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GLOBAL STRICHARTZ ESTIMATES FOR THE WAVE EQUATION WITH A
TIME-PERIODIC NON-TRAPPING METRIC

YAVAR KIAN

ABSTRACT. We obtain global Strichartz estimates for the solution u of the wave equation

d2u — divy(a(t,©)V,u) = 0 with time-periodic metric a(t, z) equal to 1 outside a compact set with
respect to z. We assume a(t,z) is a non-trapping perturbation and moreover, we suppose that
there are no resonances z; € C with |z;| > 1.

1. INTRODUCTION

Consider the Cauchy problem
{ ug — divg(a(t,z)Veu) =0, (t,x) € R*HL (11)
(uvut)(57x) = (fl(x)afé(x)) :f(x)7 z e R", ‘

where the perturbation a(t, z) € C>°(R™*1!) is a scalar function which satisfies the conditions:
(i) Co > a(t,z) > co >0, (t,r) € R
(74) there exists p > 0 such that a(t,z) =1 for |z| > p, (1.2)
(iii) there exists T' > 0 such that a(t + T, z) = a(t,z), (t,z) € R**L,

Throughout this paper we assume that n > 3 is odd. Let HY(R") = A~7(L?*(R")) be the
homogeneous Sobolev spaces, where A = /—A, is determined by the Laplacian in R™. The
solution of (1.1) is given by the propagator

Ult,s) : Hy(RY) 2 (1 f2) = [ UL 9)f = (u,w)(t,2) € Ha(RT)
where ., (R") = H7(R™) x HY~1(R™).

We say that the numbers 2 < p,q < oo, v > 0 are admissible for the free wave equation
O}u — Ayu = 0 if for f € H,(R") the solution u(t,z) of (1.1), with a = 1 and s = 0, satisfies the
estimate

lull e @+, zarmy) + 1wl gy + (00w (O gv-1 < Clo, @0, T) (I f1ll g + 1 f2ll grv-1)

with C(p,q,p,T) > 0 independent on ¢. It is well known (see for instance, [14]) that (p,q,~y) are
admissible if the following condition holds

1 n n 1 n—1 1 1
-4 —==—7, —S( ><———> (13)
p q 2 P 2 2 q

with (p,q,v) # (2,00,1) when n = 3. Our purpose in this paper is to establish Strichartz estimates
for the problem (1.1) assuming the perturbation a(t,z) non-trapping. More precisely, consider the
null bicharacteristics (t(c), z(c), 7(c),&(c)) of the principal symbol 72 —a(t, x)|£|? of 07 —div,(aVy)
satisfying

t(0) = to, [z(0)] < p, 7(0) = alt(0),z(a))[E(0)*.
We introduce the following condition
1
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(H1) We say that the metric a(t, x) is non-trapping if for R > p there exists Sp > 0 such that
|x(o)| > R for |o| > Sg.

The non-trapping condition (H1) is necessary for the Strichartz estimates since for some trap-
ping perturbations we may have solutions with exponentially increasing local energy (see [7]). On
the other hand, even for non-trapping periodic perturbation some parametric resonances could
lead to solutions with exponentially growing local energy (see [6] for the case of time-dependent
potentials). To exclude the existence of such solutions we must impose a second hypothesis.

Let Up(t) = €'t be the unitary group on H1(R") related to the Cauchy problem (1.1) for the
free wave equation (a =1 and 7 = 0). For b > p denote by Pfi (resp P?) the orthogonal projection
on the orthogonal complements of the Lax-Phillips spaces

D% ={f e Hi(R") : (Uo(t)f)1(x) =0 for |z| < +t+b}.

Set Z°(t,s) = PYU(t, s)P?. Then the resonances of the problem (1.1) coincide with the eigenvalues
of the operator Z%(T,0) and the condition (H1) guarantees that the the spectrum o(Z%(T,0)) of
Zb(T,0) is formed by eigenvalues zj € C with finite multiplicities. Moreover, these eigenvalues are
independent on the choice of b > p (see for more details [18] for time-periodic potentials at moving
obstacles). Our second condition is
(H2) o(ZYT,0)N{z€C : |z| > 1} =2.

Assuming (H1) and (H2), we establish an exponential decay of local energy similar to the results
for time-dependent potentials and non-trapping moving obstacles (see [3], [8], [18]).

Our main result is the following

Theorem 1. Let a(t,x) be a metric for which the conditions (H1) and (H2) are satisfied. Assume
that 2 < p,q < 400 satisfy conditions

N 1 _ n(g=2)
(1) ifn=3, ¢g>6 and s=—2 — L )
(i) if n > 5 is odd, 25 <q< 2% and %:"(%;)—1.

(1.4)

Then for u the solution of (1.1) with s =0 we have for all t > 0 the estimate

[wll Lo @+, pagrmy) + @)l g + 106 (W) Dl L2rny < C @, 050, T f1ll g + [ 2ll2ey)- (15)

Remark 1. The conditions (1.3) for the free wave equations imply for v =1 and 2 < p,q < 400
that (see Section 6)
I n(qg—2) 2n

2
1, << forn>5
P 2q n—2 n—3

and

1 -2
_Zin(q )—1,q26, forn = 3.
p 2q
This means that our conditions (1.4) are stronger than (1.3) and the assumption of Theorem 1
makes possible to apply the estimates (1.2) for the free wave equation.

Remark 2. Since the differential operator div,(a(t,z)V.) is time-dependent we cannot apply the
argument of Tao [14], to obtain inhomogeneous Strichartz estimates (see for example [14]).
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Remark 3. Let the metric (a;j(t,x))1<i j<n be such that for all i,j =1---n we have

) there exists p > 0 such that a;j(t,z) = 6;;, for |x| > p, with 6;; =0 for i # j and 6; = 1,
i) there exists T > 0 such that a;;(t + T,z) = a;j(t, ), (t,z) € R"TL
iii)aij (t,©) = aji(t, ), (t,x) € R*,

?
7

(
(
(
(

n
iv) there exist Cy > cg > 0 such that Co|é> > Z a;j(t, x)&& > colé?, (t,z) e RM™, ¢ e R™
ij=1

If we replace a(t,z) in (1.1) we get the following problem

SN, 0 1
Uy — E — <a,-j(t,x)—' u> =0, (t,z)eR",
=1 9T ozj (1.6)

(u,ue)(s,2) = (fi(x), fo(x)) = f(x), = €R"™

Repeating the argument for (1.1) we can prove that estimates (1.5) are true for the solution u of
the problem (1.6) if for the trajectories of the symbol 72 — szzl a;j(t, )& and the corresponding

operator Z°(T,0), (H1) and (H2) are fulfilled and if n,p,q satisfied (1.4).

Strichartz estimates for the wave equation with time-periodic potential have been established
in [19]. In the proof of [19] the L? -integrability of the local energy plays a crucial rule (see also
[1]). In our case we obtain also a L2-integrability of the local energy assuming (H1) and (H2)
fulfilled. However, in contrast to the wave equation with time-periodic potential examined in [19],
to obtain Strichartz estimates (1.5) we need local Strichartz estimates for the perturbed equation.
For this purpose, we construct a local smooth approximation of the Cauchy problem (1.1) by Fourier
integral operators and we obtain uniform estimates for their phases and amplitudes. By using this
approximation, we apply the result of Kapitanski [12] to get local Strichartz estimates. Finally,
combining local Strichartz estimates and the L?-integrability of the local energy, we deduce the
Strichartz estimates (1.5) by applying the idea of Burq [1] to decompose

where xy € C°(R") and x =1 for |z| < p. To estimate yu we exploit local Strichartz estimates and
to deal with (1 — x)u we apply the global Strichartz estimate for the free wave equation. In Section
8 we present some examples of function a(t,z) for which (H1) and (H2) are fulfilled.

Acknowledgements. The author would like to thank Vesselin Petkov for his precious help
during the preparation of this work, Jean-Frangois Bony for his remark and the referee for his
suggestions.

