N

N

Propagation of chaos for many-boson systems in one
dimension with a point pair-interaction

Zied Ammari, Sébastien Breteaux

» To cite this version:

Zied Ammari, Sébastien Breteaux. Propagation of chaos for many-boson systems in one dimension
with a point pair-interaction. Asymptotic Analysis, 2012, 76 (3-4), pp.123-170. 10.3233/ASY-2011-
1064 . hal-00396038

HAL Id: hal-00396038
https://hal.science/hal-00396038
Submitted on 16 Jun 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00396038
https://hal.archives-ouvertes.fr

Propagation of chaos for many-boson systems in one
dimension with a point pair-interaction

Z. Ammarit  S. Breteauk

IRMAR, Université de Rennes I,
UMR-CNRS 6625, campus de Beaulieu, 35042 Rennes Cedexgd=ran

June 17, 2009

Abstract

We consider the semiclassical limit of nonrelativistic guen many-boson systems with delta po-
tential in one dimensional space. We prove that time evob@terent states behave semiclassically as
squeezed states by a Bogoliubov time-dependent affinefdramstion. This allows us to obtain prop-

erties analogous to those proved by Hepp and Ginibre-, ,]) and also to show

propagation of chaos for Schrodinger dynamics in the meddah liimit. Thus, we provide a derivation of
the cubic NLS equation in one dimension.

2000 Mathematics subject classificatid®1S30, 81S05, 81T10, 35Q55

1 Introduction

The justification of the chaos conservation hypothesis angum many-body theory is the main concern of
the present paper. This well-know hypothesis finds its rossatistical physics of classical many-particle
systems as a quantum counterpart. See, for inste [@]]a{mj references therein.

Non-relativistic quantum systems Nfbosons moving i-dimensional space are commonly described
by the Schrodinger Hamiltonian

N
Hn ::_Zl_Axi—i_.zvN(xi_xj)’ XERd, (1)
i=

i<]

acting on the space of symmetric square-integrable funstid(RN) over RN, HereVy stands for an
even real pair-interaction potential. The Hamiltonin @der appropriate conditions &fy, defines a
self-adjoint operator and hence the Schrodinger equation

i WL = HyWy, (2)

admits a unique solution for any initial da@ﬁ, € L?(RYN). The interactingN-boson dynamics[kZ) are
considered in the mean field scaling, namely, wNer large and the pair-potential is given by
W(X) = V(0
NI = )
with V independent oN. The chaos conservation hypothesis for lioson systen{kZ) amounts to the
study of the asymptotics of tHeparticle correlation function;i;‘gN given by

W(,N(Xla"'7Xk;Yl7"'7Yk):/ VN(XL"'anaZk+17"'7zN;yla"'7ykazk+laZN)dZ(+l"'dzNa (3)
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where )y, = Wi (X1, -, xn) WL (Y1, - ,Yn). More precisely, this hypothesis holds if for an initial aiat
which factorizes as

WY = go(xa) -~ Po(xn)  such that||ol| zze) = 1,
thek-particle correlation functions converges in the tracemor

Vi =5 e (xa) - b (%) B (ya) - e (W), 4)

where¢; solves the nonlinear Hartree equation

i = -0 +V*|9|%¢
{ Pit—o0 = o- ©®)

The convergence of correlation functioﬂs (4) for the Sdmrger dynamics|]2) is equivalent to the statement
below :

'\|||£>nOO<L'JtN7ﬁNLPtI\I> = ,\llian/Rdeﬁ,N(xla'”an;yla"'7yk)ﬁ~(yla"'7yk;xl7"'7Xk)dxl"'dxkdyl"'dyk
= (&007), (6)

wheredy are observables given bigly := ¢ ® 1N-¥ acting onL2(RMN) with & : L2(R%) — LZ(R%) a
bounded operator with kernét andk is a fixed integer. The relevance of those observables igigasby
the fact thawoy are essentially canonical quantizations of classical tities

In the recent years, mainly motivated by the study of Bosestein condensates, there is a renewed
and growing interest in the analysis of many-body quantumadyics in the mean field limit (for instance
see [ABGT],[BEGMY],[BGMLIESYI[EMLIFG3].[FKR1[FK§, etc.). For a general presentation on the
subject we refer the reader to the revieyvs |[Spo] and|[Gol}iovs strategies were developed in order to
prove the chaos conservation hypothesis or even strorgfenstnts. One of the oldest approaches is the
so-called BBGKY hierarchy (hamed after Bogoliubov, Bormeén, Kirkwood, and Yvon) which consists
in considering the Heisenberg equation,

opr = i[p, Hn],
{ Pizo = 165 (85I, @

together with the finite chain of equations arising fr(ﬂn (Yx&king partial traces on € k < N variables.
Sincep, are trace class operators one can write the correspondingybiny of equations on theparticle
correlation functiong :

N
idyny = Z\[—AXi‘*‘Ayi]&}k,N"‘% V(% —X}) = V(¥ = ¥)] Ve

i= 1<i<)<k

1
N [ s V05 =) =V = )1 G-+
NlSiSk,gKJSN R(N—kd : LN

1
N k+1<|z<j<N/]R(Nk)d IV (% — X)) =V (¥i —Yj)] Wy O%c1- -~ dxy
W,N = ¢o(x1)--- do(X)Po(y1) - Po(Yi) -

An alternative approach to the chaos conservation hypistiiess the second quantization framework
(details on this notions are recalled in Sectﬂ)n 2). Condiuee Hamiltonian,

e H, = /Rd Oa* (x)Oa(x) dx+ g /RZdV(x—y)a*(x)a*(y)a(x)a(y) dxdy,

wherea,a* are the usual creation-annihilation operator-valueditistions in the Fock space ovef(RY).
Recall thata anda* satisfy the canonical commutation relations

[a(x),a" ()] = 6(x—y), [a"(x),a"(y)] = 0=[a(x),a(y)].



A simple computation leads to the following identity

. 1
)—HN, |f8—N

Thus, the statement on the chaos propagation statﬂj in (6henaritten (up to an unessential factor) as

1
€ H5|L§<RdN

)

. de—1 ; a1
yino<e—|ta HSLp& leckeflts ng_;(8)> :< t®kaﬁ¢t®k>

whereb"ick denotes-dependent Wick observables defined by
wik _ k[ 5 X
b 'ng/ a'(x) (X, - XY, a(yi) dxg - --dxdyy - - - dyk,
- i|1 (%) O(xa kY1, Yk) Dl (yj) dxg---dxedys - - - dyk

with 5’(x1,--- X Y1, ,Yk) the distribution kernel of a bounded operatdon LZ(de). Therefore, the
mean field limitN — o for Hy can be converted to a semiclassical limit> O for H;. The study of the
semiclassical limit of the many-boson systems traces lmattietwork of Heppp] and was subsequently
improved by Ginibre and Veld [GIV&, GiVe2]. The latter aysit are based on coherent staies,

p]> &2

Wi — g 2 g*”/Zqﬁn ¢ € L2(RY)
F- ) )
e vn!

which have infinite number of particles in contrast to the rHiée states¥®, = ¢§9N. However, a simple
argument in the work of Rodnianski and SchISch] shitas the semiclassical analysis is enough
to justify the chaos conservation hypothesis and even gesvconvergence estimates on kKparticle
correlation functions. The authors ¢f [RojSch] considehedaroblem under the assumption( efA + 1)1/2-
bounded potential.e., V(—A+ 1)~¥/2is bounded). The main purpose of the present paper is toeiten
latter result to more singular potentials using the ideaSiafbre and Velo[[GiVeR].

