∗22

)
, and τ εη =

(
τ εη11 τ εη12
τ εη12 τ εη22

)
. If denoting u∗ = (u∗1, u

∗
2), and vεη = (vεη1 , v

εη
2 ),

(3.2) beomes uεη = u∗ + vεη
.

The saling orders hosen for the pressure and the di�erent omponents of the veloity �eld and
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of the stress tensor are motivated by some mathematial and physial remarks. Classially, the

pressure has to be of order 1/ε2 if the horizontal veloity is of order 1 (see [2℄ for the rigorous

explanation). On the other hand, the stress tensor has to be of order 1/ε and the Deborah number

λ of order ε in order to balane the Newtonian and non-Newtonian ontribution in Oldroyd

equation (see [4℄). Hene; let λ = ελ∗.

A wise hoie of the funtion G in the regularizing term is G = σ∗
. The regularity of G in

H2(Ω) is proved by Theorem 4.4 (where it is proved that ∂2xσ
∗ ∈ C

0(Ω̄), ∂x∂zσ
∗ ∈ C

0(Ω̄) and

∂2zσ
∗ ∈ C

1(Ω̄), thus ∆σ∗ ∈ L2(Ω)). A formal substitution of (3.2), (3.3), (3.4) in (3.1) leads to

the following system:





ρ dtv
εη
1 − (1− r)ν∆εv

εη
1 +

1

ε2
∂xq

εη − 1

ε
∂xτ

εη
11 − 1

ε2
∂zτ

εη
12 = L̃εη

1 +
1

ε
C1 +

1

ε2
C ′
1,

ρ dtv
εη
2 − (1− r)ν∆εv

εη
2 +

1

ε4
∂zq

εη − 1

ε2
∂xτ

εη
12 − 1

ε3
∂zτ

εη
22 =

1

ε2
L̃εη
2 +

1

ε3
C2 +

1

ε4
C ′
2,

∇ · vεη = ∇ · u∗,

λ∗ (dtτ
εη
11 −N(vεη, τ εη12 )) +

1

ε
τ εη11 − η∆ετ

εη
11 − 2rν∂xv

εη
1 = L̃εη

11 +
1

ε
L̃′εη
11 ,

λ∗
(
dtτ

εη
12 +

1

2
N(vεη, τ εη11 − τ εη22 )

)
+

1

ε
τ εη12 − η∆ετ

εη
12 − rν

(
∂xv

εη
2 +

1

ε
∂zv

εη
1

)
= L̃εη

12 +
1

ε
L̃′εη
12 ,

λ∗ (dtτ
εη
22 +N(vεη, τ εη12 )) +

1

ε
τ εη22 − η∆ετ

εη
22 − 2rν

ε
∂zv

εη
2 = L̃εη

22 +
1

ε
L̃′εη
22 ,

(3.5)

with the following notations: dt = ∂t+vεη ·∇ is the so-alled onvetive derivative, the non-linear

terms N(vεη, f) =

(
ε∂xv

εη
2 − 1

ε
∂zv

εη
1

)
f for f ∈ L2(Ω) and the following linear (with respet to

vεη
) and onstant terms

L̃εη
1 = −ρ vεη · ∇u∗1 − ρ u∗ · ∇vεη1︸ ︷︷ ︸

L
εη
1

−ρ ∂tu∗1 − ρ u∗ · ∇u∗1 + (1− r)ν∂2xu
∗
1,

C1 = ∂xσ
∗
11,

C ′
1 = (1− r)ν∂2zu

∗
1 − ∂xp

∗ + ∂zσ
∗
12;

L̃εη
2 = −ρ ε2vεη · ∇u∗2 − ρ ε2u∗ · ∇vεη2︸ ︷︷ ︸

L
εη
2

− ρ ε2∂tu
∗
2 − ρ ε2u∗ · ∇u∗2 + ε2(1− r)ν∂2xu

∗
2 + (1− r)ν∂2zu

∗
2 + ∂xσ

∗
12,

C2 = ∂zσ
∗
22,

C ′
2 = ∂zp

∗.

For the Oldroyd equation, the following linear (with respet to v and τ ) and onstant terms

appear:

L̃εη
11 =Lεη

11 + λ∗ (−∂tσ∗11 − u∗ · ∇σ∗11 + ε∂xu
∗
2σ

∗
12) + 2rν∂xu

∗
1,

with Lεη
11 = λ∗ (ε∂xu

∗
2τ

εη
12 + ε∂xv

εη
2 σ

∗
12 − vεη · ∇σ∗11 − u∗ · ∇τ εη11 ) ,
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L̃′εη
11 =−λ∗ (∂zu∗1τ εη12 + ∂zv

εη
1 σ

∗
12)︸ ︷︷ ︸

L
′εη
11

−λ∗∂zu∗1σ∗12 − σ∗11;

L̃εη
22 =Lεη

22 − λ∗ (∂tσ
∗
22 + u∗ · ∇σ∗22 + ε∂xu

∗
2σ

∗
12) + 2rν∂zu

∗
2,

with Lεη
22 = −λ∗ (ε∂xu∗2τ εη12 + ε∂xv2σ

∗
12 + vεη · ∇σ∗22 + u∗ · ∇τ εη22 ) ,

L̃′εη
22 =λ∗ (∂zu

∗
1τ

εη
12 + ∂zv

εη
1 σ

∗
12)︸ ︷︷ ︸

L
′εη
22

+λ∗∂zu
∗
1σ

∗
12 − σ∗22

L̃εη
12 =−λ

∗

2
(ε∂xu

∗
2(τ

εη
11 − τ εη22 ) + ε∂xv

εη
2 (σ∗11 − σ∗22) + 2vεη · ∇σ∗12 + 2u∗ · ∇τ εη12 )

︸ ︷︷ ︸
L
εη
12

− λ∗

2
(2∂tσ

∗
12 + 2u∗ · ∇σ∗12 + ∂xu

∗
2(σ

∗
11 − σ∗22)) + rνε∂xu

∗
2,

L̃′εη
12 =−λ

∗

2
(∂zu

∗
1(τ

εη
11 − τ εη22 ) + ∂zv

εη
1 (σ∗11 − σ∗22))

︸ ︷︷ ︸
L
′εη
12

+
λ∗

2
∂zu

∗
1(σ

∗
11 − σ∗22)− σ∗12 + rν∂zu

∗
1;

Note that the �rst order derivatives of σ∗
our in the terms L̃εη

and Cεη
. It will be shown in

Theorem 4.4 that σ∗
has su�ient regularity.

Let us observe also that equations (3.5) are similar to (3.1), exept for the linear terms on the

right. Thus the energy estimates will be obtained similarly for both systems, multiplying Navier-

Stokes equation by the veloity and Oldroyd equation by the stress tensor, and integrating over

Ω.

4 Limit equations

4.1 Limit system

In an heuristi way, the following system of equations satis�ed by u∗
, p∗, σ∗

is infered from (3.5):

u∗
, p∗, σ∗

are steady funtions solutions of:





(1− r)ν∂2zu
∗
1 − ∂xp

∗ + ∂zσ
∗
12 = 0,

∂zp
∗ = 0,

∇ · u∗ = 0,

λ∗∂zu
∗
1σ

∗
12 + σ∗11 = 0,

−λ
∗

2
∂zu

∗
1(σ

∗
11 − σ∗22) + σ∗12 = rν∂zu

∗
1,

−λ∗∂zu∗1σ∗12 + σ∗22 = 0.

(4.1)
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This system is equipped with the following boundary ondition (Dirihlet ondition on the upper

and lower part of the boundary, �ux imposed on the lateral part of the boundary):





u∗ = 0 , for z = h(x),

u∗ = (s, 0) , for z = 0,
h(x)∫
0

u∗
dz · n = Φ0 on ΓL.

(4.2)

The ompatibility ondition reads

∫
∂ω

Φ0 = 0. Moreover, sine p∗ is de�ned up to a onstant, the

mean pressure is taken to be zero:

∫
Ω

p∗ = 0.