2. EXPONENTIAL DECAY OF LOCAL ENERGY

Throughout this section we will establish that condition (H2) implies the exponential decay of
the local energy. In the same time we will recall some properties of the operator Z b(t, s) and show
that for ¢ sufficiently large Z®(t,0) is compact in H;(R™). The properties of Z°(t, s) are proved for
the wave equation with time dependent potential in chapter V of [18]. The same proofs work for
the wave equation with a time dependent metric satisfying conditions (1.2).
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We start with some general properties of 2(t, s) and Z%(t,s). These properties are established
in [18] for the wave equation with time dependent potential. The same proof works for the problem
(1.1).

Proposition 1. Let b > p, 7, t € R. Then

(Ut +T,s+T)=U(t,s)

(is) U(t,s)=Up(t—s)f, feDi, ifs<t.

(iii))  U(s,t)f =Up(s —t)f, feDl,s<t.

(iv) U(t,s)((D2)*Y) c (D2)*L.

(v) For all s1,t1,s2 € R such that s > t1 > sy we have
Zb(sl, tl)Zb(tl, 82) = Zb(sl, 82).

(v) Z°(t+T,s+T)=2%ts), tscR.

Since a(t, x) is non-trapping, the results of the propagation of singularities imply (see [17]) the
following

Proposition 2. For all R > 0, there exists T(R) > 0 such that for all s € R and for all f € Hy(R")
satisfying supp(f) C Br we have

(t,z) — (U(t,s)f)(z) € (C(T(R) + s, +00[xBR)) (2.1)
where B, = {x e R" : |z| <r}, r>0.

We deduce from Proposition 1 and Proposition 2 that the operator Z b(t, 0) is compact for t > 0
large enough. More precisely, we have the following

Proposition 3. Let b > p, and let n > 3 be odd. Then, for all t > 4b + Ty, the operator Zb(t,O)
is compact in Hi(R™)
Proof. Set M(t,s) =U(t,s) — Up(t — s) and write
Zb(t,0) = PYM(t,t — 2b)U(t — 2b,2b) M (2b,0)P° + P2 M (t,t — 2b)U(t — 2b, 2b)Up(2b) P°
+P2Uo(20)U(t — 2b,0)P? '
Choose x € Ci°(R™) so that x =1 for |z| < 3b and x = 0 for |z| > 4b. Taking into account the
finite speed of propagation, it is easy to see that
M(s,s —2b) = xM(s,s — 2b)x.
We find
Z8(t,0) = PYM(t,t — 2b)xU(t — 2b,2b)x M (2b,0)P® + P M (t,t — 2b)XxU(t — 2b,2b)Up(2b) P
+ P2 U (2b)U(t — 2b,0)P" '
It follows from the properties (ii) and (iv) of Proposition 1 that for ¢ > 4b we have
U(t — 2b,2b)Ug(20) P £, Up(20)U(t — 2b,0)P2 f € DY, f € Hi(R™).
Therefore,
Z(t,0) = PP M (t,t — 2b)XU(t — 2b, 2b)x M (2b,0)P° .
Since t — 4b > T}y, Proposition 2 implies that
XUt — 2b,2b)xh € C(R™),  h e Hi(R").

Thus, we conclude that xU (¢t — 2b,2b)x is a compact operator in ﬂl(Rn) and the proof is complete.
O
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As for the wave equation with time dependent potential (see [18], chapter V) we can prove that
for a non-trapping metric we have
a(2°(T,0)) = o(Z°(T,0)), b>p
and we omit the details. Combining this with the assumption (H2), we get

Proposition 4. For allt,s € R witht —s > 0 and b > p there exist Cy, 6 > 0 independent on t, s
such that
HZb(t7 S)H»C(Hl(Rn)) S Cbeéb(t—s).

Proof. Let 7(Z°(T,0)) be the spectral radius of Z°(T,0). We know that
r(Z%(T,0)) < 1. Thus there exists § > 0 such that

lim || Z°(mT,0)||m <1—6

m——+00

and for m > mg we have
12T, )] < (1~ 2y = =T
with §, > 0. Now assume that t — s > (mg + 2)T and choose k,l € N so that
ET <t<(k+1T, IT<s<({+1T.

Then

1Z°(t, )| = 12°(¢, KT) Z° (KT, (1 + 1)T) Z°((L + )T, 5))|
and (k — (I +1))T > moT. Thus we obtain

1Z0(t, 5)|| < Cle= =T < of =81(t=9) 20T

For t — s < (mg + 2)T we have the estimate

HZb(t, S)H < Cl;/ea(mo+2)T < C’é/e(a+5b)(m°+2)Te_5b(t_s).
This completes the proof. O

Now we are able to show the main result of this section.

Theorem 2. Let ¢ € C(R™) be a cut-off function and let f € Hy(R™) be such that
suppf C {z € R" : |z| < R}. Assume the condition (H2) is fulfilled and let n > 3 be odd. Then
there exist C,d > 0 independent of f and t so that for t > 0 we have

||90u(75,0)f||7{1([;gn) < C(p; R, %n)e_&Hqu{l(Rn)-
Proof. Set b = maz(p+ 1, R+ 1, Ry), where supp(¢) C {z € R" : |z| < R;}. Applying Huygens
principle, we know that (Up(t)f)(x) = 0 for |z| <t —b. We get f € D} C (D°)+ and f = P°(f).
Also, for all f € Hi(R"), (Id — P%)(f) € D% and we obtain (Id — PY)(f)jz|<p = 0. Thus
p(Id = PL)(f) =0, feHi(R")
and
PU(,0)f = p(Id — PLU(,0)PY () + oPYU(L 0)PL (f) = oPYU(L 0)PL(f) = 9Z°(t,0) .

Consequently,

||(;0u(t70)f||7_'[1(Rn) = ||¢Zb(t70)f||7{1(ﬂgn) < C(%n)nzb(ta0)”5(7{1(Rn))||f||7.'[1(Rn)-
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Proposition 4 implies that for all t > 0 we have
H‘Pu(t7 O)f” < C((,D, n, p, R7 T)e_ébt”f”Hl(Rn)'

3. L? INTEGRABILITY OF THE LOCAL ENERGY

First, we will recall two useful results. The first result says that for functions v € H*® with
compact support and all v < s < %, |lul|lgv < Cllul|;z.. The second one established by Smith et
Sogge in [25] concerns the L? integrability in time of the local energy for solutions of the free wave
equation.

Theorem 3. [25] Let v < 251 and let ¢ € C°(R™). Then

L@wﬁ“ﬂ@m@ﬁSCWmmWM%mw
This theorem implies the following

Corollary 1. Let v < "T_l and ¢ € C§°(R™). Then

[ IO B, i < Clem 1 -

Combining this estimate and the link between the free wave equation and problem (1.1), we
deduce our main result in this section.

Theorem 4. Let ¢ € C{°(R"), and let n > 3 be odd. Then
[ U0y oy < OO S

Proof. Let ¢ € C*(R™), f € H1(R™) and x € C°(R™) be such that
x =1for |z| < p+ 3 and suppx C { = : |z] < p+1}, 0 < x < 1. Notice that
QU(t,0)f = UL, 0)xf + U(t,0)(1 = x)[.

Theorem 2 implies

“+o00 400
/0 lptd (£, 0)Xf 13, (ry At < Cz(cp,n,p)(/o 72| F13,, @y < Crles s D)l ey
It remains to show that
[t (t,0)(1 — X)fHLZ(Rj,y{l(Rn)) < C(%nap)”f”%l(w)-
Let w, ug, u1, us be defined by
(ug, O¢(up)) (t) =Up(t)f, (u,0(w))(t) =U(Et,0)(1—x)f, w1 =(1—x)up and uy =u— u;.
We have
8f(u1) —divg(a(t,z)Vi(uy)) = ((‘91‘/2 —Ay)uy.
Also

(0F = Ag)ur = (1= x)(9} — Ay)(uo) + [As, X](uo) = [As, X] (uo).
Thus wus is the solution of the following Cauchy problem
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{ 07 (uz) — dive(aVaug) = 8fu — divy (aVeu) — (Ofur — dive(aVaur)) = —[Ag, XJuo,
(u2, 0t (u2))(0) = 0.