For the sake of clarity, we restrict ourselves in this papehé particular example of point interaction
potential in one dimensiong.,

V(x)=8(x), XeR. 8)

This example is typical for potentials which ared-form boundedi(e., (—A+1)"Y2V(-A+1)"1/2 s
bounded). Indeed, we believe that such simple example sprttseuprincipal difficulties on the problem.
Moreover, we state in Appendﬁ C some abstract results oméimeautonomous Schrodinger equation
which have their own interest and allow to consider a moreegaErsetting. We also remark that the results
here can be easily extended to the cd6e = —d(x) at the price to work locally in time.

The paper is organized as follows. We first recall the basiimitiens for the Fock space framework
in Sectior‘ﬂz. Then we accurately introduce the quantum dycsaai the considered many-boson system
and its classical counterpart, namely the cubic NLS eqnafitie study of the semiclassical limit through
Hepp’s method is carried out in Sectiﬂn 6 where we use resulthe time-dependent quadratic approx-
imation derived in Sectiof] 5. Finally, in Sectifh 7 we apig frgument of[RoSth] to prove the chaos
propagation result.

2 Preliminaries

Let ) be a Hilbert space. We denote 1§() the space of all linear bounded operatorsipriFor a linear
unbounded operatdracting on$), we denote by7 (L) ( respectively2(L)) the operator domain (respec-
tively form domain) ofl.. LetDy; denotes the differential operateidy; on L2(R™) where(xq, - - ,%n) € R".

In the following we recall the second quantization framewoWe denote byt 2(R") the space of
symmetric square integrable functions,,

Wy e L2(RM) iff Whe L2(R™) and Wh(xg, - %) = Wn(Xay,-- - %ay) &€,



for any permutatioro on the symmetric group Sym). The orthogonal projection froi?(R"?) onto the
closed subspadeZ(R"Y) is given by

1
GnWn (X1, ,Xn) = nl z Wn(Xg(1), " »Xo(m)), Wn€ LZ(Rnd)-
* oeSym(n)
We wiill often use the notation
Fs(R") := &,.7(R")

where. (R") is the Schwartz space dd". The symmetric Fock space ovef(R) is defined as the
Hilbert space,

[«

7 = PLER™),

n=0

endowed with the inner product
/ W (X1, %) Pn(Xe, -+ Xn) dx -+ A,

whereW = (W) ey and®d = (dy) ey are two arbitrary vectors is. A convenient subspace oF is given

as the algebraic direct sum
alg

=P S(R").
n=0

Most essential linear operators gh are determined by their action on the family of vectors
P (Xes - % |'l¢ ., ¢ e L2(RY),

which spans the spa¢€(R"Y) thanks to the polarization identity,

n n

6n|'l¢ 2“n| z een [1(3 &9106)

=1

For example, the creation and annihilation opera&($) anda(f), parameterized by > 0, are defined
by

a(f)p"" Ven (f,¢)=
a'(f)9®" = Ve(n+1) Snia( Fo %), Vo, f e L2(RY).

They can also by written as
f)=ve [ TRade a'(f)=ve [ f(oa(xdx

wherea*(x),a(x) are the canonical creation-annihilation operator-vallisttibutions. Recall that for any
W= (W) y € .7, we have

[0 W)™ (1, %0) = V(N + DWW (3, - x0),

[a*(X)LP](n)(le"' 7Xn) = \/iﬁ zla(x XJ)qJ(n71>(X1,"' ’)'{b... 7Xn),
J:

whered is the Dirac distribution at the origin and fneans that the variabbg is omitted. The Weyl
operators are given fdr € L?(RY) by

=}

I



and they satisfy the Weyl commutation relations,
W()W(fo) =& 52 W(f, + f), (©)
with fy, fo € LZ(Rd).

Let us briefly recall the Wick-quantization procedure ofypmmial symbols.

Definition 2.1 We say that a function b’ (RY) — C is a continuoug p, g)-homogenous polynomial on
< (RY) iff it satisfies:

(i) b(A2) = A9APb(2) for anyA € C and ze .7 (RY),

(ii) there exists a (unique) continuous hermitian fofin .75(R99) x .74(R4P) — C such that

b(z) = Q(£%9,Z°P).
We denote by’ the vector space spanned by all those polynomials.

The Schwartz kernel theorem ensures for any contingpip-homogenous polynomidl, the existence
of a kerneby(.,.) € ./(R4P*+9) such that

02) = [, Bk Kk, k) ) 20K 2tk - 2) el
in the distribution sense. The set(qf, g)-homogenous polynomialse & such that the kerndl defines a
bounded operator froZ(R9P) into L2(RY9) will be denoted by, o(L?(RY)). Those classes of polyno-
mial symbols are studied and used i1, AmNi2].

Definition 2.2 The Wick quantization is the map which associate to eachiragmus(p,q)-homogenous
polynomial be &, a quadratic form B on.# given by

(WoVko) = % BKK) (alk) - alky)W.alk) - alkp) @) 5 dk K
R +
_ < .2ray/N(n—p+q) Bk k) W) (k) ad(—p+a) (1!
_ nZDeT—V o /Rdmip)dx/Rdmm)ddeb(k,k)LP”(k,x)(D (K %),

forany®,W € .77

We have, for example,
a*(f) = (z YW and a(f) = (f,2)"Wik,

Furthermore, for any self-adjoint operatdon L2(RY) such that(RY) is a core forA, the Wick quanti-
zation .
dr(A) := (z, A9k,

defines a self-adjoint operator aA. In particular, ifA is the identity we get the-dependent number
operator _
N = (z,2)Vick.

We recall the standard number estimate (seg, [AmNi1} Lemma 2.5)),
| (9, 5YD) | < [B]] g gem zmeay [NV ¢ [INP/20] (10)

which holds uniformly in € (0,1] for b € 22, 4(L2(RY)) and any¥, ® € 2(N™aXP9)/2),



3 Many-boson system

In nonrelativistic many-body theory, boson systems areritesd by the second quantized Hamiltonian in
the symmetric Fock spacg formally given by

2
_g/Rd a*(x)Aa(x)dx+ %/Rd /Rd a“(x)a* (y)o(x—y)a(x)a(y) dxdy. (11)

The rigorous meaning of formulﬂll) is as a quadratic forn#arwhich we denote bVt obtained by
Wick quantization of the classical energy functional

h(z) = /d 0z(x)2dx+ P(z), where P(z)= %/d Zx)|*dx, ze . #(RY). (12)
R R
More explicitly, we have fokV € .

. 2
(W) — g3/ dxg - dxy
Rn

n=1
n 82% n(n—1) /
L 2 RA(N-1)

Moreover, in one dimensional spa¢e( d = 1) one can show the existence of a unique self-adjoint operat
bounded from below, which we denote By, such that

0X1LP(n) (Xla T aXn)

2
W (3o, %0, - Xn) | dp--- Oy

(W, HW) = (W hWicky)  forany W e.7.
This is proved in Proposition 3.3.

In all the sequel we restrict our analysis to space dimersiorl and consider the small parameter
such thate € (0,1]. Thee-independent self-adjoint operator,

0 n
S 3 [ S -auin] — (e e ).
n= =

with u > 0, defines the Hilbert spac@fr‘ given as the linear spa@(i/z) equipped with the inner product
(W, ) su = (82w, §/%®) ;.