Remark 4.1. Eah equation of the preeding system (4.1) is obtained by anelling the onstant

part (i.e. the part independent of vεη
, qεη, τ εη) of respetively C ′

1, C
′
2, ∇ · u∗

, L̃′εη
11 , L̃

′εη
12 , L̃

′εη
22 .

4.2 Determination of the boundary onditions

Remark 4.2. The lateral boundary onditions on u∗
do not depend on the ones on uεη

, but only

on the �ux. Therefore, di�erent boundary onditions on uεη
orresponding to the same �ux lead to

the same limit problem. This is a lassial fat when passing from a two-dimensional problem to

a one-dimensional problem (or similarly from a three-dimensional problem to a two-dimensional

one), and has already been observed in [2℄ for example. Here, in order to avoid boundary layers,

uεη = u∗
is imposed on the lateral part of the boundary.

Similarly, any value of σεη
on the boundary leads to the same limit problem. Again, in order to

avoid boundary layers, well-prepared boundary onditions are also hosen for σεη
.

The preeding remark allows to de�ne preisely the funtion Jε
introdued in (2.3). Sine

u∗|ΓL
∈ H1/2(ΓL), it is possible to onstrut J

ε ∈ H1/2(∂Ω) satisfying Jε|z=h = 0, Jε|z=0 = (s, 0)

and Jε|ΓL
= u∗|ΓL

. Therefore, the boundary onditions on uεη
beome





uεη = 0 , for z = h(x),

uεη = (s, 0) , for z = 0,

uεη = u∗
on ΓL.

Thus uεη|∂Ω = u∗|∂Ω, and vεη
will satisfy zero boundary onditions: vεη|∂Ω = 0.

Moreover, sine σ∗ ∈ H1(Ω) (see Theorem 4.4 for this regularity result), θε
an be de�ned as

follows:

θε = σ∗|Γ+
∈ H1/2(Γ+). (4.3)

Therefore

σεη|Γ+
= σ∗|Γ+

,

and this implies that τ εη|Γ+
= 0.
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On the other part Γ− of the boundary, σεη
is hosen suh that σεη ·n|Γ−

= σ∗ ·n|Γ−
, for example

σεη|Γ−
= σ∗|Γ−

.

4.3 Existene of a solution to the limit problem

System (4.1)-(4.2) has already been studied in [4℄.

Theorem 4.3. Assume that r < 8/9. Then system (4.1)-(4.2) has a unique solution satisfying

u∗ ∈ L2(Ω), ∂zu
∗ ∈ L2(Ω), p∗ ∈ H1(ω), σ∗ ∈ L2(Ω). (4.4)

Proof. This result has been proved in [4℄.

This existene result is not su�ient for this study. Therefore, the following stronger regularity

result is proved on the limit problem (4.1)-(4.2).

Theorem 4.4. Assume r < 2/9. If h ∈ Hk(ω), for k ∈ N
∗
, then the unique solution (u∗, p∗,σ∗)

of the system (4.1)-(4.2) satis�es

p∗ ∈ Ck+1(ω̄), u∗1, ∂zu
∗
1, ∂

2
zu

∗
1 ∈ Ck+1(Ω̄), σ∗, ∂zσ

∗ ∈ C
k+1(Ω̄),

∂xu
∗
1 ∈ Ck(Ω̄), u∗2, ∂zu

∗
2, ∂

2
zu

∗
2 ∈ Ck(Ω̄), ∂xσ

∗ ∈ C
k(Ω̄),

∂xu
∗
2 ∈ Ck−1(Ω̄).

(4.5)

Proof. Let us observe that system (4.1) an be expressed as a system on u∗1, p
∗
only. Using (4.1),

σ∗11, σ
∗
22 an be expressed as funtions of σ∗12 and ∂zu

∗
1. Indeed, from the fourth and the last

equations of (4.1), it holds that

σ∗22 = −σ∗11 = λ∗∂zu
∗
1σ

∗
12. (4.6)

Moreover, the divergene-free equation an be rewritten in order to eliminate u∗2. Integrating this

equation between z = 0 and z = h, and using the fat that u∗2|z=0 = u∗2|z=h = u∗1|z=h = 0, it

follows:

∂x




h∫

0

u∗1 dz


 = 0. (4.7)

Thus, the system in u∗1, p
∗
an be written in the following form:





− ν(1− r)∂2zu
∗
1 − ∂zσ

∗
12 + ∂xp

∗ = 0, with σ∗12 =
νr∂zu

∗
1

1 + λ∗2|∂zu∗1|2
,

∂zp
∗ = 0,

∂x




h∫

0

u∗1 dz


 = 0,

(4.8)

equipped with the boundary onditions stated in (4.2) and the ondition

∫
Ω

p∗ = 0.
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For the sake of readability, the supersripts

∗
are omitted in the rest of this setion.

Denote q = ∂xp. Let φ ∈ C∞(R) de�ned by φ(t) = ν(1 − r)t +
νrt

1 + λ2t2
. The �rst equation of

(4.8) beomes q = ∂z(φ(∂zu1)).

A simple study of funtion φ allows to show the following properties:

0 < ν

(
1− 9r

8

)
< |φ′|∞ < ν, and φ(t) −−−−→

t→±∞
±∞. (4.9)

Therefore the funtion φ is invertible, and ψ = φ−1
belongs to C∞(R). Moreover, ψ is an inreasing

funtion as φ. Integrating q = ∂z(φ(∂zu1)) with respet to z between 0 and z, the �rst equation

of (4.8) beomes:

φ(∂zu1(x, z)) = q(x) z + κ(x),

where κ(x) is a integration onstant. Therefore, it follows that

∂zu1(x, z) = ψ(q(x) z + κ(x)).

Sine u1|z=0 = s, the integration between 0 and z of the preeding equation yields:

u1(x, z) = s+

∫ z

0
ψ(q(x)t + κ(x))dt. (4.10)

The boundary ondition u1|h(x) = 0 implies also:

∫ h(x)

0
ψ(q(x)t+ κ(x)) + s = 0. (4.11)

For (h, q, s, κ) ∈ R
4
, let us introdue F (h, q, s, κ) =

∫ h

0
ψ(qt+ κ) + s.

Lemma 4.5. For any (h, q, s) ∈ R
3
there exists an unique κ ∈ R suh that F (h, q, s, κ) = 0.

Proof. • If suh an κ exists, it is unique from the impliit funtion theorem, sine for all

(h, q, s, κ) ∈ R
4

∂F

∂κ
(h, q, s, κ) =

∫ h

0
ψ′(qt+ κ)dt > 0.

• The following limits are omputed, using the fat that lim
t→±∞

ψ(t) = ±∞:

lim
κ→+∞

F (h, q, s, κ) = +∞ and lim
κ→−∞

F (h, q, s, κ) = −∞.

Therefore, there exists κ ∈ R suh that F (h, q, s, κ) = 0. Let us denote K(h, q, s) = κ. By

the impliit funtion theorem, K ∈ C∞(R3).
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Therefore, the following expression holds for (h, q, s) ∈ R
3
:

F (h, q, s,K(h, q, s)) = 0. (4.12)

It is now possible to obtain an information on the sign of ∂qK. Indeed, deriving the expression

(4.12) with respet to q, it follows

∂qF + ∂κF ∂qK = 0.

For h > 0, sine ∂qF =

∫ h

0
tψ′(qt + κ)dt > 0 and ∂aF =

∫ h

0
ψ′(qt + κ)dt > 0, ∂qK is stritly

negative.

Now, using equation (4.7) and the expression (4.10) for u, it follows:

∫ h(x)

0

∫ z

0
∂x

(
ψ(q(x)t+K(h(x), q(x), s))

)
dt dz = 0.

or if hanging the diretion of integration

∫ h(x)

0
(h(x)− t)∂x

(
ψ(q(x)t+K(h(x), q(x), s))

)
dt = 0.