Therefore, we can write

(1, Ou(u2)) (t) = — /0 Ut 5) (0, [ A, xJuo(s)) ds.

On the other hand, supp(0, [A,, x]uo(s)) Csuppx C {|z| < p + 1} and applying Theorem 2, with
R =p+1 we find

JGU(E 5) (0, [, XJtt0(5) g gy < €0 m)e™ 0 10, [, a0 (5)) g oy -
Choosing a cut-off function g € C3°(R"™) equal to 1 on suppy, we get
10, 120, X0 (5)) sty ey < CosmIBuo ()1 < C o, m)1BUo(5) gy -

Therefore,

Clpyns ) fo € E=|BU(8) fll, s,
Clp,1,0)(e™ " o 10)) * (18U () fll3, @y L0 400)-
An application of Young inequality yields

3 +o0 3
([ o untrun) 01, gut) = Cloome) ([ e ) ([ 1800011, oyt

Since 1 < "T_l, Corollary 1 shows that

[l (ug; Oe(u2)) (t)llg, @y <
<

ll¢ (u2, O (uz)) (t)||L2(R+7’}.'[1(Rn)) < C(‘P,pvn)||f||7-'[1([fgn)'
Consequently,
JGUE0) (1 =) Fll 2 51, ) < € 2l (3.1)
In conclusion, we obtain
U 0) fll o 7y ey < NIPUE OIS Il 2 o+ 72 (mey
+ltd (2, 0)(1 — X)fHLZ(R+,7{1(R”))=
Clp, %n)”f”ﬁl(w)-

IN

Consider the solution u of (1.1) with s = 0 and let x € C§°(R™) be a cut-off function satisfying
suppx C Bpt1, x(z) =12 € Bp+1 and 0 < xy < 1. We will establish Strichartz estimates for
2

(I — x)u and xu. Notice that
07 (1 = x)u) = A((1 = x)u) = (1 = x)(0F — diva(aVau)) + [Ag, X]u = [Ag, x]u.

Therefore, (1 — x)u is the solution of the free wave equation with right hand part
[Az, xJu € LZ(R*,L2(R™)) and initial data (1 — x)f. We will apply the result of [19] to obtain
Strichartz estimate for (1 — x)u. On the other hand, yu satisfies

0% (xu) — divy(aVz(xu)) = x(02(u) — divy(aVu)) — [dive(aVy), x]u = —[div,(aV,), x]u,
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and (xu, 9 (xu))(0) = xf. To deal with this term we will exploit local Strichartz estimates.

4. STRICHARTZ ESTIMATE FOR (1 — x)u
In this section our purpose is to prove the following.
Proposition 5. Let 2 < p,q < oo satisfy inequalities (1.8) with p > 2. Then for all t > 0 we have
1= X)ullres oy 1= 308 i1 gy + 190 =) @Ol 2 ey < Ol oy + 12l 2y
To prove Proposition 5 we need two lemmas.

Lemma 1. Let X and Y be Banach spaces, and for all s,t € R* let K(s,t) : X — Y be an

operator-valued kernel from X to Y. Suppose that

to
K(s,t)g(s)ds

0

< Allgllzr w+,x)
Ll([to,—l—oo[,Y)

for some A >0,1<r << +o0, allty € RT and g € L"(R", X). Then we have

/t K(s,t)g(s)ds
0

where Cy.; > 0 depends only on r,1.

< AC 9l o e+ x)
LY (RT)Y)

We refer to [11] for the proof of Lemma 1 which is called the Christ-Kiselev lemma (see also
the original paper [5]). Next, consider
_sin((t — s)A)

K(s,t) = fzp, X =L*R"), Y=LIYR"), l=p and r=2.

Applying the Christ-Kiselev lemma and Strichartz estimates for the free wave equation (see [14])
we get the following .

Lemma 2. Let p and q satisfy (1.8) with p > 2 and v = 1. Then for all p € C°(R™) we have

tsin((t — s)A
/0 szh(s,.)ds < C(p ¢ )|l L2 v+ 2 (rn))

A Lo (R,La(R")

and

<O g, Y) |l 2w+, L2 (mny)-
L2(R™)
We refer to [19] for the proof of Lemme 2.
Proof of Proposition 5: As we mentioned above, (1 — x)u is the solution of the free wave equation
with right hand term [A,, x]u € LZ(RT, L2(R")) and initial data
(T =x)u, (1 = x)ue)(0) = ((1 = x)f1, (1 = x)f2). Thus

(1= u(t) = cos(eA) (1~ 0+ L -0+ [ DAL Vueas,

Exploiting the global Strichatz estimates for the free wave equation, Lemma 2 and Theorem 4 we ob-
tain immediately Proposition 5. g
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5. STRICHARTZ ESTIMATES FOR Yu

In this section we admit the following local Strichartz estimates which will be established in
Section 7.

Theorem 5. Let ¢ € C°(R™). Then there exists 6 > 0 such that for 2 < p,q < +o0, s € [0,T]
and vy > 0 satisfying
n(qg—2)
2q

_(-1g-2

1
- ; 5.1
P 4q (5.1)

— fy —
we have
s+4
| U5 ey e < O 0601
where & and C > 0 are independent on s and f.

Notice that for h = (hy, he) we consider that (h); = hy. We admit this result to complete the
estimates of yu. We apply an argument similar to that used by N.Burq in [1]. First, as in [1],
consider a cut-off functions ¢ € C§°(R) such that suppy CJ0,d[, 0 < ¢ <1 and
p(t)=1, tel[s, 3] Set

onlt) = plt—2), vez
Clearly we have suppy, [Jsuppyy+2 = @ and
+oo
1< ), w(t)<2, teR
V=—0o0

We will apply Theorem 5 to establish the following.
Lemma 3. Let 7 > 0 and let 2 < p,q < +00 satisfy the conditions (5.1) with v = 1. Then we have
IOUE 7))l Lo (461, La@ny) < CUF N, @y
with C' > 0 independent of T and f.
Proof. Take k € N and s such that kT <7 < (k+1)T and s =7 — kT € [0,T]. We get
Ut,T)f =U(t — kT, s)f.
Then T+6 s+0
[ IO 0 gyt = [ IO 5

and Theorem 5 implies

s+0
| 10U DDAt < CUAIE

with C' > 0 independent on s. O

Proposition 6. Let 2 < p,q < oo satisfy condition (5.1) with v =1 and let
P € C°(R™). Then for all g € LY([0, Ty], L*(R™)) we have

‘/:1"@“’3) (ot >>d

with C' > 0 independent of g and T.

< Clgll L1 (641, 2 (R
Lr([r,64+7],L9(R™))
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0
Ult, s)( >> ds
< 96) ) )1 Nun(raen o)
< f:-ﬁ-é

0
1{t>s}7p (Z/[(t, S) ( ds.
‘ 96) ) il o 7,0,
Thus Lemma 3 implies

| K (e (5 )

with C' > 0 independent of g and 7. O
Consider v, = @, xu, I, =%, % + §[R* and

Proof. We have

< Cllgll L1 (647,27
LP([r,6+7],L1(R™))

u, = [02, 0, ]xu — [dive(aVe-), X]@ou.
We see that v, is the solution of the problem

{ 02 (v,) — divg(a(t, ) Vav,) = uy,
(Vu, 0¢(v2))(0) = g,

with g1 = xf and g, = 0 for v # —1. Let 5 € C§°(R™) be such that § =1 on suppx. We deduce

that

(5.2)

wlt) = o0 = @0+ [ (sutes (9 ) as

Now let p, g, satisfy condition (5.1) with v = 1. Applying Theorem 5 and Proposition 6, we get
lovll o+, Lagny) = llvvllLer,, La@ny) < CUlgw o, @ny + 1wl L@+ z2@n)))-
In the same way

00 00D e gy < CUG N, oy + Il s c2ny)-

Using Minkowski’s inequality, we find

()

Thus, taking the limit N — 400, we get

+0o0o
(Z),., el ()
V=—00 La(R™) v=—N

“+oo
Ixull pa@ny < ( > ”Uu\>

On the other hand, p > 1 and we have

N +0o0
< Mvllze@ny < Y- vullze@ny, N eN.