We denote byZ* the completion of@(sgl/z) with respect to the norm associated to the following inner
product

(W,0) su = (5,7, 5,%0) ;.

Therefore, we have the Hilbert rigging
FhczcTh

Note that the form domain of thedependent self-adjoint operatdr @A) + NH with > 0 is
2(dr(-A)+NH) =.Z#  foranye € (0,1].
Lemma 3.1 ForanyW¥,® ¢ .7,
(W, PYEk) | < 2 (~8) + N2 ([ (~8) + N30

Proof. A simple computation yields for any, ® € .

<L|J,PWiCk(D> _ % 82 n(n_l) '

w(n) (X2,X2,X3’ ... ,Xn) (D(n) (X21X27X31 ... ,Xn) dx---dx,.
n=2 2 RN-1



Cauchy-Schwarz inequality yields

2n(n—1)

2 /Rn,l W (%2, X2, X3, -+ , Xn)[2dXg - - Xy

‘(W,PWiCkQD>‘ < li £

n=2

- ZM/ (n) 2
) LZZE 2 Rn—1|q) (X2, %2, X3, ,Xn)|“dXp - - - X,

Using Lemmd Al1, we get for any(n) > 0

1/2
i < -1 a(n*
W, pWickpy | < g2nn—1 <a n)(D2 WM WMy ORTIG)
I >\_Lzz N Gl )+ =5 )
1/2
« |y et h <a(n)<D2 o, i) A0 g q><">>> /
; 22 an 2 ’
Hence, by choosing (n) = m it follows that
1T . 1/2
W PVikpy | < 2| S en(D2 W WMy 1§ e3n(n—1)2(wM )
I )| < 4L; (0, )+ 3 el 1% )
o o 1/2
x|y en(D2 o™ o) 1§ £3n(n—1)%(d™ oM
L; (Dl ) HZZ (n—1)% )
< /W (-0) e NgW) <\l [ (-a) NI
This leads to the claimed estimate. |
Remark 3.2 Note that, as in Lemnfa 3.1, the estimate
Wicl £
(@, P) | < =W 5 ([ 53 (13)

holds true for any, ® € . ande¢ € (0,1].

We can show thah'Vi° is associated to a self-adjoint operator by consideringeissriction to each
sectorL2(R"), however we will prefer the following point of view.

Proposition 3.3 There exists a unique self-adjoint operatoy $lich that
(W, hVickp) — (W H, ) forany W e Z2, ® € Z(H)N.Z73.
Moreover, e''/¢He preservesZ 3.

Proof. We first use the KLMN theorem[([RS, Theorem X17]) and Lenjmht8.g8how that the quadratic
form h"ick - N3 4 1 is associated to a unique (positive) self-adjoint opedatsith

(L) = 2(dr (-4) +N3) = 73,
Observe that we also have
|[[dr (—A) + N3JY2W|| < [|LY2W)|| for anyW € .Z3. (14)

Next, by the Nelson commutator theorem (Theo@ B.2) we cawmepthat the quadratic form"'® is
uniquely associated to a self-adjoint operator denotetipyith Z(L) C Z(He)N.Z3 and deduce the
invariance ofZ3. Indeed, we easily check using Lemna 3.1 dndl (14) that

(W, RVel)| < g L2 [|LY20]| for anyw, ® € 72, (15)

7



Furthermore, we have ¢, ® € .72 andA >0
(LAL+1) "W AWk AL+ 1)71) — (AL 4+ 1) W, WIS AL+ 1)) = 0. (16)
The statementg (15)-(16) with the help of Lemimd B.3, allowde Theorerp B|.2. ]
Remark 3.4 The same argument as in Propositi@ 3.3 shows that the gtiadoam onﬁ‘f given by
G:=g tdr(—A)+& 2PVik g7 IN 41,

is associated to a unique (positive) self-adjoint operatbich we denote by the same symbol G.

4 The cubic NLS equation

Let HS(R™) denote the Sobolev spaces. The energy functibrgaven by ) has the associated vector
field

X:HY(R) — HYR)
z — X(z)=-0z+0P(2),

which leads to the nonlinear classical field equation

iap = X(9)
— —Ag+ (92 (7)

with initial datagy_o = ¢o € HL(R). It is well-known that the above cubic defocusing NLS equrais
globally well-posed otd3(R) for s > 0. In particular, the equatioﬂl?) admits a unique globhltgm on
CO(R,H™(R)) NCH(R,H™2(R)) for any initial datap € H™(R) whenm= 1 andm = 2 (see [GiVe]] for
m=1and ﬁ] form= 2). Moreover, we have energy and mass conservatiens

h(¢t) =h(¢o) and [[¢[li2w) = Iz,

for any initial datago € H(R) and¢: solution of (1f). Itis not difficult to prove the following tmates

19l = 28llew 158wy < 2[18llow h(¢)Y/2,
p p-2 EE—Z 35—2 p-2 BE_Z p—2 (18)
||¢||LP(R) < 2T||¢||L2(R) ||ax¢|||_2(R) < 27 ||¢||L2(R) h(d’)T’

for p> 2 and anyp € HY(R). Furthermore, using Gronwall’'s inequality we show for ayc H?(R) the
existence ot > 0 depending only oo such that

19t 2y < € (190l () (19)

where¢ is a solution of the NLS equatio[ﬂl?) with initial conditigg.

5 Time-dependent quadratic dynamics

In this section we construct a time-dependent quadraticoxpation for the Schrodinger dynamics. We
prove existence of a unique unitary propagator for this exipration using the abstract results for non-
autonomous linear Schrodinger equation stated in the ﬁqﬁp@. This step will be useful for the study of

propagation of coherent states in the semiclassical I'rnrsiebtior{b.

The polynomiaP has the following Taylor expansion for agy< H(R)

(1)
]

4
P(z+2) = ZO



Let ¢; be a solution of the NLS equatioE{l?) with an initial deigee H(IR). Consider the time-dependent
quadratic polynomial o’ (R) given by

(@)
ROE = o (G0l

= Re[ 20" hi()%dx+2 [ [200]2 910020

Let {Ax(t) }icr be thes-independent family of quadratic forms o#i defined by
eA(t) = dI (—A) + Py(t)Wick, (20)
Lemma 5.1 For ¢o € H(R) let
81 1= 16%(]|dol| 2(r) + 1)3(h(go) + 1) and 8 := 16%(||@ol| 2() + 1)**v/h(do) + L.
The quadratic forms orv’ defined by
S(t) :=Ao(t) + 91 IN+ 51, teR,
are associated to unique self-adjoint operators, still ded by $(t), satisfying

e S(1)>1,
o 7(S(t)Y?) = F1forany te R.

Proof. The casepy = 0O is trivial. By definition of Wick quantization we have fif,® € .7,
(@Po(0VOW) =23 en [ [0 POT a0 (, x) d+
=
+ Z}e\/(njt )(n+2) / M (xq, -, Xn) ( / 100 WM (x %, xq, - ,xn>dx) dx---dx,  (21)
e RM JR

+n§0£\/(n+ 1)(n+2)/Rn‘4J<”)(x1,--- . Xn) (/R () 2D2) (x, %, xq, - - - ,xn)dx) dxq - - dX.