This an be rewritten as

q′(x)

∫ h(x)

0
(h(x)− t)

(
(t+ ∂qK(h(x), q(x), s)

)
ψ′
(
q(x)t+K(h(x), q(x), s)

)
dt

= −
∫ h(x)

0
(h(x)− t)

(
h′(x)∂hK(h(x), q(x), s)

)
ψ′
(
q(x)t+K(h(x), q(x), s)

)
dt,

whih an be seen as an ordinary di�erential equation in q. Let

U(x, q) =

∫ h(x)

0

(
h(x)− t

)(
t+ ∂qK(h(x), q, s)

)
ψ′
(
qt+K(h(x), q, s)

)
dt,

V (x, q) =

∫ h(x)

0

(
h(x)− t

)(
h′(x)∂hK(h(x), q, s)

)
ψ′
(
qt+K(h(x), q, s)

)
dt.

The di�erential equation beomes U(x, q(x)) q′(x) = −V (x, q(x)) for x ∈ ω. Note that this

equation is in some sense a generalized Reynolds equation for the pressure.

Lemma 4.6. Let r < 2/9. Then U(x, q) < 0 for any (x, q) ∈ ω × R.

Proof. Let (x, q) ∈ ω × R. Equation (4.11) and the de�nition (4.12) of K imply:

∫ h(x)

0
ψ(qt+K(h(x), q, s))dt = −s,
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whih beomes, after derivation with respet to q

∫ h(x)

0

(
t+ ∂qK(h(x), q, s)

)
ψ′
(
qt+K(h(x), q, s)

)
dt = 0. (4.13)

With the notation K ′(x, q) = ∂qK(h(x), q, s), (4.13) implies

K ′(x, q) = −

∫ h(x)

0
t ψ′
(
qt+K(h(x), q, s)

)
dt

∫ h(x)

0
ψ′
(
qt+K(h(x), q, s)

)
dt

.

Now, using this expression, U(x, q) an be simpli�ed:

U(x, q) =

∫ h(x)

0
−t
(
t+ ∂qK(h(x), q, s)

)
ψ′
(
qt+K(h(x), q, s)

)
dt. (4.14)

Realling the estimate of |φ|∞ in (4.9), it follows that for any t ∈ R:

1

ν
< ψ′(t) =

1

φ′(ψ(t)
<

1

ν(1− 9r/8)

Let m =
1

ν
, M =

1

ν(1− 9r/8)
. Then

−bh(x)
2m

≤ K ′(x, q) ≤ −ah(x)
2M

.

Now, (4.14) implies that:

h(x)3
(
m

3
− M

4

)
=

∫ h(x)

0
tm

(
t− Mh(x)

2m

)

≤ −U(x, q) ≤
∫ h(x)

0
tM

(
t− mh(x)

2M

)
= h(x)3

(
M

3
− m

4

)
.

In order to prove that U remains stritly negative, it su�es to prove that 0 <
m

3
− M

4
, i.e. that

m

M
>

3

4
, whih is satis�ed under the ondition r <

2

9
.

It is possible to apply Piard-Lindelöf theorem (or Cauhy-Lipshitz theorem) to the ordinary

di�erential equation −U(x, q(x)) q′(x) = V (x, q(x)), as U remains stritly negative by Lemma

4.6. Sine ψ and K are C∞
-funtions, the regularity of q′ is determined by the regularity of q and

h. By hypothesis, h belongs to Hk(ω), with k ∈ N, hene h ∈ L2(ω). Moreover, Theorem 4.3

implies that q ∈ L2(ω). Thus q′ ∈ L2(ω), whih means q ∈ H1(ω).

Iterating this proess as long as h is regular, h ∈ Hk(ω) and q ∈ Hk(ω) implies that q′ ∈ Hk(ω),

thus ∂xp = q ∈ Hk+1(ω), and p ∈ Hk+2(ω). By the lassial Sobolev embedding, p belongs to

Ck+1(ω̄).
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Last, realling the expression (4.10), it follows that u1 ∈ Ck+1(ω̄), and, taking the �rst and seond

derivatives of (4.10) with respet to z, that ∂zu1, ∂
2
zu1 also belong to Ck+1(ω̄).

As observed in the introdution of the proof, σ and u2 are given as funtions of p, u1, and the

needed regularity follows.

Remark 4.7. Sine in pratial appliations, h is very regular (h ∈ C∞(ω̄)), the preeding theorem

gives as muh regularity as wanted. In partiular, the following result will be useful subsequently.

Corollary 4.8. Assume r < 2/9. If h ∈ H1(ω), then the unique solution (u∗, p∗,σ∗) of the

system (4.1)-(4.2) satis�es

p∗ ∈ C2(ω̄), u∗1, ∂zu
∗
1, ∂

2
zu

∗
1 ∈ C2(Ω̄), σ∗, ∂zσ

∗ ∈ C
2(Ω̄),

∂xu
∗
1 ∈ C1(Ω̄), u∗2, ∂zu

∗
2, ∂

2
zu

∗
2 ∈ C1(Ω̄), ∂xσ

∗ ∈ C
1(Ω̄),

∂xu
∗
2 ∈ C0(Ω̄).

(4.15)

Proof. It su�es to take k = 1 in the preeding theorem 4.4.

5 Convergene of the remainders

5.1 Equations on the remainders

From now on, the supersript

εη
are dropped although the funtions still depend on ε and η. Using

the equations (4.1), system (3.5) beomes

ρ dtv1 − (1 − r)ν∆εv1 +
1

ε2
∂xq −

1

ε
∂xτ11 −

1

ε2
∂zτ12 = L1 +

1

ε
C1, (5.1a)

ρ dtv2 − (1 − r)ν∆εv2 +
1

ε4
∂xq −

1

ε2
∂xτ12 −

1

ε3
∂zτ22 =

1

ε2
L2 +

1

ε3
C2, (5.1b)

∇ · v = 0, (5.1)

λ∗dtτ11 − λ∗N(v, τ12) +
1

ε
τ11 − η∆ετ11 − 2rν∂xv1 = L11 +

1

ε
L′
11 + η∆εσ

∗
11, (5.1d)

λ∗dtτ12 +
λ∗

2
N(v, τ11 − τ22) +

1

ε
τ12 − η∆ετ12 − rν

(
∂xv2 +

1

ε
∂zv1

)
= L12 +

1

ε
L′
12 + η∆εσ

∗
12,(5.1e)

λ∗dtτ22 + λ∗N(v, τ12) +
1

ε
τ22 − η∆ετ22 −

2rν

ε
∂zv2 = L22 +

1

ε
L′
22 + η∆εσ

∗
22, (5.1f)





with the new quantities

L1 = L1 − ρ u∗ · ∇u∗1 + (1− r)ν∂2xu
∗
1,

L2 = L2 − ρ ε2u∗ · ∇u∗2 + (1− r)ν∂2xu
∗
2 + (1− r)ν∂zu

∗
2 + ∂xσ

∗
12,

L11 = L11 + λ∗ (−u∗ · ∇σ∗11 + ε∂xu
∗
2σ

∗
12) + 2rν∂xu

∗
1,

L′
11 = L′

11,

L12 = L12 −
λ∗

2
(2u∗ · ∇σ∗12 + ∂xu

∗
2(σ

∗
11 − σ∗22)) + rνε∂xu

∗
2,

L′
12 = L′

12,
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L22 = L22 − λ∗ (u∗ · ∇σ∗22 + ε∂xu
∗
2σ

∗
12) + 2rν∂zu

∗
2,

L′
22 = L′

22.

and with the initial and boundary onditions

v|t=0 = u0 − u∗, τ |t=0 = σ0 − σ∗, v|∂Ω = 0, τ |Γ+
= 0. (5.2)

Let us observe that both initial onditions v|t=0 and τ |t=0 belong to L2(Ω). v, q and τ are de�ned

by (3.2), (3.3), (3.4). From the existene theorem 2.1 for (u, p,σ) and theorem 4.3 for (u∗, p∗,σ∗),

it follows that system (5.1) admits a solution (v, q, τ ) ∈ L2(0,∞,H1(Ω)) × L2(0,∞, L2(Ω)) ×
C(0,∞,L2(Ω)) for r < 8/9.