Lq(Rn) v=—N Vv=—00

+0o0o
< Z [vvll Lo )

La(Rn) V=7

and we obtain

—+00
< Y o llzony-

Lq(Rn) V=—0o

Z vy (8, M pa@ny = llvi—1(t; )l a@ny + vt )l La@ny + lvier (8 )l pamny, t € L

V=—00
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and we deduce that for all v € Z

I, Ixult, Ma@ndt <€ fga ((low—1(t llzagn))? + (low (E; )l pa@n))P+
+(llow1(E )l Lo mn) )”) t).

Consequently,
400
/R+ It ) ogny < Z / lu(t: Miagny <C D2 I0nllZoges Lagen):
v=—00 y=—00
and
+00 oo
D ol pagny <€ D Uluwllpr@e caen) + 19wl @)
v=—00 V=—00

It is clear there exists C' > 0 independent of v such that
luwllr @+, L2®ny) < ClluwllL2 @+, 2@ny)
and we find

P
2

o0 +
Z vanip(RﬂLq(Rn)) <C Z ((||UVH%2(R+,L2(RH)) + ||gV||§.'Ll(Rn)) )-

V=—00 V=—00

Lemma 4. Let r > 1. Then for all complex valued sequences (ay)rez we have

+00 +00 T
> akl” < ( > |ak|)
k=—00 k=—0oc0

Proof. Let 3.7 |ay| = 1. Then
lag|" < |ag|, keZ

and
+N +N
Do larl” <Y fal,
-N —-N
which implies

+o0o
> agl” < 1.
—0o0

Now set o = 37 |ay| and consider b, = %. We obtain

+o0o r
D I
«

and

“+o00 “+o0o
> arl” < O lar))"
— 0o —0oQ

11
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Since g > 1 we deduce from Lemma 4 the estimate

+o0 +o0o 2
Z (HUVH2L2(R+,L2(]R”)) + ngHill(Rn))% < < Z (HUV|’2L2(R+,L2(W)) ++”g'/”§{1(w))> :

V=—00 V=—00

Let 8 € C§°(R™) be a cut-off function such that 8 =1 on suppy. It follows from Theorem 4 that

+o0o +00
Z |’ul/”%2(R+,L2(R”)) S C/O H/B(u7ut)(t)”§.h(]1gn)dt S C(p’n’T)(”f”Hl(Rn))2

and
+o0
> Mgl = Ix 1
This result shows that
400 2
Ixull o @+ oy < ( Z HUV|’2L2(R+,L2(R71)) + ngHih(Rn)> < Cllf [l () (5.3)

Proposition 7. Let n > 3 be odd and (H1), (H2) be fulfilled. Then, for all f € Hi(R™) and for
all t > 0 we have

N (E, 0) ity ey < €000 Tl o (5.4)
with C(x,n, p,T) independent on t and f.
Proof. Let f € H1(R") and let ¢ > 0. Notice that
XU(L,0)f = XU, 0)x f + xU(t,0)(1 = x)f.
Theorem 2 implies
HXu(t7O)XfH7.zl(Rn) < C(X,n,p)e_&\\f\\gl(w) < C,”f”y{l(Rn)a
with C’ > 0 independent on ¢ and f. Moreover, as in (3.1) we have

[xt(t,0)(1 — X)f”?{l(Rn) < C”f”y{l(Rn)v
with C' > 0 independent on ¢ and f. O

In conclusion, estimates (5.3) and (5.4) imply that if 2 < p, ¢ < oo satisfy condition (5.1) with
v =1, for all £ > 0 we have

Ixull o+, La(rmy) + IXWE) | g1 mny + 19 (xw) Nl 2mny < Clos Tym,p, @) (L fall g gy + 1 F2ll L2 @e))-
(R™) (R™)
6. PROOF OF THEOREM 1

In this section we will apply the results of previous sections to establish Theorem 1. First,
Proposition 6 implies that for 2 < p, ¢ < 400 satisfying

- 1 <1 1> _ 1<n—1<1 1>
9 —=n o - 4 € - = o
b P 2 q D 2 2 q

and for all ¢ > 0 we have

10 = X)ullioges o) + 1L = )t w) (Ol @y < €00, Tl oy
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Also, for 2 < p,q < +oo satisfying

1_nle-2 ,_ (1 1 1 amd < (Pzly(e=2y_n-t(l 1
D 2q 2 q P 2 2q 2 2 q

and for all £ > 0 we deduce from the results of Section 5 the estimates

[Ixull o+ Lany) + [Ix(w ue) @)l ey < Coy15 050, DI g, ey -
Consequently, for 2 < p,q < +oo such that

1 —2 1 -1 -2

and all £t > 0 we get
[ull o @+ za@ny) + (W, ue) (B)llg, ®ny < Clo, 10,0 T fllgg, mry-
Proof of Theorem 1: We know that p and ¢ satisfy (6.1) if

1 n(g—2) 1
I<—-=—F-1<=
P 2q 2

) ()

(n—3)g <2(n+1),

and

Consequently, ¢ satisfies

(n—3)g < 2n, (6.2)
q> 2,
and 1—1) = %;2) —1. For n = 3 the conditions (6.1) are fulfilled for ¢ > -2% = 6, and 1—1) = %;2) -1
For n > 5 odd , we find that ¢ satisfies (6.2) if
2n 2n
n—2 1T ay

Therefore, if % <qg< % and % = "(%—;2) — 1 we conclude that p and ¢ satisfy conditions (6.1).00

7. LOCAL STRICHARTZ ESTIMATES FOR SOLUTIONS OF THE DISTURBED WAVE EQUATION

The purpose of this section is to prove Theorem 5. To establish this result we will show that
we can approximate the solutions of the problem (1.1) by Fourier integral operators. Then we will
apply the Strichartz estimates of Kapitanski (see [12]) for Fourier integral operators on Besov space
to get the local Strichartz estimates.

7.1. Approximation of the propagator U(t,7) by Fourier integral operators. Consider the
operators U(t, s) and V (¢, s) defined by

U(t,s)f = <L{(t,s) < / ))1 f e BY®Rm,

V(t,s)g = (Z/{(t, 5) ( 2 >>1 g€ H1(RY),
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We denote by B™ the space
B™ = () L(H(R"), H* ™ (R")).
seR
Let B(t) € 'Bk for all ¢t € [S1,S52]. We say that the operator B(t) depends on t in an admissible
fashion if 9/ B(t) € B*J, j = 1,2,... and
HagB(t)”E(HS,HS*’“*j) <Cj, seR
with C; > 0 independent of ¢, S1 and S3. In this subsection we will establish the following

Theorem 6. Let ¢ € C°(|z| < R1), R1 > p. Then there exists § > 0 such that for s,t € [0,T]
with |s —t| < 0 and every integer N > 1 we have the representation

M
WUt s) = > (I (t,s)+ I (t,5)) + Rt s),

Jj=1

where j:f(t, s) are Fourier integral operators with kernels

- ~ .4 .
Bt 5, 2,y) = / BE(t, 5, @, €)e i (Lo Tia ge

and Ry(t,s) € B~ depends on (t,s) in an admissible fashion. The amplitudes Bj:(t,s,y,m,g)
have compact support with respect to y and vanish for || small. Moreover, BjE and <,0;-—L and their
derivatives are uniformly bounded for s € [0,T]. A similar representation holds for ¥V (t,s).

For proving Theorem 6 we start by looking for the properties of the adjoint operators (YU (¢, s))*
and (YV (t,s))*.

Lemma 5. Let ¢ € C°(R") and 71, 72 € [0,T], with 71 < 19. Then
WV (r2,m))" = V(r, )¢, (WOU(72,71))" = O U(71,72)¢.