Therefore, using Cauchy-Schwarz inequality, we show

(@, POV W) < 2] [Fo ) [ INY2] ¢ |INY2W]

[«

1/2
+ ||¢t||ﬁ4(R) ||(N—|—£)1/2CD|| X %S(n—FZ)HLP(nJrZ)(X,X,Xl,~~~ aXn)||EZ(Rn+1>‘|
n=

o 1/2
Z)e(m— 2)||<D(n+2)(x,x, X1, ,Xn)||EZ(Rn+1)‘| )

n=

o 19t]Paggy 10N+ )72

Now we prove, by Lemmp Al 1, the crude estimate

(@R < ma|[9r][Zage 19017 ge) [2IINY200]]x |INY2W
1IN+ €20 [[(adr(~8) + a~N) 2y
N2 (o (<) + a~N) 20

This yields for anyo >0

(@, PV W) < o max( 17 el [P )
%I [dr (=2) + (a 1+ 3)a N+ a1e1] V2.



Remark now that[(38) yields
max(||¢t||f4(R), [10t11Fe ) < 2(1[90l 2=y + 1)¥?v/h(do) + 1.
Hence, fora~* = 3(]| do||,2(r) + 1)*¥2/h(¢o) + 1 > 0, we obtain

e (@R (O)WIHW)| < F||[e71dr (—A) + B2~ IN+ 5,1)V 20|
x[[[e72dr (—A) + 916 1N+ 9,12

Applying now the KLMN theorem (se¢ [IRS, Theorem X.17]) wittethelp of inequality{ (23) we show that

(23)

S(t) = Ax(t) + 916 IN+ 9,1 with 91 > (a 14+ 3)a L, and9, > a1 +1,

are associated to unique self-adjoint operaf(s) satisfyingS(t) > 1. Furthermore, we have that the
form domains of those operators are time-independent,

2(S(1) = 71
for anyt € R. |

Remark 5.2 The choice o1, 3, in the previous lemma takes into account the use of KLMN@rém in
the proof of Lemmf §.3.

We consider the non-autonomous Schrodinger equation

iGdu=Ax(t)u, teR,
{ u(t:s)zzus. (24)

HereR >t — Ay(t) is considered as a norm continuo@y.#1, #1)-valued map (see Lemnjap.3). We
show in Propositiofi 5|5 the existence of a unique solutiomfiy initial dataus € % using Corollary CJ4.
Moreover, the Cauchy problem’s features allow to encodestthations on aunitary propagatormapping
(t,s) — Ux(t,s) such that

Ua(t,s)us =,
satisfying Definitio CJL with’#’ = .7, 7. = #1 andl =R.
In the following two lemmas we check the assumptions in Oary)@.

Lemma 5.3 For any ¢o € H(R) and t € R the quadratic form A(t) defines a symmetric operator on
ZL(F1,71) and the mapping € R — Ay(t) € £(F1,.Z1) is norm continuous.

Proof. Using (23) we show for an, ® € .7
(DA ()W) < (B, tdM (—A)W)| + (D, e~ 1Py(t)Vicky))|
IS %||[|8y/ 2wl + § ]S *@l ISy W (25)

chza R4 |PENICII PR

IN

IN

whered,, 3, are the parameters introduced in Le 5.1. Hence, thissittoconsideA;(t) as a bounded
operator inf(ﬁi,ﬁi). SinceAy(t) is a symmetric quadratic form it follows that it is also synirieas
an operator inZ (#1, #1).

Now, using a similar estimate 22) we prove norm contyniitdeed, we have

(D, [Ao(t) — Ap(I]W)| = £ (D, [Po(t) — Po(s)]Vicky)|
< 4 maX(||¢t2—¢52||L2(R), [191/% — |¢S|2HL°°(R)) 1] 51 [|®]] 51 -

Note that it is not difficult to prove that
max (|92 - 21[.z(r):

This follows by (18) and the fact that € C°(R,H(R)). [

|6t/ — |¢S|2H|_°°(R)) —0 whent—s.
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Lemma 5.4 For any ¢o € H2(R) there exists ¢ 0 (depending only orpo) such that the two statements
below hold true.
(i) ForanyW € .#1, we have

3w, S()W)] < |50 2W) 5.
(i) For any W, ® € 2($(t)%?), we have
(W, A(1)S(1)®) — (S(H)W, A2 () D) < |S ()" 2W]| 5 [|S(t) 2| 5.
Proof. (i) Let W € ., we have

AW, SOV = 1w RV
= e HW,[aP(0)]"V W),

wherediP;(t) is a continuous polynomial o’ (R) given by
APo(1)l2] = 2Re [ 209" $:()a () dx+ 4Re | (209 FrlX)arg: () cx

A simple computation yields
)
(W, [aP()]""*W) = 4Re § ne /R B (x1) 3k e (%) [P (xq, -+, xn) [P dxg -~ ko
n=1

+nig\/(n+2)(n+1)./]1.@%”)()(17“7 (/ ¢t ) O Pt ( ) W(n+2) (X,x,xl,...7xn)dx>dxl...dxn

+hc.
From (18) we get
- 2
@1 < deadiog [ sup|¥0a, )
JR ¥ eR
< ¢ellzw) * [1adtll2m) <(1_0X21)Lp(n)aw(n)>L2(R“)'

Now we apply Cauchy-Schwarz inequality,

(W (@R W) < 4[]z 1otz (zen (1-32)wm g >>L2<Rn>)

8

- 1/2 1/2

+2[|¢t]|Lo @) |10 D |2(r) (nzoe(nJrZ)llq"”*Z)(x,x,-)Ilfz(ﬂw ) (%S (n+1)[|w™ LZ(Rn)> :
In the same spirit as ilﬂlzZ), we obtain a rough inequality

(WP W) < maxt||ellimqmys 16ezgr)) 180tz [411(dr(—2) +N)Y2W) 2
+2 J|(dr(~2) + N+ 1)2W| 2]
Observe thaf(33) implieS; < 3S,(t) for allt € R. Hence, we have
-1 Wick 2
(W [aRO W) < 6 max([gt[Lo ) [1#lliw)) (A2 (W52

< 18 max|[¢t||Le(r), [[tllzw) [0 Pell2r) ISt 2W]|5.
This proves (i) since[(18)F(19) ensure the existence:sf0 (depending only og) such that

max(|[ @[ ) [0l |2(m) 1Rt |L2m) < ec(t|+1)

11



(ii) If W, d e 2(S(1)%?) the quantity

is well-defined sincedx(t) € Z(F1, #1) and S(1)2(S(t)%/?) € 2(S(1)Y/?) = #L. Note thatN €
ZL(FL,71). Hence, we can write

¢ = (W,[S() - 918 IN-3H1S(1)P) — (S(H)W, [S(t) — 916N - 9,1] ®)
= 9 ((SO)W.eIND) — (e INW, S (1) D)) .
Observe that, foA >0, IN(Ae"IN+1)"L#1 c .71 and that
s— lim eIN(AeT N+ = INiIn Z(FL 7).
Therefore, we have

¢ = o lm (SOW, e INAe IN+ 1) o) — (e INA e IN+ 1) W (1)) .