5.2 Convergene of v and τ

Before starting the a priori estimates, let us explain how the non-linear terms in (5.1) are han-

dled. The non-linear terms v · ∇v of Navier-Stokes equation and v · ∇τ of Oldroyd equation

are treated with the following Lemma 5.1. On the other hand, the non-linear terms N(v, τ ) =(
ε∂xv2 − 1

ε∂zv1
)
τ in (5.1d)-(5.1f) are zero when multiplied by τ .

Lemma 5.1. Let n be the exterior normal of the domain Ω. Let φ ∈ H1(Ω) be a vetor �eld

satisfying ∇ · φ = 0 and φ · n|∂Ω = 0. Let w ∈ H1(Ω). Then

∫

Ω

φ · ∇ww = 0.

Proof. By integration by parts:

∫

Ω

φ · ∇ww = −
∫

Ω

∇ · φ︸ ︷︷ ︸
=0

·w2 −
∫

Ω

φ · ∇ww +

∫

∂Ω

φ · n︸ ︷︷ ︸
=0

w2 = 0.

The lassial approah onsists in obtaining a priori estimates for v.

Proposition 5.2. Let (v, q, τ ) be a solution of (5.1). Then v = (v1, v2) satisfy the following

inequality for ε small enough:

rνρ
d

dt

(
|v1|2 + |εv2|2

)
+

3

2
r(1− r)ν2

(
|∇εv1|2 + |ε∇εv2|2

)
≤ −D1 −D2 + C, (5.3)

where D1 =
2rν

ε

∫

Ω

τ11 ∂xv1 +
2rν

ε2

∫

Ω

τ12 ∂zv1, D2 = 2rν

∫

Ω

τ12 ∂xv2 +
2rν

ε

∫

Ω

τ22 ∂zv2 and C is a

onstant independent of ε.

Proof. The proof onsists in obtaining lassial a priori estimates on both v1 and v2.
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Step 1. Let us multiply (5.1a) by v1 and integrate over Ω. Observe that v1 is regular enough

to do so. Sine v|∂Ω = 0, the boundary terms in the integration by parts are all zero. For example

−
∫
Ω

∆εv1 v1 =
∫
Ω

|∇εv1|2. Moreover, the onvetion terms

∫
Ω

v · ∇v1 v1 ontained in

∫
Ω

dtv1 v1 are

equal to zero by Lemma 5.1, sine ∇ · v = 0 and v|∂Ω = 0. It follows:

ρ

2

d

dt
|v1|2+(1− r)ν|∇εv1|2−

1

ε2

∫

Ω

q ∂xv1 = −1

ε

∫

Ω

τ11 ∂xv1 −
1

ε2

∫

Ω

τ12 ∂zv1

︸ ︷︷ ︸
−D1/2rν

+

∫

Ω

L1 v1+
1

ε

∫

Ω

C1 v1.

(5.4)

It remains to estimate the terms

∫
Ω

L1 v1 and

∫
Ω

C1 v1.

Main idea Estimates of the form:

∫
Ω

L1 v1+
1
ε

∫
Ω

C1 v1 ≤ C+κ1|∇εv1|2+κ2|∂zv2|2 will be proved,

where C is a onstant independent of ε and where the onstants κ1, κ2 satisfy κ1, κ2 < (1− r)ν/4.
These onstants will be preised later in the proof.

In the following, C, ci and Mi will denote some onstants independent of ε and η, whih might

depend on |Ω|, on the physial parameters of the problem and on u∗
, σ∗

in su�iently regular

norms.

• Let us estimate �rst the linear (with respet to v) term L1 of L1. To this end, Poinaré inequality

is useful: for f ∈ L2(Ω), with f |z=h = 0, |f | ≤ CP |∂zf |. The onstant CP only depends on Ω.

⋆ ρ

∫

Ω

v1 ∂xu
∗
1 v1 ≤ ρ|∂xu∗1|∞ |v1|2 ≤ ρ ε2C2

P |∂xu∗1|∞
∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

=:M1ε
2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

.

Note that by Theorem 4.4, ∂xu
∗
1 ∈ L∞(Ω). In the following, all the regularity results used in

the estimates also follow from Theorem 4.4.

⋆ For the next term, Poinaré inequality is ombined with Young inequality:

ρ

∫

Ω

v2 ∂zu
∗
1 v1 ≤ ρ|∂zu∗1|∞ |v2| |v1| ≤ ρC2

P |∂zu∗1|∞ |∂zv2| |∂zv1|

≤ ρC2
P |∂zu∗1|∞︸ ︷︷ ︸
=:M2

(
ε

2
|∂zv2|2 +

ε

2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2
)
.

⋆ In a similar way:

ρ

∫

Ω

u∗ · ∇v1 v1 ≤ ρCP |u∗1|∞︸ ︷︷ ︸
=:M3

(
ε

2
|∂xv1|2 +

ε

2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2
)

+ ε2 ρCP |u∗2|∞︸ ︷︷ ︸
=:M4

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

.

Observe here that it was not possible to apply Lemma 5.1, sine u∗ · n|∂Ω 6= 0.

• It remains the easier terms of L1 and C1 (the ones whih do not depend on v).
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⋆ The �rst term is treated using again Poinaré and Young inequalities:

ρ

∫

Ω

u∗·∇u∗1 v1 ≤ ρCP |u∗|∞ |∇u∗1| |∂zv1| ≤
1

2
(ρCP |u∗|∞ |∇u∗1|)2+

ε2

2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

≤ C+
ε2

2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

.

⋆ Similarly, (1− r)ν

∫

Ω

∂2xu
∗
1 v1 ≤ C +

ε2

2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

.

⋆ The last term is estimated as follows, using Young inequality:

1

ε

∫

Ω

∂xσ
∗
11 v1 ≤

1

4c
|∂xσ∗11|2 + c

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

≤ C + c

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

,

where c is a positive onstant independent of ε that an be hosen arbitrarily.

Now, let us hoose ε and c small enough suh that all onstants satisfy:

M1ε
2,
M2ε

2
,
M3ε

2
,M4ε

2,
ε2

2
, c ≤ (1− r)ν

36
. (5.5)

Step 2. Let us multiply (5.1b) by ε2v2 and integrate over Ω. Again, the boundary terms in

the integrations by parts vanish, sine v2|∂Ω = 0, and the onvetion terms are equal to zero sine

∇ · v = 0 and v|∂Ω = 0 (by Lemma 5.1). It follows:

ρ ε2

2

d

dt
|v2|2+(1−r)ν|ε∇εv2|2−

1

ε2

∫

Ω

q ∂zv2 = −
∫

Ω

τ12 ∂xv2 −
1

ε

∫

Ω

τ22 ∂zv2

︸ ︷︷ ︸
−D2/2rν

+

∫

Ω

L2 v2+
1

ε

∫

Ω

C2 v2.

(5.6)

Eah term of

∫
Ω

L2 v2 and

∫
Ω

C2 v2 is estimated with the help of Poinaré and Young inequalities

as in the preeding step.

⋆ ε2ρ

∫

Ω

v · ∇u∗2 v2 ≤ ε2 ρC2
P |∂xu∗2|∞︸ ︷︷ ︸
=:M5

(
ε

2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

+
ε

2
|∂zv2|2

)
+ ε2 ρC2

P |∂zu∗2|∞︸ ︷︷ ︸
=:M6

|∂zv2|2.

⋆ ε2ρ

∫

Ω

u∗ · ∇v2 v2 ≤ ε ρCP |u∗1|∞︸ ︷︷ ︸
=:M7

(
|ε∂xv2|2 + |∂zv2|2

)
+ ε2 ρCP |u∗2|∞︸ ︷︷ ︸

=:M8

|∂zv2|2.

⋆ ε2ρ

∫

Ω

u∗ · ∇u∗2 v2 ≤
1

2
ε2ρ|u∗|2∞|∇u∗2|2 + ε2

1

2
C2
P

︸ ︷︷ ︸
=:M9

|∂zv2|2 ≤ C + ε2M9|∂zv2|2.