Proof. Let f,g € C3°(R™). Consider u(t) = V(t,71)f and w(t) = V(t,72)g. Integrating by parts,
we find

T2
0= / / (02u — div, (aVu)(t, z)w(t, z)dzdt = /
T1 n

It follows

0, (ww]Zde — / 10, (w)u] da.

n n

0= (g, w(r2))r2 — (w(r2), fr2 = (9, V (72, 71) f)r2 — (V(72, 71)g, f)L2-
Thus for all f,g € C5°(R™) we have

(V(re,m)f,9) 2 = (f, V(T1,72)9) 12
By density we find that for all f,g € L?
WV (e, 1) f, )2 = (f, V(T1,72)Yg) 12

Following the same argument, we get

(V0 U(12,m))" = 0, (U) (71, 72)9-
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We associate to the equation 0?u — div,(aV, u) = 0 the following Hamiltonian
H(t @, 7,€) = 7° = alt,x)[¢*.
Thus the bicharacteristics of 97 — div,(aV,u) are the solutions of the system

or o _

% —2a(t, z)&, % 27,

9] 0

% (eVaatta), O = aufr )il 7.1
(t(0),2(0),£(0), 7(0)) = (to, 0, &0, 7o), With 78 — a(to,z0)|é0|? = 0.

Proposition 8. Let (to,xo,70,&0) € R2+Y) pe such that 78 — al(to, 70)|&|? = 0 and & # 0. Then
the maximal solution of (7.1) is defined for o € I, with I an interval of R, and o — t(o) is a C*
diffeomorphism from I to R.

Proof. Let (t(o),z(0),&(0),7(0)) be the maximal solution of (7.1) defined in I. Now, suppose there
exists og € I such that {(og) = 0. Since (¢t1(0),x1(0),71(0),&1(0)) defined by

(tl(a)axl(a)v7—1(0-)751(0')) = (t(UO)v‘T(UO)707O)7 ceR

is the solution on R of (7.1) with initial data (¢(o0), z(00),0,0), the uniqueness of the solution of
(7.1) implies that

(t(0),2(0),7(0),&(0)) = (t1(0), x1(0),11(0),&1(0)), o ER.
This leads to a contradiction since £(0) = &y # 0. It follows that £(o) # 0, o € I and

Va(t(@), 2(@)[¢(0)] > 0.

We deduce that s — t(o) is strictly monotonous in I and s — ¢(0) is a C*° diffeomorphism from I
to ran(t). Thus, for & # 0 we can parametrize (z(0),7(0),&(0)) with respect to ¢ and the problem
(7.1) becomes

( Oz a(t,z)€

ot r(t)

or _a(t,x)g]* 06 ¢ (7.2)

ot 2r(t) T ot ZT(t)Vma(t,x),

\ (:E(to),T(to),f(to)) = (:E(],T(],fo), With 7'02 — a(t0,$0)|£0|2 =0.
Let 70 = /a(to, xo)|&o|. We deduce that 7(t) = \/a(t, z(t))[£(t)| and (7.2) becomes

R r——
ar — Vg
o8 &) (7.3)

i a(t’x(t))vma(t,:n(t)),

(2(to),&(t0)) = (w0,&0), o # 0.
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Let (x(t),£(t)) be the maximal solution of (7.3) defined on J. For all t € J we have

O A — P
or 2V eltr )=

. EDP )]
t t
= A Vaa(ta(1).€(0)
Let
C= sup 2va(t,xz)+ NVealt, o)l < +o0.
(t,x)eRIHR a(tv :E)
We obtain

%II(SE(t‘),é(t))H2 < C+[I(z (). €I,

and it follows

(@), €7 < (1+ [[(z0, &)%) el 2 e (7.4)
Also (7.2) implies
oEMI> _ __le®)P 9z (t)
o attamy clbr®) =g
It follows t R
€67 = |€]? exp <— /t vxait(;,x it(zl))') ot dt’) . (7.5)

Since we have

LV alt, o (t)). 228 f o (alte®) \ M)
|, = ey e =1 <a<to,x<to>>> / 4

a(to, z Lag(t', zt)
0P = 6P (S5 ) exo ( / Mu) . (76)
ault, )

(tx)eritn a(t, o)
We deduce from (7.6) and condition (i) of (1.2) that

£ > Jeof? (500) eDinl e )

Conditions (7.4) and (7.7) imply that J = R and it follows that the maximal solution (z(t), 7(t),£(t))
of (7.2) is defined on R. It follows the same for 79 = —/a(to, zo)|&o|-

Now let (z1(t),71(t),&1(t)) be the solution on R of (7.2) and (¢(0), z(c),7(0),&(0)) the solution
of (7.1) on R. Let s1(t) be a function defined by

t dt/
sit) = [ ——,
1() /to 2T1(t/)

and notice that s1(¢) is a diffeomorphism from R to ran(s;). Consider also (t3(c0), z3(0), m3(0),&3(0))
defined on ran(sy) by

(t3(0), 23(0),73(0),&3(0)) = (s7 ' (0), 21 (57 (0)), T1(57 (), &1 (571 ().

we obtain

Let

D = < 400
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We can easily see that (t3(0),x3(0),73(0),&3(0)) is the solution on ran(si) of (7.1). Thus the
uniqueness of the solution of (7.1) implies that for all s € ran(s;)

(t3(0), z3(0), 73(0),&3(0)) = (t(0), 2(0),7(0),£(0)).
Then, it follows that for all h € R

t(si(h)) = s7 ' (s1(h)) = h

and the range of s — t(0) is R. In conclusion, s +— (o) is a C*° diffeomorphism from I to R and
this completes the proof.
O

Let P = 0? — div,(a(t,z)V,) and let Ry > p > 0.

Proposition 9. Let (tg,z9,m0) € [0,T] x B(0,R1) x S" 1, Ry > 0 and let S(y,&) be a C function
with support in a sufficiently small neighborhood of (xo,m0). There exist 6y, > 0, 75, > 0 and a
netghborhood wy, C S™=1 of ny such that for every integer N > 1 we can construct Fourier integral
operators

(I (0)f) (1, ) / / e OWEE (1 5y ) ) dyde

so that
P (f+T-(0f) = By,
It (to)f + 1 (to)f = S(z,D,)f + Vn/, (7.8)
8tI+(t0)f + 01 (t())f = WNf

Here Vy,Wy € BN and Ry(t) € B~ for |t — to| < &, and the dependence on t is in an
admissible fashion. Moreover, Ry(t), Viy and Wy are bounded uniformly with respect to ty, xo, no-
In a similar way we can construct Fourier integral operators

(1) f)(t. ) // O EE (1, 1,y €)f () dyde

with the properties

PUITOf+JI-@)f) = Ry®f,
JF(to)f + T (to) f = Vi,
I (to)f + 0T~ (to)f = S(x,Dz)f + Wi
R\ (t), Vi and W}, being smoothing operators having the same properties as Ry (t), Vn and Wi.

Proof. We will solve problem (7.8) using BKW method. First, P is a strictly hyperbolic operator
with principal symbol

o(P) = 7% —a(t,z)|¢)? = (1 — Va(t,z)|E])) (T + Val(t, )|€]).