)

LetN, denotes *N(Ae~IN+1)~1. A simple computation yields

€6y = (WP (t)VIKN, ©) — (N, W, Py(t)Vikep)
(W,g()"V' N, @) — (N, W, g (1)),

whereg(t) is the polynomial given by
——2
(1)l = Re | 209" ¢1(?dx
A similar computation aq (21) yields

(g)\ = %K(n) an‘) le » Xn (/ ¢t n+2 XX,X]_,"' 7Xn)dx> dxldxn
n=

0

XL O (g, ) < / ¢t<x>2w<n+2><x,x,xl,---,xn>dx> dog -
& JRn JR

where

(n) = (n+2)y/(n+1)(n+2) ny/(n+1)(n+2)
N (A(N+2)+1) (An+1)
Note thatk (n) < 2(n+ 2). Hence, using Cauchy-Schwarz inequality, we show

0 0

1/2 1/2
Gl < 2010[Fae [Zj(n+2)||w<”>||ﬁz(m] [Z}(HZ)||<D(”+2>(x,x,-)IIEZ(RM)]
n= n=

00 0

1/2 1/2
+2||¢t||f4(R) Zo(n+ 2)||CD |||_2 RN ] l;}(nJr 2) ||L|J(n+2)(x, X, ,)||32(Rn+1)] .
n= n=

Using Lemmd AJ1, witho = L., we get
[ee] 1 [ee]
%(n+2) W2 (x,x, )|||_2 Eril) S5 O(n+2)<D>2<1LP<n+2)an(n+2)> (n+2)||wn+2) |||_2 RN+2)
n= n=
< Swsw),

together with an analogue estimate whités replaced byd. Now, we conclude that there exists> 0
depending only omg such that

e < cfWz [Pl 51 (26)

This proves part (ii). |

12



Proposition 5.5 Let ¢ € H2(R) and A(t) given by [2D). Then the non-autonomous Cauchy problem

igu=~A(tu, teR,
ut=s) =us,

admits a unique unitary propagatorJt,s) in the sense of Definitio@.l with=+ R and /4 = Z1.
Moreover, there exists s 0 depending only oo such that

V2(t, 0)]] (1) < Lo

Proof. The proofimmediately follows using Corollafy ¢.4 with thelp of Lemm4 5]§-5]4 and the inequal-

ity
1S < S(t) <8y,

which holds true usind (25). [

6 Propagation of coherent states

In finite dimensional phase-space, coherent state anédysisell developed powerful tool, see for instance
[ERR]. Here we study, using the ideas of Ginibre and Veld ingd], the asymptotics whea— 0 of the
time-evolved coherent states

i V2
e It/SHEW(¥¢0)W,

for Win a dense subspa¢t C .# defined below. We consider the following Hilbert rigging
Y. CFCY,
defined via the-independent self-adjoint operator (see Rer@k 3.4) diyen
G:=¢ dr(—A)+& 2PVickp g IN 41,

as the completion of?(G*1/2) with the respect to the inner product

(W,0),, = (G2 G20) .
We have the continuous embedding

FicY. c It

The main result of this section is the following propositiwhich describes the propagation of coherent
states in the semiclassical limit.

Proposition 6.1 For any ¢o € H?(R) there exists ¢- 0 depending only oo such that

efit/EHgW(\i/_gzq)O)qJ_eiw(t)/sw(gd’t)uz(t’o)w < eceﬁlfl £1/8 ”LIJ”{ﬁ ,

holds for any te R andW¥ € ¢, where¢; solves the NLS equatiolﬂl?) with the initial conditighand
w(t) = f(t) P(¢s) ds. Here W(t,s) is the unitary propagator given by Propositipn5.5.

To prove this proposition we need several preliminary lemma
Lemma 6.2 The following three assertions hold true.

(i) For any & € L?(R) and ke N, the Weyl operator M€ ) preservesz(N¥/2). If in addition& € H1(R)
then W& ) preserves alsoZ+ whenu > 1.

13



(i) For any & € HY(R), we have in the sense of quadratic forms®8

W<fs> hW'°kvv<ﬁ &) =h(.+&§"e-.

(iii) Let (R >t — ¢) € CY(R,L%(R)), then for any¥’ € 2(N¥/?) we have in#

Igdtw(g‘pt)w = W(gd}t) {Re<¢t7|0t¢t>+2qu7|dt¢t>WICk}LP
= [_Re<¢t,i5t¢t>+2Re(z,id[¢t>Wi°k}W(\i/_5¢t)Lp.

Proof. (i) Let .% be the linear space spanned by vectdrs . such tha(™ = 0 for anyn except for a
finite number. It is known that for an§ L2( ) and¥ € F

Ny :=W(§E)*NW(§E)LP = (N+2Re<z,E)Wi°k+ ||E||21) w. (27)

For a proof of the latter identity sef [AmNi1, Lemma 2.10)JiiHence, by Cauchy-Schwarz inequality it
follows that

V2

INVWEZEWIP = (W, [N+2Re(z.E)" 4 lg] P1] W)

= <L'J7 (N + ||E||EZ(R) 1)L'J>

+ ni\/t?(n—l-l) /RnW (/E WD) Xy)dx) dy-+ he

< (@€ ey N+ 1)H2W) 2.

Now, for k > 1 we show the existence of emindependent consta@; > 0 depending only ok and
1€l 2(r) Such that

V2

[INY2W (==& W[[2 = (W.NW) < G [|(N+1) 2w 2. (28)

This is a consequence of the number operator estn‘@te (totharfact thafNX is a Wick polynomial in
Yo<rsck Zrs(LA(R)) (see.e.q.[AmNid} Prop. 2.7 (i)]). Thus, we have proved the invariand 2 (N¥/2)

since.% is a core ofN¥/2,
Now the invariance of’?f, u > 1, follows by Faris-Lavine Theore@.l where we take the afuer

A=V2Rez &)V and S=5, =& ldr(—A)+& PNH+1,

and remember that

W(E) _ ei\/éRqZ,E>Wi0k'

In fact, assuming € H1(R) we have to check assumptions (i)-(ii) of Theorpm B.1. For@ny 7!, we
have by Wick quantization

2Re(z, &)\WVicky  — ZOV e(n+1) /E WD (¢ xq, -+, Xn) dX

—i—Z\/jZE(Xj)LP(n1)(Xl,"',)?j,"',Xn)-
= R =]
Therefore, it is easy to show

IRe(z &)Wl < VE[|E] | lI(e N+ DYy
VENE Iz 1S,

A

IN

14



and hence we obtain th&t(S,) C Z(A). LetW € 2(S,), a standard computation yields
V2((AW.S9) — (SW.AY) = (a(-A5)W,W) — (V,a(-0E)Y)
+ G+ = (DHWa ()W) —he,

Each two terms in the same line 29) are similar and it isugihdo estimate only one of them. We have
by Cauchy-Schwarz inequality

(29)

l(a(—A&)W,W)| < (/ —AE (x) @) xy)dx)dy
< NNl 11ST2WI2,
andfor1<6<pu-1
<£*9N9W,a*(E)LP>‘ < n;\/M(nﬂ)e/Rnw (/5 Wn+1)( xy)dx>dy
< 2|8z 1S 2WI2.

This shows for anW € 2(Sy),

HI(W,[A S )W) <C IS/ W12

Part (ii) follows by a similar argument ds [AmIii1, Lemma 2(ii)] and part (jii) is a well-known formula,
see [GiVel,, Lemma 3.1 (3)). |

Set

10 =W gy o100/ g ey Y2 ).

Lemma 6.3 For any ¢o € H?(R) there exists ¢ 0 such that the inequality
£l
||W(t)||z(%,¢b <€
holds for te R uniformly in€ € (0,1].