⋆ By integration by parts (all boundary terms are equal to zero sine v2|∂Ω = 0) and Young

inequality as before:

(1− r)νε2
∫

Ω

∂2xu
∗
2 v2 = −(1− r)νε2

∫

Ω

∂xu
∗
2 ∂xv2 ≤ ε (1− r)ν︸ ︷︷ ︸

=:M10

(
1

2
|∂xu∗2|2 +

1

2
|ε∂xv2|2

)
.
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⋆ (1− r)ν
∫

Ω

∂2zu
∗
2 r2 ≤

1

4c1
(1− r)2ν2C2

P |∂2zu∗2|2+ c1|∂zv2|2 ≤ C+ c1|∂zv2|2, where c1 is a arbitrary

positive onstant.

⋆

∫

Ω

∂xσ
∗
12 v2 ≤

C2
P

4c1
|∂xσ∗12|2 + c1|∂zv2|2 ≤ C + c1|∂zv2|2.

⋆ The C2 term is treated with integration by parts (again, no boundary terms sine v2|∂Ω =

v1|∂Ω = 0) and the divergene equation. The term is then treated as the preeding one:

1

ε

∫

Ω

∂zσ
∗
22 v2 = −1

ε

∫

Ω

σ∗22 ∂zv2 =
1

ε

∫

Ω

σ∗22 ∂xv1 = −1

ε

∫

Ω

∂xσ
∗
22v1

≤ CP |∂xσ∗22|
∣∣∣∣
1

ε
∂zv1

∣∣∣∣ ≤
C2
P

4c2
|∂xσ∗22|2 + c2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

≤ C + c2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

.

Now, let us hoose ε, c1 and c2 small enough suh that

M5ε
3

2
,M6ε

2,M7ε,M8ε,M9ε,
M10ε

2
, c1, c2 ≤ (1− r)ν

36
. (5.7)

Step 3. After summing (5.4) and (5.6), and multiplying by 2rν, it holds for ε small enough

(satisfying (5.5) and (5.7)):

rνρ
d

dt

(
|v1|2 + |εv2|2

)
+
3

2
r(1−r)ν2

(
|∇εv1|2 + |ε∇εv2|2

)
− 2rν

ε2

∫

Ω

q (∂xv1 + ∂zv2) ≤ −D1−D2+C,

where C is a onstant independent of ε. From the divergene equation ∇ · v = ∂xv1 + ∂zv2 = 0 it

follows that the pressure term

∫
Ω

q (∂xv1 + ∂zv2) = 0, and equation (5.3) is obtained.

Proposition 5.3. Let us suppose that

λ∗|∂zu∗1|∞ ≤ 1/12, λ∗|σ∗12|∞ ≤ χ, λ∗(|σ∗11|∞ + |σ∗22|∞) ≤ χ, 2λ∗|∂zσ∗12|∞ ≤ χ, λ∗|∂zσ∗11|∞ ≤ χ,

where χ =
ν

6

√
r(1− r). Then for ε small enough, τ11, τ12, τ22 solution of (5.1) satisfy the

following inequality:

λ∗

2ε

d

dt

(
|τ11|2 + 2|τ12|2 + |τ22|2

)
+

1

2

(∣∣∣∣
1

ε
τ11

∣∣∣∣
2

+ 2

∣∣∣∣
1

ε
τ12

∣∣∣∣
2

+

∣∣∣∣
1

ε
τ22

∣∣∣∣
2
)

+
η

ε

(
|∇ετ11|2 + 2|∇ετ12|2 + |∇ετ22|2

)
≤ D1 +D2 + r(1− r)ν2

(
|∇εv1|2 + |ε∇εv2|2

)
+C,

(5.8)

where C is a onstant independent of ε.

Proof. As in the preeding proposition, lassial a priori estimates on τ11, τ12 and τ22 are obtained,

and the remaining terms are estimated aurately.
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Step 1. Let us multiply (5.1d) by

τ11
ε

and integrate over Ω. Again, the onvetion terms∫
Ω

v ·∇τ11 τ11 ontained in

∫
Ω

dtτ11 τ11 are equal to zero by Lemma 5.1, sine ∇·v = 0 and v|∂Ω = 0

(see (5.2)). Moreover, there is no boundary term in the integration by parts sine the boundary

onditions on σ have be hosen suh that τ · n|∂Ω = 0 (see also (5.2)). It follows:

λ∗

2ε

d

dt
|τ11|2 −

λ∗

ε

∫

Ω

N(v, τ12) τ11 +

∣∣∣∣
1

ε
τ11

∣∣∣∣
2

+
η

ε
|∇ετ11|2

=
2rν

ε

∫

Ω

∂xv1 τ11 +
1

ε

∫

Ω

L11 τ11 +
1

ε2

∫

Ω

L′
11 τ11.

(5.9)

• The terms of

∫

Ω

L11 τ11 are estimated as follows:

⋆ λ∗
∫

Ω

∂xu
∗
2 τ12 τ11 ≤ λ∗|∂xu∗2|∞︸ ︷︷ ︸

=:M11

(
ε2

2

∣∣∣∣
1

ε
τ11

∣∣∣∣
2

+
ε2

2

∣∣∣∣
1

ε
τ12

∣∣∣∣
2
)
.

⋆ In a same way:

λ∗

ε

∫

Ω

v1 ∂xσ
∗
11 τ11 ≤ λ∗|∂xσ∗11|∞CP︸ ︷︷ ︸

=:M12

(
ε

2

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

+
ε

2

∣∣∣∣
1

ε
τ11

∣∣∣∣
2
)
.

Let us hoose ε small enough suh that:

M11ε
2

2
≤ 1

24
and

M12ε

2
≤ Min

{
r(1− r)ν

6
,
1

24

}
.

⋆ λ∗
∫

Ω

∂xv2 σ
∗
12 τ11 ≤ λ∗|σ∗12|∞ |ε∂xv2|

∣∣∣∣
1

ε
τ11

∣∣∣∣ ≤ λ∗|σ∗12|∞
(

1

4c3
|ε∂xv2|2 + c3

∣∣∣∣
1

ε
τ11

∣∣∣∣
2
)
.

Here, it is not possible to hoose c3 suh that both oe�ients are less than r(1 − r)ν/6 and

1/24. Therefore,a ondition on λ∗|σ∗12|∞ is imposed suh that:

λ∗|σ∗12|∞
4c3

≤ r(1− r)ν

6
and λ∗|σ∗12|∞c3 ≤

1

24
.

Choosing c3 satisfying λ∗|σ∗12|∞c3 = 1/24, the ondition on λ∗|σ∗12|∞ beomes:

λ∗|σ∗12|∞ ≤ ν

6

√
r(1− r) =: χ.

⋆ Similarly the following term an be estimated:

λ∗

ε

∫

Ω

v2 ∂zσ
∗
11 τ11 ≤ λ∗|∂zσ∗11|∞ |∂zv2|

∣∣∣∣
1

ε
τ11

∣∣∣∣ ≤ λ∗|∂zσ∗11|∞
(

1

4c3
|∂zv2|2 + c3

∣∣∣∣
1

ε
τ11

∣∣∣∣
2
)
.

The same reasoning as before allows to ontrol both terms providing that λ∗|∂zσ∗11|∞ ≤ χ.

⋆ In order to treat the term −λ∗
∫

Ω

u∗ · ∇τ11 τ11, it is not possible to apply Lemma 5.1, sine
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u∗ · n|∂Ω 6= 0. However, integration by parts implies that

−λ∗
∫

Ω

u∗ · ∇τ11 τ11 = −λ
∗

2

∫

∂Ω

u∗ · n τ211.

On ω, sine u∗ = (s, 0) (see (4.2)), it holds u∗ · n = 0. Thus it remains to onsider the

boundary integral on ΓL. This boundary integral is split into two integrals on Γ+ and Γ−. On

Γ−, it holds u∗ · n > 0, thus −λ∗

2

∫
Γ−

u∗ · n τ211 ≤ 0, and this term is trivially bounded by zero.