Consider the eikonal equations
O™ N
O & Valt, 2)IVas| =0,

= (to, T, m) = z.0.
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We can solve (7.9) for (t,x,n) € [to— 04, to+ 0t ] X B(20,72,) X Wy, by the classical Hamilton-Jacobi
method (see [9], chapter V). We extend ¢ to a smooth solution which is a positively homogeneous
of degree 1 in 7, by putting ¢(t,x,n) = |n|e(t, x, %) Let n € S"~!. Consider

Ai(to, " ={(to,z, FValto,z),n") : |z| < R}.
Af (to,n’) is a C°°-submanifold of dimension n. We introduce the Lagrangians

A*(to,n') = {(t,z(t),7(1),£(t)) = tE€[0,T+1], (to),2(t(0)), 7(t(c)),&(t(0))) be the

bicharacteristic with initial data
(£(0), 2(¢(0), 7(£(0)), £(¢(0))) € AT (to, ')}
Let (t*(0), 2% (o), 75 (0),£%(0)) be the bicharacteristic with initial data

(t7(0),2(0),7(0),£5(0)) = (to, z0, Fv/alto, o), 1),
with |zg| < R;. By the theory for the Hamilton-Jacobi equation we deduce

(5296 (0011 = (*(0). 650

Then A*(tg,n ) the graph of ¢* for (¢,2,7) € [to — 01y, to + 6ty) X B(0,72,) X wy,- Now consider

(xE(t, ¢ 2,0, 5tz ), 75 (t, 77’)) the solution on R of the problem (7.2) with initial data
2 ) = x, W) = 0 and 7, 2,1) = F+/a(t’,z)|n'|. We can see that

:Ei(t t',z,n') and £i(t t' x 77) are continuous with respect to t,t',x, 1 on the compact set

[0,T] x [0 T] x Br(0, R) x S"~! and there exists C' > 0 such that

lz(t, t,z,n)| < C, [&tt,x,n) <C, (t,t,z,n)€[0,T] x [0,T] x Bp(0,R) x S"~1.

It follows that for all ty € [0,7] and ' € S ! the Lagrangian A™(ty,n’) is included in a set
bounded uniformly with respect to (¢, z,7) € [to — 64, t0 + 61] X B(20,72,) X Wy, independently of
to, o, No. Consequently, T and their derivatives are uniformly bounded with respect to
(t,x,m) € [to — 04y, to + O1y) X B(x0,72,) X wy, independently of tg, zg, no.
By using a cut-off, we may assume that all symbols vanish for sufficiently small |n|. Now
consider the asymptotic expansion of b*
N

with b,f homogeneous of degree —k in 7. To solve (7.8) (see [9] chapter VI), bF must be solutions
of the transport equation

L*(bF) =0,
by (to, . y,1m) + by (to, 2, y,m) = S(y,7) (7.10)
(Qup™ by + B~ by ) (to, z,m) =0
and b for k € {1, , N} must be solutions of the transport equation
k
Li(bi) —P(b; ),
b (to, z,n) + by, (to,z,m) =0 (7.11)

(8t(10+b]—: + 8t(10_b];) (t(]v €, 77) = - (8tb;:_1 + 6tb];_1) (t07 €, 77)
with
Li(v) = 90T 0w — 2aV 0T . Vv + P(cpi)v.
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Since
20 (t0,2,m) = —alE 1) Vesplto, 2,1m)| = —/alt, 2T
and
8;; (to, =, m) = V/a(t,z)n|
we have
agt (to, x,m) 88: (to, @, m).

It follows that we can find by and b for k € {1,---,N} as solutions of (7.10) and (7.11) on
[to — Ot-t0 + O1y) X B(x0,72,) X wy,. Moreover, in a sufficiently small neighborhood of (xq,n0)
, bff will satisfy suppm(bff(t,x,y,n)) C B(zg,ry,) and suppn(bf(t,a:,y,n)) C Wy, and ba—L, bff for
k€ {1,...,N} solutions of (7.10) and (7.11) on [tg — ¢z, to + ¢, ] x R} x R} homogeneous of degree

—k in n. Let (t*(0),2%(0),7%(0), £ (0)) be the bicharacteristic with initial data
(F(0),2(0), 7(0),€(0)) = (to, 0 F v alto, 7). 1)

Then b (t(o), z(0), ﬁ) is the solution of

05 (b5 (t(0), 2(0), 1)) + P(p)by (t(0), 2(0), i) = 0,
ba:(t(O'),l‘(U),%)k, O_b (t07 7%)

Thus
b(j):(t(a), z(o),n) = b(j):(tm z,m)e” Jo P(‘Pi)(t(s’)yl‘(s’),%)dy

and since T and all their derivatives are uniformly bounded independently of t, zo and 79 it
follows the same for bac. In the same way we prove that bi,. .. ,b]j\tf are uniformly bounded on
[to — Oty Oty + to] X B(xg,rs,) X R™ independently of ¢y, xo and 7. Finally, we find that

(02 — divg(a(t, )V ) (t,z,y,to, 20)f =
= fR" f]Rn(P(sz\r/)eisp+ + P(b]_v)e"%f)(tj$7n)e—iy-ﬁf(y)dndy

and

I(t07 t(], Z, y) == / (S(y, 77) + VN($7 Y, n))ei(x—y)-ﬁdm

8t](t07t07x7y) = / WN($7y’7’})ei(m_y)-7’ld,’7
Rn

with Vi (z,y,n), Wn(x,y,n) € Siév. The proof is complete since

P(bt)e" + P(by)) € SN is uniformly bounded on [ty — &, to + ;] X R? x R? independently
N N 1,0 0 0 T 3

of tg,z9 and 19. We apply the same argument for J*(t). d

Lemma 6. Let s1,s9 € [0,T]. For allt,s € [s1, s2], (U(t,s))1 € B® depends on t,s in an admissible
fashion.

Lemma 6 follows from the properties of the solutions of strictly hyperbolic equations.
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Proposition 10. Let ¢ € C5°(|xz| < R1), R1 > p. Then there exists 6 > 0 such that for s,t € [0,T
with |s — t| < dand every integer N > 1 we have the representation

Ult,s)p = Z (t,s) + I3 (t,9)) + Rn(t, s),
where f;c(t, s) are Fourier integral opemtors with kernels

T .+ )
Ilit(tvs7x7y) = /bf(s,t,"ﬂ,y,g)ewk (8’t7x7§)_ly-€d£

and Ry(s,t) € B™N depends on (t,s) in an admissible fashion. The amplitudes b;-t(t,s,x,y,é)
have compact support with respect to x and vanish for |€] small. Moreover, bf and cp;-—L and their
derivatives are uniformly bounded for s € [0,T), and @i (t,s,2,£) is the solution on [s — J,s + 8] x
supp(y,g)(b ) U Supp(y, 5)(%) homogeneous in & of the eikonal equation

0s 43 ) (5, 1,6) = \/alt, ) [ Vaipi (t,5,2,€)] =0,
{ i (t.t,2,8) = x.L. (7.12)

A similar representation holds for V(s,t)i..
Proof. Let tg € [0,T] and s,T € [tg — d¢y,t0 + O¢,) (With oy, as in Proposition 9). Consider R > 0

such that suppy C {z : |z| < R} = Br(0,R). Since Br(0,R) x S"~! is compact, Proposition 9
implies that for d, sufficiently small we can find symbols S1(y, &), ..., Swm(y,&) such that:

(i) S1(y,&),...,Sm(y, &) are homogeneous of degree 1 in &,
S1(y,8), - SM(y €) € C°(Br(0,R) x 8™ 1) and

M
D 5i,€) = v(w)

(ii) we can find Fourier integral operators Ii(s,T),...,I3;(s,7) constructed in Proposition
9 such that It (s,7) 4+ I (s,7),...,I3;(s,7) + I;;(s,7) are respectively the solutions of (7.8) on
[to — 01y, to + 0ty ] X RY with S(y, &) replaced respectively by S1(y, &), ..., Sm(y, &) and ¢, ty replaced
by s, T.

Thus Lemma 6 and Proposition 9 implies that for d;, small enough we have

M
U(s,r) = > IE(s,7,t0) + Qn(s, 7 t0),

1=1

where Il-i(s, T,to) have kernels
Esmto20) = / b (5,7, €)et (Lot -iveqg

with bgt, gpfc and all their derivatives bounded independently on s, 7, while
Qn(s,7,tg) € B~N depends on s, 7 in admissible fashion.
We are now able to establish Proposition 10. We have

B B
.17 U lto- o tot+
tOE[OvT}

]
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and since [0, T is compact, it follows that there exist ¢1,--- ,t; € [0,T] such that
l
oy,
L_J 7, tz ;z]
5ty

Consider 6 = min{—",-- 5”} Let s,t € [0,7] be such that |s —t|] < §. Then there exists
jed{l,--- .1} Suchthatte[tl—é 1514—(s L] and

|ti

Thus
My,

U(s,t)p = Y IF(s,t,t;) + Qnl(s, 1, 1))
j=1
where I;—L(s, t,t;) and Qn(s,t,t;) have the same properties as described in Proposition 9. We treat
V(s,t)Y in the same way. O

Proof of Theorem 6: Lemma 5 and Proposition 10 imply that
M

YV (t,s) = (V(s,00)" =Y (J5 (5,0)" + (Bu(s,1)".