Proof. Observe that the subspagg given as the image a¥(Hg) N.Z3 by W(\i/—ftpo)* is dense in#.
LetW € . and® € %, then differentiating the quantity®, 7 (t)¥) with the help of Lemm4 6]2 and
Propositior{ 3]3, we obtain

iEd (O, 7 ()W) = (O, [P(¢r) — Re(d,idkdr) — 2ReZ id ) V'™ 7 (1) W)

+ <¢W<£¢> /ey W(\/_¢o) w). (30)

@

LetRy := 1j,(¢ *N) and remark thas— lim, . R, = 1. Furthermore, we have thR/%, C .7 since
it easily holds that

IR®|[%s < V2| |®l[5,

Therefore, sincW(\/_cpt)RVCD andW( 2 $o)W belong to#3, we have

(1) = V|i£nm<RV¢,W(%¢0*e”“’“)/ngW(\iézqﬁo)‘P)

= JiLnOO(RVCD,h(.+¢t)Wi°kW(t)LP>.
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So, we get
ied(®, 7/ (W) = (1)+ lim (Ry®, |P(¢) — Re(dy,idd) — 2Re(z iage) "™| 7/ ()W)
= lim (R/®, (eAp(t) + Ps(t)""+ PV (1) ),

=:£0(t)

where we denote

©) — (4)
Pt)Z 1= o (907 = 2Re [ JZXZPdx and P@) = =, (90l = 5 [ J200] dx

A simple computation yields

@R = T /e D L < [ 6@y Lp<n+1>(x,x,y)dx> dy
n=1
+n§l\/nz(n+ 1).55“/&{”71 </ 1 (x) D1 (x, X, y) W (x,y)dx> dy.

Using Cauchy-Schwarz inequality and Lemjma] A.1, we obtain

(@ PtV < 2v2I MU /TG T TPk §ie TN T 5,1]@)

(31)

x /(W [eTPWIck4 916~ IN + 9,1]W),

whered, 9, are the parameters in Lemr@S.l. Her®4, extends to a bounded operatori(¥4, ,%_)
sinceA,(t) andPVik pelong to.Z (%, ,%_). As an immediate consequence we obtain

i3 (O, W (W) = (®,0() W ()W). (32)
Now, we consider the quadratic forfx(t) on¥, given by
A(t) :=O(t) + 916 N+ 921.
Itis easily follows, by [(18) and (1), that
(@ PsWikp)| < 4[] (e TdM (<) + & 1P+ 916 IN+ 51) o
| (—&~1dr (—A) + £~ 1PWick+ 961N+ 9,1) 2.
Therefore, using(23) anfi (33) we show that

(33)

@) @3) Wick
et | 2T 002+ (4012

is form bounded by 1dr (—A) 4+ e Pk 9167IN + 9,1 with a form-bound less than 1 uniformly in
£ € (0,1]. Hence, by the KLMN Theorenf[RS, Thm. X17], the quadratiafdx(t) is associated to a unique
self-adjoint operator which we still denote Byt), satisfying2(A(t)) = ¢, andA(t) > 1. Moreover, it is
not difficult to show the existence of, c, > 0 such that

c1S <At <G (34)
uniformly in € € (0,1] for anyt € R . Now, we consider the non-autonomous Schrddinger equatio
iU = O(t)u, (35)

with initial dataup € ¢, . Next, we prove existence and uniqueness of a unitary peipag (t,s) of the
Cauchy problem[(35). This will be done if we can check assionptof Corollary| Cl with¢,. = 5,
A(t) = O(t) andS(t) = A(t). Thus, we will conclude that

IAMY27 (t,00W] » < &€ |A0)Y2W]| 5. (36)
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Observe thaR 5t — O(t) € Z(¥,%-) is norm continuous since
(@, (0(t) —O(9) W)| < |||, [[A2(t) = Ae(9)]] £ (51 51 [|Wlla, + (@, (Pa(t) — Ps(s) '™ W)
and an estimate similar tﬂ:%l) yields
(@, e (P3(t) — P3(9)"V'* W) | < 2v/2]|¢ — Gl [Lom) [|Pl ], | W]l -
Let us check assumption (i) of Corolldry €.4. We have\foe ¥, C Z1,
G(WADY) = (V. S(1)W) + & (W.e Py()"HW).

A simple computation yields

O (W, g 1P (t)Wickyy — 2Re[i \/n2(n+1)e /R . ( /]R Ay (X)W (x,y)Wn+D) (x, x,y)dx) dy] :
n=1

So, by Cauchy-Schwarz inequality and Lemma A.1, we get

[

> (n+1)|[sup
n=1 XeR

. 1/2
n=1

2V2 (|2 1N 2W 2.

IN

3w ROV < 2llad |z

1/2
L|J(n) (X, ) ’ ||EZ(R"1)]

X

IN

The latter estimate with Lemnja b.4 (i) arld](1B)}(19) give us
|G (W ADW)] < I A2 2,

Now, we check assumption (ii) of Corollafy ¢.4. We follow tsame lines of the proof of Lemnia p.4
(i) by replacingS;(t) by A(t) andAx(t) by ©(t). So, we arrive at the step where we have to estimate for
W d e 2(A(t)%?) andA > 0, the quantity

Glo)] = (W lg)"IN®) — (MW, e Tg(t) VD),
whereN, := e IN(Ae"IN+1)~1 andg(t) is the continuous polynomial & (R) given by
9(t)[Z = Pa(t)[Z + Ps(t)[2].

Note that the part) [P»(t)] involving only the symboP»(t) is already bounded by (26). Thus, we need
only to considefs) [Ps(t)]. A simple computation yields

G = 3K [

= RN-1

( [ BRI (xx y) W y) dx) dy

=Sk [ ([ a0y oy,

n=1

where

~ (n+1)y/en’(n+1) ny/er?(n+1)
KW= —GnrD+D  (nsD

satisfying|k (n)| < \/n?(n+ 1) uniformly in € € (0,1] andA > 0. So, using a similar estimate s|(31), we
obtain

6 [Ps(V)]] < ®) IO [IAG)Y 2.

1
72||¢t||L°°(
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This proves assumption (ii) of Corollafy ¢.4. Now, we chefétt
W (t) = ¥(t,0).
In fact, ford € 4, and¥ € 2, we have

¢77/(r+s)—7//(r)

10 (D, 7 (0,n) 7 (W) =—(O(r)¥(r,0)®, 7 (r¥) +i|SLnE)<7/(r +5s,0) W),

W (r+s)—#(r)
s

B, (D, ¥ (0,r)# (W) =0.

and since by[(30) we know that limg W exists in.7, we conclude usind (32) that

This identifies# (t) as the unitary propagator of the non-autonomous Schréd'ﬂftwation@S). Therefore,

by 34)-(3b) we get

Ve OW] 51 < INOY2 (W7 < €2 A0 29| 7 < e || W]y, |
for anyt € R uniformly in € € (0, 1]. [
Lemma 6.4 For any ¢o € H?(R) andW € ¢, we have

17 ()W -Ua(t,00¥|% = 2(W,(1—R,)W)—2Re# ()W, (1 Ry)Ua(t,0)W)

+21Im /O t (W (9)W, [O(s)Ry — RyAz(S)]U2(s,0)W) ds,

where R 1= o(ffle) with g any bounded Borel function di, with compact support and here

O(s) = Ax(s) + £ *Qs(2)"'K,

with Qs(2) the continuous polynomial o' (R) given by

3 (4)
Q@) = Lo+ g (49l
Proof. We have
7 (OW-Uy(t,0W|% = 2[|W|% —2Re# ()W, Uz(t,0)W)
= 2(¥,(1-R,)W) - 2Re¥ ()W, (1 - R,)Us(t,0)W) 37)

+2RegW, R, W) — 2R (1)W,R,U,(t,0)W).
Hence to prove the lemma it is enough to show that
R 5 s— Re(# (s)W,R,Us(s,0)¥) € CL(R) (38)
and compute its derivative. Recall that the propagHtds,0) € CO(R,X(ﬁi)), by PropositioS and
that# (s) € CO(R,£(%,)) since it is the unitary propagator of the Cauchy problerh.(85% easily seen
that
s— RyUy(s,0)W,
are ine CO(R,%, ) sinceR, maps continuousl;ﬁi into ¢, . We also have that
s—#(WeCYR,% ) and s— Uy(s0)WeCY(R,.71).