On Γ+, the boundary onditions are hosen in subsetion 4.2 suh that τ |Γ+
= 0, therefore

−λ∗

2

∫
Γ+

u∗ · n τ211 = 0.

• All other terms of

∫

Ω

L11 τ11 are easier to manage, sine they are linear in τ11, and they are

treated with Young and Poinaré inequalities in a same way as the ones in v1, v2.

• For the terms of

∫

Ω

L′
11 τ11, we proeed as before:

λ∗

ε2

∫

Ω

∂zu
∗
1 τ12 τ11 ≤ λ∗|∂zu∗1|∞

∣∣∣∣
1

ε
τ12

∣∣∣∣
∣∣∣∣
1

ε
τ11

∣∣∣∣ ≤ λ∗|∂zu∗1|∞
(
1

2

∣∣∣∣
1

ε
τ12

∣∣∣∣
2

+
1

2

∣∣∣∣
1

ε
τ11

∣∣∣∣
2
)
.

Choosing λ∗|∂zu∗1|∞ ≤ 1/12, both terms are bounded by 1/24.

λ∗

ε2

∫

Ω

∂zv1 σ
∗
12 τ11 ≤ λ∗|σ∗12|∞

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
∣∣∣∣
1

ε
τ11

∣∣∣∣ ≤ λ∗|σ∗12|∞
(

1

4c3

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
2

+ c3

∣∣∣∣
1

ε
τ11

∣∣∣∣
2
)
.

Imposing λ∗|σ∗12|∞ ≤ χ is enough to ensure that the oe�ients are less than r(1 − r)ν/6 and

1/24.

Step 2. Now, multiplying equation (5.1e) by

2τ12
ε

and integrating over Ω, with the same

reasoning as in the preeding step it follows:

λ∗

ε

d

dt
|τ12|2 +

λ∗

ε

∫

Ω

N(v, τ11 − τ22) τ12 + 2

∣∣∣∣
1

ε
τ12

∣∣∣∣
2

+
2η

ε
|∇ετ12|2

=
2rν

ε

∫

Ω

(
∂xv2 +

1

ε
∂zv1

)
τ12 +

2

ε

∫

Ω

L12 τ12 +
2

ε2

∫

Ω

L′
12 τ12

(5.10)

The terms in L12 and L′
12 are of the same type as the ones in L11 and L′

11, and are treated very

similarly to them, applying Young inequality, and assuming smallness assumptions on ε. Thus,

let us only write the terms needing additional assumptions.

⋆ λ∗
∫

Ω

∂xv2 (σ
∗
11 − σ∗22) τ12 ≤ λ∗(|σ∗11|∞ + |σ∗22|∞) |ε∂xv2|

∣∣∣∣
1

ε
τ12

∣∣∣∣, and it is enough to assume that

λ∗(|σ∗11|∞ + |σ∗22|∞) ≤ χ.
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⋆
2λ∗

ε

∫

Ω

v2 ∂zσ
∗
12 τ12 ≤ 2λ∗|∂zσ∗12|∞ |∂zv2|

∣∣∣∣
1

ε
τ12

∣∣∣∣, and we assume that 2λ∗|∂zσ∗12|∞ ≤ χ.

⋆
λ∗

ε2

∫

Ω

∂zu
∗ (τ11 − τ22) τ12 ≤ λ∗|∂zu∗1|∞

(∣∣∣∣
1

ε
τ11

∣∣∣∣+
∣∣∣∣
1

ε
τ22

∣∣∣∣
) ∣∣∣∣

1

ε
τ12

∣∣∣∣, it has already been assumed

that λ∗|∂zu∗1|∞ ≤ 1/12.

⋆
λ∗

ε2

∫

Ω

∂zv1 (σ
∗
11 − σ∗22) τ12 ≤ λ∗(|σ∗11|∞ + |σ∗22|∞)

∣∣∣∣
1

ε
∂zv1

∣∣∣∣
∣∣∣∣
1

ε
τ12

∣∣∣∣, it has already been assumed

that λ∗(|σ∗11|∞ + |σ∗22|∞) ≤ χ.

Step 3. Multiplying (5.1f) by

τ22
ε
, and estimating the terms just as the ones in τ11, it follows

λ∗

2ε

d

dt
|τ22|2 +

λ∗

ε

∫

Ω

N(v, τ12) τ22 +

∣∣∣∣
1

ε
τ22

∣∣∣∣
2

+
η

ε
|∇ετ22|2

=
2rν

ε2

∫

Ω

∂zv2 c+
1

ε

∫

Ω

L22 τ22 +
1

ε2

∫

Ω

L′
22 τ22.

(5.11)

Assuming that λ|σ∗12|∞ ≤ χ, λ∗|∂zσ∗11|∞ ≤ χ and λ∗|∂zu∗1|∞ ≤ 1/12, all the terms

1

ε

∫
Ω

L22 τ22 and

1

ε2
∫
Ω

L′
22 τ22 are bounded and estimated as in Step 1.

Step 4. Summing (5.9), (5.10) and (5.11), and notiing that

−
∫

Ω

N(v, τ12) τ11+

∫

Ω

N(v, τ11 − τ22) τ12 +

∫

Ω

N(v, τ12) τ22

=

∫

Ω

(
ε∂xv2 −

1

ε
∂zv1

)
(−τ12 τ11 + (τ11 − τ22) τ12 + τ12 τ22) = 0,

it follows that for ε small enough

λ∗

2ε

d

dt

(
|τ11|2 + 2|τ12|2 + |τ22|2

)
+

1

2

(∣∣∣∣
1

ε
τ11

∣∣∣∣
2

+ 2

∣∣∣∣
1

ε
τ12

∣∣∣∣
2

+

∣∣∣∣
1

ε
τ22

∣∣∣∣
2
)

+
η

ε

(
|∇ετ11|2 + 2|∇ετ12|2 + |∇ετ22|2

)

≤ D1 +D2 + r(1− r)ν2
(
|∇εv1|2 + |ε∇εv2|2

)
+ C,

where we reognized the terms D1 +D2, and where C is a onstant independent of ε.

From now on, let us ome bak to the notation with the supersripts

εη
, denoting the dependene

on ε and η.

Theorem 5.4. Suppose that the solution u∗,σ∗
of system (4.1)-(4.2) satis�es the following small-
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ness assumptions

λ∗|∂zu∗1|∞ ≤ 1/12, λ∗|σ∗12|∞ ≤ χ, λ∗(|σ∗11|∞ + |σ∗22|∞) ≤ χ, 2λ∗|∂zσ∗12|∞ ≤ χ, λ∗|∂zσ∗11|∞ ≤ χ,

(5.12)

where χ = ν
6

√
r(1− r). Then the following onvergenes hold up to subsequenes when η and then

ε tend to zero:

uεη1 → u∗1, ∂zu
εη
1 → ∂zu

∗
1, ∂xu

εη
1 ⇀ ∂xu

∗
1 in L2(0, T, L2(Ω)), (5.13)

uεη2 → 0, ∂zu
εη
2 → 0, ∂xu

εη
2 ⇀ 0 in L2(0, T, L2(Ω)), (5.14)

εσεη → σ∗
in L2(0, T, L2(Ω)), (5.15)

uεη1 ⇀∗ u∗1, uεη2 ⇀∗ 0, εσεη → σ∗
in L∞(0, T, L2(Ω)). (5.16)

Proof. Summing (5.3), (5.8) implies that for ε small enough (i.e. if assumption (5.12) is satis�ed):

rνρ
d

dt

(
|vεη1 |2 + |εvεη2 |2

)
+
λ∗

2ε

d

dt

(
|τ εη11 |2 + 2|τ εη12 |2 + |τ εη22 |2

)
+
η

ε

(
|∇ετ

εη
11 |2 + 2|∇ετ

εη
12 |2 + |∇ετ

εη
22 |2

)

+
r(1− r)ν2

2

(
|∂xvεη1 |2 +

∣∣∣∣
1

ε
∂zv

εη
1

∣∣∣∣
2

+ |ε∂xvεη2 |2 + |∂zvεη2 |2
)

+
1

2

∣∣∣∣
1

ε
τ εη11

∣∣∣∣
2

+

∣∣∣∣
1

ε
τ εη12

∣∣∣∣
2

+
1

2

∣∣∣∣
1

ε
τ εη22

∣∣∣∣
2

≤ C.