Jj=1

with J ji(s, t) a Fourier integral operator having the following kernel

T = [ st e 0m sy
and Ry(s,t) € B~ is an operator which depends on s, ¢t in an admissible fashion. Choose
7+ _ + *
JJ (ta 3) - (J] (S7t))

and
Ry(t,s)) = (Rn(s,1))".

Then J ]i (t,s) will be a Fourier integral operator with kernel

7 . .
J;t(tvsaxay) = /Ef(t,s,y,x,f)e_wj (t787y7§)+2x'§d§

with & (t,5,y,2,8) = ¢ (s,t,y,2,€) and & (t,5,9,€) = ¢; (s,t,,&). Finally, Ry(t, s) will satisfy
the same properties of regularity as Ry(s,t). The same holds for YU (¢, s). O

7.2. Besov spaces. Here we recall some results for Besov spaces. We start with the construction
of these spaces. Consider y € C3°(R") such that supp(x) = {£ € R" : 3 < |¢] < 2}, with x(£) > 0
for 3 < |¢] < 2. Assume that x satisfies

ZX k{—l for & #0.
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For j > 1, consider x;(§) = x(277¢) and xo(¢) =1 — Zj’j X;(€). Let s € R and
1 <p,q < oc. We define |.[|ps, by

||f||Bg,q(R") = H(2j3||Xj(D)fHLp(Rn))jeNqu(N).
The spaces
By R") ={u€ S'R"): [lulp; @n < +oo}

are called Besov spaces. Here x;(D)f = F~(x;(& )f(g)) Now we recall some properties of Besov
spaces.

Proposition 11. Let 1 < p,q < oo and s € R. Consider p',q defined by 1—1)4—1% =1 and %4—% =1.
Then B*,(R™) is the dual space of By ,(R").

Proposition 12. Let 2 < g < oco. Then
lullzoeny < Clullgogny: € BYo(EY).

Proposition 13. Let A € B™. Then for all s € R, 1 < p,q < 0o we get
A€ L(B,,By™)-

p,q’

We refer to [12] and [26] for the proof of those properties.

7.3. Proof of Theorem 5. Consider the operators I (t,s) which approximate ¥U (¢, s) for
0 <t—s<d. We start with the following result of Kapitanski.

Lemma 7. Let I~(t, s) be a Fourier integral operator with kernel

I(t787$7y) = b(t,S,y,ﬂj‘,g)eim'g_ap(t’&y,f)dg‘
R

Suppose that b(t, s, x,§) € 5?70 is such that b(t, s, .,.) depends smoothly on t, s,
supp,b(t, s,y,x,&) C {y € R" : [y| < R}, b(t,s,y,2,§) = 0 for small [§], while ¢ is C* and
homogeneous of degree 1 in & with ¢(s,s,y,&) = y.£. Let r,e > 0 and let m be the mazximum
positive integer such that

m < rank(90p(s,5,9.€)), lyl <7, [€ =<
Then for |t — s| sufficiently small and 2 < q < 0o, v € R satisfying

-2 -2
(n_@)q_<y<M
2 q q

)

we have
n(q

—2)
© ey,

Notice that this lemma is a generalization of Lemma 3.1 in [12], but the proof is the same since
the phase ¢ does not depend on z.
In our case we know that

B(¢™ (5, 5,5,6)) = FVa(s, ) [Vyp* (5,5, )],
and p*(s,s,y,&) = y.£. Thus, O™ (s,s,y,£) = F+/a(s,y)|£| and we obtain that
OF0rp™(s,5,y,£) = F/a(s, 1) Z(I€)).

11, $)po, @) < Clt = s|””
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Proposition 14. Let n > 3 and let g be a function defined on R™ by g : £ — |€|. Then

rank(9¢(9))(€) =n—1, £#0.
It follows from Proposition 14 that for I;(t, s) we have m = n — 1.

Proposition 15. Consider 2 < ¢ < oo and W < v < @ and a cut-off function
1 € C°(R™). Then there exists § > 0 such that for all s,t € [0,T], 0 <t— s < ¢ we have

n(g—2)

[PU(t,5) fllgo, mn) < Clt = s £l By, ey

n(g—2)
q

[0V (¢, )90, ) < Clt— ]

i

BY, (R™)’
q',2
with C > 0 independent on s, t and f.

Kapitanski established the result of Proposition 15 for s = 0, in Theorem 1 of [12], by applying
Lemma 7 to the representation of the propagator with Fourier integral operators in a small neigh-
borhood of ¢ = 0. In Theorem 6 we have shown that we can represent U (t,s) and ¥V (¢, s) with
a sum of Fourier integral operators with amplitude and phase uniformly bounded independently of
s,t € [0,T], and a sufficiently regular operator bounded independently of s,¢t € [0,7]. With this
argument we can apply the result of Kapitanski to obtain Proposition 15.

Theorem 7. Let ¢ € C°(R™). Then for 2 < p,q < +o00 and v > 0 satisfying

n(q —2) (n—1)(q —2)
2q 4q

there exists 6 > 0 such that for all s € [0,T]

1
—y==< : 7.13
; (7.13)

s+4d
| e il oyt < Ol
with C' > 0 independent on s, f.

Applying Proposition 15, the proof of Theorem 7 is similar to the proof of Theorem 2 in [12],
but we must replace U(t,s) by 9U(t,s) and change the definition given for A by Kapitanski. It
follows the same for ¥V (¢,s). Theorem 5 follows directly from Theorem 7 and Proposition 13.
Notice that we can establish, with the same method, a local Strichartz estimates without assuming
that a(t,x) is periodic and n > 3 is odd. Indeed, we obtain the following

Corollary 2. Assume n > 3 and a(t,z) is a C™ function on R™* satisfying conditions (i) and
(ii) of (1.2). Let 2 < p,q < 400, v > 0 be such that

1 n(g—2) 1 _(n—1)(¢g—2)
5 = 72 -, ]—9 < —4(] . (7.14)

Then for all u solution of (1.1) with T =0 we have

[ull e (0,61, Lagny) + (@)l e(o,5,17) + 10 (W) Bleo.60,57-1) < Clo2 a5 1)1 f 1l -
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Proof. Theorem 5 implies that
Ixullze(o,6),L9) < Cllf N3y, -

Also, applying the local Strichartz estimates for the free wave equation (see Section 3) and the
continuity with respect to ¢, we get

(X =x)ullze(o,61,09) < CO)I Il -

It follows that
ull 2o (0,6, Larny) < Cllf N3y,
O

8. EXAMPLES OF NON-TRAPPING METRICS a(t,z) SATISFYING CONDITIONS (H1) AND (H2)
In this section we will give some examples of metrics a(t,z). We start with a class of metrics
non-trapping a(t, ).
8.1. Examples of non-trapping metric a(¢,z). Consider a(t,x) satisfies
2a |a:]

—la.| > B >0. 8.1
N L (8.1)

We will show that if condition (8.1) is fulfilled, then a(¢, z) is a non-trapping metric. We recall that
the bicharacteristics (¢(0), z(c),7(c),&(0)) of 0?u — div,(aVu) = 0 are solutions of

(Ot oz
P 27, P —2a(t, )&,
or
O — b, 2)leP, 2% = PV zalt, ),
(2(0),(0),7(0),£(0)) = (xo,to, 70, &0),

with H (tg, xo, 70,&0) = 0. We take |zg| < p and &g # O In Proposition 8 we have established that
s +— t(0) is a diffeomorphism of R and 7(0) = £+/a( . We find

0|z|?