This proves the stateme38). Therefore, we have

2ReW, R, W) — 2Re ¥ (1)W, R,Ua(t,0)W) = —%Im/: i£ds (W (S)W,R,U2(s,0)¥) ds. (39)
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The fact that# (t) is the unitary propagator OEBS) with Proposit5.5 yeeld
ieds(W (s)W,RyUz(s,0)W) = —(€O()# (s)W,RyU2(s,0)W) + (# ()W, RyeA2(s)U2(s,0)W).  (40)
Now, collecting [3]7), [(39) and (#0) we obtain the claimedhits. ]

Proof of Proposition[6.} We are now ready to prove Propositipn|6.1.
First observe that we have

ﬁ ﬁ

2
H & /W (X2 go)W — /AW L= )Us (1,0

— |7 ()W —Ua(t,0W]|% .
F

Now, using Lemm@4 one obtains tor O (the casé < 0 is similar) the estimate
17 (OW-Ua(t, 0[5 < 2{W,(1=Ro)W)| +2[(# ()W, (1 - R)U2(t,0W)|
't
+2 /O (7 (W, [O(SIR, — RuAx(S)]Uz(s,0)W)| ds.

Here we considew to be in the clas€!(R . ), decreasing and satisfying(s) = 1 if s< 1 ando(s) = 0 if
s> 2. We have fow positive integer,

1 [ee]

(W1-R)¥) < = 5 W (Df +1)w)
n=v+1
< ST AN < IS,

Hence, we easily check with the help of Proposifiot) 5.5 anta[6.B that

[(# (W, (1-Ry)U2(t,0)W)] 3 U2(t,0)W]| 51 (|7 (1 )‘PII;1

<
t
< 1 1| W[ 51 [19ll, < v et W12, -

Next, we show that there exigts> 0 depending only oy such that

<C(vet24 v,
L(FLF) T ( +ve)

H £ 1Qs (z )chk

The latter bound follows by Cauchy-Schwarz inequality, beafA.1 and[(1]8),

, - Z1/2 ¢ 11/2
Pg,(S)WICk 2v / /

(&, == RY) Velltliom) | Y (DI 1E en) anllLpn+1 06X B2 e
[n=1

IN

oy 11/2 ¢ 11/2

+ Velldlom | Y 0+ DIV Eagn) anllcbn+1 06X B2 e
[n=1

< 20VE||9tllem) [1(6TIN+ 1)Y2] 5 (| W] 51
+ 20VE||@tloge) [1(ETIN+ )Y 5 || 1
and a similar estimate fa?"Vick
(@, PYR,W)| < Ve[ 11 W] 51
Hence we can check that

/‘ (W, 1Qy(2WIHR, Uy (s, 0W)| ds < C(vel/?+v2%) / [1#/(9W]) 51 [1Ua(s 0)W]| 51 ds.
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Now, by Lemmd 6]3 and Propositipn 5.5 we obtain

ot 't s
L1795 108 0¥l 52 s <[99, |Ux(s 0¥ 52 ds
tce°2s
< [ Wy, W5 as
S
A simple computation yields
1] e IN+2 e IN o\ Wik
A2(S)Ry —RyAz(s) = é[cy( )—o( )} (/ ¢t(x)22(x) dx)
VvV v R
1[ e IN-2 e IN g N
+5 |0 o0 ([ a0 anzax)
We easily check that
e IN+2 e IN 2
o505 <21,
H v V. g TV (%)

sincee~1dr (—A) + e IN commute withe "IN. Thus, using[(33) there exists, ¢ > 0 such that

[1r@w. e, RIs0wds < L [ 1#(S%] 51 (U5 0W] 51 ds

1 ect 2
< e, .

Finally, the claimed inequality in Propositi¢n J5.1 follows collecting the previous estimates and letting
_ 1/4
v=_¢ . |
We have the following two corollaries.

Corollary 6.5 For any¢o € H?(R) and anyé < L?(R) we have the strong limit

S— nmow<i£j¢o>* e“/fHEWuS)e*"/f”fvw%bo) = VReEd
£—

where¢; solves the NLS equatioE{l?) with initial daga.
Proof. It is enough to prove for any, ® € ¢, the limit:

Iim0<e’“/£H€W(§¢o) W, W(¢) e*”/EHSW(gqbo)(D) = dVRAEH) (@) (41)

E—
Indeed, using Propositidn .1, we show

| V2 | V2 V2 V2
(/W (S go)W.W(E)e TW(T00)®) = (W(T01)Ua(t.0)W.W(EW(S 01Uz (t.0)P)
+ O(eY®).

Therefore by Weyl commutation relations we have

<W(I££2¢I)U2(tao)w’W(E)W(\I/_S§¢I)U2(tao)q)> = <U2(t70)L|J7W(E)U2(t’O)q)>ei\/zRE(f-,¢t> )

Thus the limit is proved since— limg_oW(&) = 1. |

Recall that%; is the subspace of spanned by vecto € .Z such thatP(™ = 0 for any indexn € N
except for finite number. Note tha#p N ¥, is dense inZ.
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Corollary 6.6 For any¢o € H?(R) and any, ® € #oN¥, and be Z,4(L3(R)), we have

lm (W2 o), /2He Bk /et Y2 00)0) — (o) (9, 9.

where¢; solves the NLS equatioE[l?) with initial daga.
Proof. Consider &p,q)-homogenous polynomisle &7, 4(L?(R)). We have

o = <W(|£82¢0)LP7 eit/EHg bWiCkefit/SHg W(|£§¢O

= ((N+ 1)‘*\/\/(%450)41, gt/eHe g, g it/eHe (N - 1)"\N(i£82¢0)d3> ,

)®)

whereB; := (N + 1) 9bWick(N+ 1)~P. The number estimat¢ (10) yields
1Bl < HB||3(L§(R9),L§(R<1)) ’
uniformly in € € (0,1]. LetK; be the positive operator given by
R = N+ 2Reiz ¢0) """+ |19t/ |72 -

By (1), we get

o = <W(§¢o)(|<lo +1)%y, ¢t/eHe g, e*“/SHEW(gqbo)(No +1)PD).