(5.17)

From this inequality, it follows that vεη
onverges to vε

in H1(Ω) and τ εη
onverges τ ε

in L2(Ω),

as η tends to zero. vε
and τ ε

are the solutions solutions of (5.1) without the terms η∆τ εη
. Indeed,

realling the weak formulation of the system (5.1), it su�es to notie that Hölder's inequality

allows to treat the term η∆τ εη
:

η

∫

Ω

∇ετ
εη · ∇εφ ≤ η1/2

(
η|∇ετ

εη|2︸ ︷︷ ︸
≤C

+|∇εφ|2
)
−−−→
η→0

0, ∀φ ∈ H1
0 (Ω).

Moreover, vε
and τ ε

satisfy the following estimate:

rνρ
d

dt

(
|vε1|2 + |εvε2|2

)
+
λ∗

2ε

d

dt

(
|τ ε11|2 + 2|τ ε12|2 + |τ ε22|2

)

+
1

2
r(1− r)ν2

(
|∂xvε1|2 +

∣∣∣∣
1

ε
∂zv

ε
1

∣∣∣∣
2

+ |ε∂xvε2|2 + |∂zvε2|2
)

+
1

2

∣∣∣∣
1

ε
τ ε11

∣∣∣∣
2

+

∣∣∣∣
1

ε
τ ε12

∣∣∣∣
2

+
1

2

∣∣∣∣
1

ε
τ ε22

∣∣∣∣
2

≤ C.

(5.18)

It remains to pass to the limit as ε tends to zero. After integrating (5.18) between 0 and T , it

yields that

⊲ ‖vε1‖L2(L2) ≤ ‖∂zvε1‖L2(L2) ≤ Cε, thus the following onvergenes hold in L2(0, T, L2(Ω)) as

ε tends to zero:

vε1 → 0 and ∂zv
ε
1 → 0. (5.19)

From these onvergenes, it follows that uε1 = u∗1 + vε1 → u∗1 in L2(0, T, L2(Ω)) and ∂zu
ε
1 → ∂zu

∗
1
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in L2(0, T, L2(Ω)).

⊲ ‖∂xvε1‖L2(L2) ≤ C, thus ∂xv
ε
1 onverges weakly in L2(0, T, L2(Ω)). Now, sine it is already

known that uε1 → u∗1, it follows that ∂xu
ε
1 ⇀ ∂xu

∗
1 in L2(0, T, L2(Ω)).

⊲ Similarly ‖vε2‖L2(L2) ≤ ‖∂zvε2‖L2(L2) ≤ C, thus εvε2 and ε∂zv
ε
2 onverge strongly to zero in

L2(0, T, L2(Ω)), and thus uε2 = εu∗2+εv
ε
2 → 0 in L2(0, T, L2(Ω)), and ∂zu

ε
2 → 0 in L2(0, T, L2(Ω)).

⊲ ‖∂xvε2‖L2(L2) ≤
C

ε
, thus ∂xu

ε
2 onverges weakly in L2(0, T, L2(Ω)). Sine uε2 → 0, it implies

that ∂xu
ε
2 ⇀ 0 in L2(0, T, L2(Ω)).

⊲ ‖τ ε11‖L2(L2), ‖τ ε12‖L2(L2), ‖τ ε22‖L2(L2) ≤ Cε, therefore τ ε11, τ
ε
12, τ

ε
22 → 0 in L2(0, T, L2(Ω)).

Thus εσε11 = σ∗11+τ
ε
11 → σ∗11 in L

2(0, T, L2(Ω)), and in the same way εσε12 → σ∗12 in L
2(0, T, L2(Ω)),

εσε22 → σ∗22 in L2(0, T, L2(Ω)).

⊲ From the terms with the derivatives in time, using the fat that vε|t=0 = uε
0 − u∗ ∈ L2(Ω)

and τ ε|t=0 = σε
0 − σ∗ ∈ L2(Ω) are bounded independently of ε, we an onlude that

‖vε‖L∞(L2) ≤ C and ‖τ ε‖L∞(L2) ≤ C
√
ε.

These estimates and the uniqueness of the limit imply that vε1 and εvε2 onverge weakly-* in

L∞(0, T, L2(Ω)) toward zero, and that τ ε
onverges strongly in L∞(0, T,L2(Ω)) toward zero,

whih proves the last estimate (5.16).

Note that in a simpli�ed ase (with a simpler geometry), the hypothesis (5.12) is satis�ed under

a small data assumption on the physial parameters.

Remark 5.5. When h is onstant with respet to x, p∗ is also independent of x, so that equation

(4.1) redues to

−(1− r)∂2zu
∗
1 − r

∂

∂z

(
∂zu

∗
1

1 + λ∗2|∂zu∗1|2
)

= 0.

It has been shown in [8℄ for example that for r < 8/9 this equation admits a unique solution

u∗1 = s(1− z
h).

Now, it follows that σ∗12 =
rν∂zu

∗
1

1 + λ∗2|∂zu∗1|2
=

−rνs
h+ λ∗2s2/h

, and σ∗11 = −σ∗22 = −λ∗∂zu∗1σ∗12 =

−rνs2λ∗
h2 + λ∗2s2

.

In this ase, hypothesis (5.12) beomes more simple. Sine ∂zu
∗
1 = −s/h, σ∗11 and σ∗12 are onstant

with respet to z, so that the last two onditions are trivially veri�ed. Using the fat that r < 8/9,

it leads to a smallness ondition on sλ∗ with respet to h (sλ∗ ≤ h/12 is enough in order to satisfy

all onditions).

Observe that this ondition is not optimal, but it shows that in the simpli�ed ase when h(x) is

onstant, a simple hoie of the parameters s, λ∗ and h satis�es hypothesis (5.12).

5.3 Convergene of the pressure

It remains to prove the onvergene of the pressure.
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Theorem 5.6. Under the same smallness assumption (5.12), the following onvergene result

holds up to a subsequene for p:

ε2p →
ε→0

p∗ in D′(0, T, L2(Ω)). (5.20)

Proof. Throughout the proof, C will denote some generi onstants independent of ε. Let ε ≤ 1.

Let us integrate over ΩT = Ω × (0, T ) equation (5.1a) multiplied by ε2ϕ1, for any funtion φ1 ∈
H1

0 (Ω). It follows:

ρε2
∫

ΩT

∂tv1φ1 + ρε2
∫

ΩT

v1∂xv1φ1 + ρε

∫

ΩT

v2∂zv1φ1 + (1− r)νε2
∫

ΩT

∂xv1 ∂xφ1 + (1− r)ν

∫

ΩT

∂zv1 ∂zφ1

+

∫

ΩT

∂xq φ1 = −ε
∫

ΩT

τ11∂xφ1 −
∫

ΩT

τ12∂zφ1 + ε2
∫

ΩT

L1φ1 + ε

∫

ΩT

C1φ1, ∀φ1 ∈ H1
0 (Ω).

(5.21)

Using the fat that φ1 is independent of t, the �rst term beomes

ρε2
∫

ΩT

∂tv1φ1 = ρε2
∫

Ω

φ1

T∫

0

∂tv1 = ρε2
∫

Ω

φ1(v1(T )− v1(0)),

where v1(0) = u10 − u∗1 denotes the value of v1 at time t = 0. Now, introduing

π =

T∫

0

q dt,

and using integration by parts for the pressure term (the boundary term is zero sine φ1 ∈ H1
0 (Ω)),

(5.21) beomes: ∀φ1 ∈ H1
0 (Ω),

ρε2
∫

Ω

φ1(v1(T )− v1(0)) + ρε2
∫

ΩT

v1∂xv1φ1 + ρε

∫

ΩT

r2∂zv1φ1 + (1− r)νε2
∫

ΩT

∂xv1 ∂xφ1

+ (1− r)ν

∫

ΩT

∂zv1 ∂zφ1 −
∫

Ω

π ∂xφ1 = −ε
∫

ΩT

τ11∂xφ1 −
∫

ΩT

τ12∂zφ1 + ε2
∫

ΩT

L1φ1 + ε

∫

ΩT

C1φ1.