olz|? i {x
Os
Also
(%) _  |ePVas _ a|a| L b (_atwsﬁ)
0 272 27 T2
= Sz —1- 2—€

Since a(t,z) =1 for |x| > p we have a;(t,z) = a,(t,x) = 0 for |x| > p. It follows that
lar(t )] < lae(t, 2)lp,  lar(t,2)|lz] < lar(t,2)lp,  (t2) € R*

ta
(%) ol . lad
ot = 2a” 2a|T|

and

1€lp —
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Condition (8.1) implies
E.x
ﬁ<_£<@_@_|a|><_<£[@_ s, )
ot — 2a\p Va ") 20 | p +infa )

<-Pp<_a<o
2a

and we obtain

Therefore, for t > ty we have

9058 5 gm0k
T T0

+ 2aa(t — to) > 20[00(75 — to) - 01|:E0|

We deduce
|z(t)[2 > aCy(t — to)* — Ct|wo|(t — to) + |zo|* > aCo(t — tg)* — Cip(t — to) — p*.
Thus, for all R > p, there exists Tr > 0 which does not depend on (tg, 2o, 70,&p) such that for
(t —to) > TR, |x(t)] > R. Since % = 7, by replacing ng with f—'f, we apply the same argument for
t < to. Thus, there exists Tr > 0 which does not depend on (¢, zg, 70, &) such that for |z < p
we have |z(o)| > R as |t(0) — t(0)| > Tr. Consequently, a(t, ) is a non-trapping metric.

8.2. Conditions for bounded global energy. In this subsection we present some examples of
metrics a(t, z) such that if u is the solution of (1.1) for all ¢ > 0 we have

H(uyut)(t)”m(w) S CHfHHl(R”)’

with C' > 0 independent on ¢, f and 7. Let £(r) be a C* function which depends only on the radius
r = |z| and satisfies the following conditions:

¢ <0, 0<rf <¢<einfa<infa, (8.2)
Moreover assume that & and a(t, z) satisfy
f'a—ay—&a, >0 (8.3)
and
<§ — £/> <M + ar> —a&” > 0. (8.4)

Theorem 8. Let a(t,x) satisfy conditions (8.3) and (8.4). Then, there exists a constant C' > 1
which does not depend on f,t,s such that for each f € H1(R™) and allt € R, s € R, t > s we have

e (2, S)nyl(Rn) < C”f”?{l(Rn)'

Let £(r) be a C* function which depends only on the radius r = |z| and satisfies conditions
(8.2) and let a(t, x) satisfy conditions (8.3) and (8.4). Set

§(n—1)

1
e(u) = §(GWU\2 +up), Me(u) =g+ Eup + o

Uu,

where

i=1
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Lemma 8. Let u(t,x) € C*(R"*!). Then

Mg (u)(9fu — divg(aVyu)) = 88—); + divyY + Z, (8.5)
where )
X = e(u) + &ur(u, + —u),
Y = —aVuMe(u) + ;—f(a\VuP —u?) + 4 (§ - §) 2

Z = 3¢ +a(€ - )(|Vul? —ud)+ (§ - )OVuP u?)
+ [(% . é) (a(n 3) + ar) _ ag//] n4r1u2 +1 (agl —ay — gar)|vu|2‘
The proof of (8.5) is a direct calculation and we omit it.
Proof of Theorem 8: Tt suffices to consider only real-valued solutions of (1.1) with initial data
f e CPR™) x CFR™). Let U(t,s)f = (u(t,z),u(t,z)). For each ¢ the function wu(t,z) has

compact support with respect to . The conditions (8.2), (8.3), (8.4) imply Z > 0. Therefore
integrating (8.2) and assuming n > 4, we get

8—dyc—k/ de+/ div(Y)dz = 0.
R” at n n

On the other hand,

/ div(Y)de =  lim / div,(Y)(z)dz = lim — "y (6z).zdo(z) = 0.
n 0<|z|<R

0—0,R—o0 6—0 gn—1

Also, since u(t, z) has compact support with respect to z, we have

0X O ([gn Xdz)

S (8.6)
The equality (8.5) implies
O ( [rn Xd

We obtain
X(t,z)dx < X(s,z)dx.
Rn Rn
For X we use the representation

X= (1= el + 200D gl D
+div(—&u? n4_2la:)
—1)2 _
+<£ nggc)z + Tluur + (71237”“2 + ug(uy + n2r 1u)] .

Now, since inf a < 1, it is easy to obtain the inequality

n—1 145 1 n—1 , e(u) (n—1)
> T2 = D> (2
o W2 mgu et 5l 2 ( *

Uy +

u(ur + infa 2r 8r2
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Consequently, the last term in X is non-negative and

X(t,x)d:nz/ (1--%

n inf a

1 _
5 Je(w) (> Lo ) (1), oy

where ¢, C' are constants independent of f and ¢ satisfying
for all f = (f1, f2) € H1(R™) and ¢ > 0

ellf iy gz < / (a(t, )| VAP + (f2)2)de < Ol g,

R

In the same way, writing X in the form

_ 3 o (n—1)(n—3) ) o(n—1)
X_(l—i—m)e(u)—gu T—&LT
di on—1
+div(&u 2 x)
—1 —1)? —1
=& [EE;LC)L+”T uu,«+7(n8r2) u2+ut(ur+n2r u)l,

we conclude that

X(s,zx)dz < (1+e)

R™ TCH(uvut)(s)H?h(R")'

Thus, we obtain the estimate

O e (DI e

For n = 3 the term Y has a singularity at » = 0 and integrating over 0 < 0 < |z| < R, we get

§(n—1)

lim div¥dz = lim —div(igznuz)dx.
6—0, R—oo 5<|z|<R 0—0, R—o0 5<|z|<R 4r

Thus, we obtain

(n—1)rw

/ div(Y)da = nT—l lim 52éu2(t,5a:)5a:.xda = £(0)u(t,0)% > 0.

0—0 Jg2

This expression is non-negative. Finally, for t > s we obtain our result by an approximation with
functions with compact support. O
Notice that with such a metric we have

o(Z(T,0) c{zeC : |z| <1}.

and we may have eigenvalues of Z°(T,0) lying in S'. We will find stronger condition on a(t,z) to
eliminate eigenvalues of Z°(T,0) on S!.
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8.3. Exponential decay for the operator Z associate to time periodic non-trapping
metric. The purpose of this subsection is to apply the results for non-trapping metric which does
not depend on ¢ to construct a time-periodic non-trapping metric which satisfies condition (H2).
Consider a non-trapping metric a(t, z), T-periodic in t with 7" > 0 to be determined such that for
T <t<T,

a(t,z) = a(Th,x) with Ty < T. Set a;(z) = a(Th,x). Consider the following problem

{ vy — divg(aq(z) Vo) =0,

(v,0)(0) = f, (8.7)

and the propagator . .
V(t) : Hi(R™) 5 f+— (v,v)(t) € Hi(R™)
associate to problem (8.7).
Let u be the solution of the problem (1.1). For T1 < ¢ < T we find

Otu — divy(ay (2)Veu) = 0Pu — divg(a(t, ) Veu) = 0.
Thus, for all 71 < s <t < T we have
U(t,s) =V(t—s) and ZP(T,0) = P{V(T —Ty)U(Ty,0)P.
Proposition 2 implies that (id%(w) — PPYU(T1,0)P” =0, and we get
ZP(T,0) = PYY(T —Th)P U(Ty,0)P”.

Since a1 (x) is a non-trapping metric which does not depend on t and n > 3 is odd it was established
( see [31] and [32]) that

-
IPEVE)PL| g, gy < Ce™*
with C,d > 0 independent on t. It follows
12°(T, 0)ll g, gy < Ce™™ M NU(T 0) g, oy
Hence, for T' large enough we get
r(Z°(T,0)) < |1 Z°(T, 0)l £ 31, (reyy < 1

where r (ZP(T,0)) is the radius spectrum of Z#(T,0). For such a metric a(t,x), ZP(T,0) satisfies
the condition (H2).
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