It remains to estimate all terms independent of π. The non-linear terms are to bee handled with

are, sine φ1 /∈ L∞(Ω). Proeeding as in [3℄, Hölder inequality with exponents 2 + δ, δ′ and 2

leads: ∣∣∣∣∣∣∣

∫

ΩT

v1∂xv1φ1

∣∣∣∣∣∣∣
≤ |φ1|δ′

T∫

0

|v1|2+δ |∂xv1|, (5.22)
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where

1

2 + δ
+

1

2
+

1

δ′
= 1 (whih implies that δ′ =

2(2 + δ)

δ
). Aording to interpolation theory,

[
L2, L4

]
θ
= L2+δ

for θ =
δ

2 + δ
, and the following estimate holds:

|v1|2+δ ≤ C|v1|θ4 |v1|1−θ.

Moreover Lemma 3.2 of [1℄ states that for v1 ∈ H1
0 (Ω), it holds:

|v1|4 ≤
√
2|∂xv1|1/4 |∂zv1|3/4.

Using the two last inequalities and Poinaré inequality, (5.22) beomes

ρε2

∣∣∣∣∣∣∣

∫

ΩT

v1∂xv1φ1

∣∣∣∣∣∣∣
≤ ρε2|φ1|δ′C

T∫

0

|∂xv1|θ/4 |∂zv1|3θ/4|∂zv1|1−θ|∂xv1|,

and Hölder inequality implies that

ρε2
∫

ΩT

v1∂xv1φ1 ≤ ρε2|φ1|δ′C‖∂xv1‖1+θ/4
L2(ΩT )

‖∂zv1‖1−θ/4
L2(ΩT )

.

Now, hoose θ (and thus δ) suh that δ′ ≥ 6. It su�es to take θ ≤ 1
3 , for example take θ =

1

3
.

Then δ′ = 6, and the usual Sobolev embeddings read H1(Ω) →֒ L6(Ω) (whih is true in dimension

2 or 3). Therefore, the last estimate beomes

ρε2
∫

ΩT

v1∂xv1φ1 ≤ ρε2C‖φ1‖H1‖∂xv1‖13/12L2(ΩT )
‖∂zv1‖11/12L2(ΩT )

.

Now, realling that ‖∂zv1‖L2(L2) ≤ Cε and ‖∂xv1‖L2(L2) ≤ C, we onlude

ρε2
∫

ΩT

v1∂xv1φ1 ≤ ρε2C‖φ1‖H1ε11/12 = ρε2+11/12C‖φ1‖H1 ≤ Cε‖φ1‖H1 .

In a similar way, it holds

ρε

∫

ΩT

r2∂zv1φ1 ≤ ρε2−1/12C‖φ1‖H1 ≤ C̃ε‖φ1‖H1 .

For the term ρε2
∫
Ω

φ1(v1(T )− v1(0)), we apply Cauhy-Shwarz inequality. v1(0) is bounded, and

for v1(T ), we use Poinaré inequality. It follows, using the fat that |∂zv1| ≤ Cε:

ρε2
∫

Ω

φ1(v1(T )−v1(0)) ≤ (C|v1|+C)ε2‖φ1‖H1 ≤ (C|∂zv1|+C)ε2‖φ1‖H1 ≤ Cε2‖φ1‖H1 ≤ Cε‖φ1‖H1 .

25



For the other linear terms, a simple appliation of Cauhy-Shwarz inequality allows to obtain

similar estimates. Indeed, it su�es to use the estimate (5.18) in order to estimate the L2
-norm

of ∂xv1, ∂zv1, τ11, τ12, L1, C1. For example, sine |∂xv1| ≤ C, the following estimate holds:

ρε2
∫

Ω

∂xv1 ∂xφ1 ≤ ρε2|∂xv1| |∂xφ1| ≤ Cε2‖φ1‖H1 .

For the terms L1 and C1, C1 and the onstant part of L1 are obviously bounded uniformly in

ε. It remains to estimate the linear term L1 of L1. Realling its de�nition and using Poinaré

inequality in the seond estimate:

|L1| ≤ C (|v1|+ |v2|+ |∂xv1|+ |∂zv1|) ≤ C (|∂zv1|+ |∂xv1|+ |∂zv2|) .

Using again (5.18), the boundedness of L1 follows:

|L1| ≤ C.

Hene ∀φ1 ∈ H1
0 (Ω):

∫

Ω

∂xπ φ1 ≤ C
(
ε+ ε2|∂xv1|+ |∂zv1|+ ε|τ11|+ |τ12|+ ε2|L1|+ ε|C1|

)
‖φ1‖H1 ≤ Cε‖φ1‖H1 .

The same approah with (5.1b) gives a similar estimate, for all φ2 ∈ H1
0 (Ω):

∫

Ω

∂zπ ϕ2 ≤ C
(
ε+ ε4|∂xv2|+ ε2|∂zv2|+ ε2|τ12|+ ε|τ22|+ ε2|L2|+ ε|C2|

)
‖φ2‖H1 ≤ Cε‖φ2‖H1 .

Thus we an onlude that ‖∇π‖L∞(H−1) ≤ Cε.

Now reall that for f ∈ L2
0(Ω), it holds that |f | ≤ ‖∇q‖H−1 (see for example [17℄). Sine p ∈ L2

0(Ω)

and p∗ ∈ L2
0(Ω), q lies in L

2
0(Ω). From the de�nition of π as funtion of q, it is lear that π ∈ L2

0(Ω).

This allows to dedue

|π|L∞(L2) ≤ ‖∇π‖L∞(H−1) ≤ Cε→ 0,

thus π tends to zero in L∞(0, T, L2
0(Ω)) when ε → 0. Now, sine q =

∂π

∂t
, it follows that q tends

to zero in D′(0, T, L2
0(Ω)), and therefore:

ε2p →
ε→0

p∗ in D′(0, T, L2(Ω)).

This �nishes the proof.

5.4 Open problems

This work onerns only the solutions of the problem (3.1) that are obtained as the limit of the

regularized problem we hose (with an additional term −η∆σ). Sine there is no uniqueness result
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for problem (3.1), it is not known how other solutions behave.

Formally, the passing to the limit an be done for a 6= 0 (see [4℄), and a similar limit problem

(involving the parameter a, but of the same struture). However, the proof of the existene

theorem in Ω̂ε
strongly relies on the fat that a = 0. No global results are proved in the ase

a 6= 0.

Last, sine the omputations are independent of the dimension of the domain Ω, the result should

be true in the three-dimensional ase. The limit problem on (u∗, p∗,σ∗) reads:





(1− r)ν∂2zu
∗
1 − ∂xp

∗ + ∂zσ
∗
13 = 0,

(1− r)ν∂2zu
∗
2 − ∂xp

∗ + ∂zσ
∗
23 = 0,

∂zp
∗ = 0,

∇ · u∗ = 0,

−λ∗∂zu∗1σ∗13 + σ∗11 = 0,

−λ
∗

2
∂zu

∗
1σ

∗
13 − ∂zu

∗
2σ

∗
23 + σ∗12 = 0,

−λ∗∂zu∗2σ∗23 + σ∗22 = 0,
λ∗

2
∂zu

∗
2(σ

∗
33 − σ∗22)−

λ∗

2
∂zu

∗
1σ

∗
12 + σ∗23 = rν∂zu

∗
2,

λ∗ (∂zu
∗
1σ

∗
13 + ∂zu

∗
2σ

∗
23) + σ∗33 = 0,

λ∗

2
∂zu

∗
1(σ

∗
33 − σ∗11)−

λ∗

2
∂zu

∗
2σ

∗
12 + σ∗12 = rν∂zu

∗
1.

(5.23)
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