Now, observe that

lim (o + 1)P® = (1+[[6]Zz)P®  and  lim(fo+ 1) = (1+ 1925

So, using Proposition §.1 we obtain

(1+ ||¢0||Ez(R))p+q <W(\i/—5¢t)uz(t,0)w, ng(g

(Ua(t,00W, (K + 1)~ 9b(. + ¢ )WV (R + 1) PUy(t, 0)®) + O(£Y/8) .

o ¢r)U2(t,0)®) + O(™/®)

We setW, = (N +1)4(K + 1)U, (t,0)¥ and®; = (N + 1)P(K; + 1)~ PUy(t,0)® and remark that we can
show for¢y # 0 andpt a positive integer the following strong limit
1

s—IimN+DH(N+1) P —— =
N )

(42)

This holds since we have by explicit computation

[ ]] || ¢t ]]
NN

[1(a(@1) +a(¢)) (N +lg]|*+ 1) | <

)

for ¢ sufficiently small and hence we can write
Ke

(N+ DR+ 1)t = (N+ 1) (N+ || >+ 1) *[(alr) +a"(¢)) (N + | ¢e|[P+ 1) T +1]

This proves|@]2) fop = 1 sinces—lim,_.o % = 0. Now, we proceed by induction qnusing a commutator
argument

=z
+
N
=
+
£
2t
+
2
|
=
+
N’

|
=z
+
2 B2
=
zZ
+
I
=
Pz
+
=
: =
+
'—\
v
=



with the observation that the second term of (r.h.s.) caye®strongly to 0. Therefore, we obtain

. 1 . 1
lim W, = qUz(t,O)llJ and Im(}CDg =
E—

—_— Uy (t,0)d.
£-0 (1+||E||EZ(R)) P

A+ 18]z
Itis also easy to show by explicit computation that

w—lim (N+ 1) MUK N+1) P =0,

for anybys € Z;s(L?(R)) such that 0< r < p and 0< s< @. Hence, lettingge — 0, we get

im.a/ = (L4 [[9ollFzm)) P lim (We, (N +1)~%(d) (N+1)~Pe)
= b(¢) (Uz(t,0)W, Uz(t,0)®) = b(¢) (W, D),
since||t|[ 2r) = [|9ol [ 2(r) @nds—lims_o(N+1)~H =1 for u > 0. [ |

We identify the propagatdy,(t,s) as a time-dependent Bogoliubov’s transform on the Fockesepr-
tation of the Weyl commutation relations.

Proposition 6.7 Let¢o € H2(RR) and consider the propagatori(t, 0) given in Propositiof 5]5. For a given
se R leté& € H?(R), we have

Uz(tas)w(%)UZ(s’t) :W(B(it’i\/sg)ss

wheref(t,s) is the symplectic propagator orf(R), solving the equation

i0& (X) = [~A+2/$p (X)) &(x) + ¢ (x)? & (%),
{ E\t:s = &s, (*3)

)

such thatB(t,s)&s = &.

Proof. Observe that ifpo € H2(R) then the solutior; of the NLS equation[(]7) with initial condition
¢o satisfiespy € C°(R,L*(R)). Hence, by standard arguments the equafich (43) admitsja@sblution
& € CO(R,H%(R)) NCY(R,L?(R)) for any&s € H?(RR). Moreover, the propagator

B(t,5)és = &,
defines a symplectic transform @A(R) for anyt,s € R. This follows by differentiating
Im(B(t,s)§,B(t,s)n),
with respect td for &,n € H?(R). Furthermorep satisfies the laws
B(s,s)=1,  B(t,s)B(sr)=L(t,r) for t,r,seR.

Now, we differentiate with respect tahe quantity

u2<s,t>W<i%>uz<t,s>

in the sense of quadratic forms oA, with & solution of [4B). Hence, using Lemrhal6.2 (ii), we get

& Uz(Sﬂ)W(%Et)Uz(t,S)] = Ua(sOW(Z&E) [W(RR&) AW (2 &) ~ iAz(t)

(44)
i (Re(ft,idtg‘t>+ %Re(z,idtfowmk)} Ua(t,s).

22



Now, by [AmNi], Lemma 2.10], we obtain

%E’[)*AZ(UW(%&

wherem(t)|[Z is the continuous polynomial o' (R) given by

wW( ) = e tm(t)[z+ Veg] Wik,

m(t)[2 = (z —A2) + Pa(t)[2].
Therefore, the (r.h.s.) oﬂh4) is null if we show that
m(t)[z+ Ve&] —m(t)[Z — (eRe(é,iq&) +2vERe(ziq &) = 0.

This follows by straightforward computation. |

7 Propagation of chaos

Propagation of chaos for a many-boson system with pointip@raction in one dimension was studied in
[ABGT] (see also the related WorT]). Here we prove thisiservation hypothesis for such quantum
system using the method ifif [Ro$ch]. Thus, we are led to stuelasymptotics of time-evolved Hermite

states

e /et 95N with ¢ € HZ(R), |[@ol| 2m) = 1,
whenn — o with ng, = 1. We denote the coherent states by

E(¢o) := W(g‘ﬁo)Qo,

whereQq = (1,0,---) is the vacuum vector in the Fock spae To pass from coherent states to Hermite
states we use the integral representation proveld in [RoSch]

2n . ) /2&n /NI
on _ / e MEE?P)do, where = elif.
0 &n

0 T om (45)

Asymptotically, the factos, grows as(2rm)Y/4 whenn — oo,

In the following proposition we prove the chaos conservakigpothesis.

Proposition 7.1 For any ¢ € H*(R) such that|¢o| |2y = 1 and any be 2p p(L*(R)), we have

lim <¢(1)8n7eit/£ann bWiCk efit/Eann ¢(I)8n> — b(¢t)7

n—oo

where rg, = 1 and ¢; solves the NLS equatioE[l?) with initial dapg.

Proof. It is known that if a sequence of positive trace-class opesat, on L?(R) converges in the weak
operator topology t@ such that lim_.. Tr[pn] = Tr[p] < o thenp, converges in the trace norm po(see,
for instance@\]). This argument reduces the proof to theeca

°

b(2) = [z f) (6.2 .

wheref;, g € L?(R). For shortness, we set
Eg=E(€%¢) and E}=e V/aHag,.

Using formula [45), we get

./ A®N Ht/enHey pWick o—it /enHgn A QN Vg —in(6-6) /=t Wick —t /
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Itis easily seen that
(N—i—l) Pa— |t/angn¢®n 2—Pg— |t/£ann¢®n

Therefore, we write

4py2

(27-[)2 “ [0327-[]2

o

rn:

e MO-O)EL (N+1) r! ) []a@)N+D) “PE) dode’.

]

Now, we use the decomposition

a (f)— (68 f N /. hO\]ai(# 60 —#0)
rl ﬂa IJC/VPII;U (fi) — (¢, fi)] jl;'c[a(gl) (9j, ¢ ))e

X DW u<gj,¢t>,

where the sum runs over all subskt3 of .4, := {1,---, p}. Thus, we can write

©

#I+#.]<2p p
Fo—b(y) = 4 Vz/ [(n-#0)6—(n-#)8/] (L BYVIKEL) dade’,
I.]C/V 0,21

whereE}, ;= (N+1)~PE}, andB, 5(z) are sums of homogenous polynomials such that

(Ely, B/*EY) = I|;|<¢t, fi) J|1<gj,¢t> x <i|;L[a<fi> — <fi,¢f”>]éte/,jgc[a<gj> — <gj,¢f’>JE‘e> :

We have, for < #,#J < p, by Cauchy-Schwarz inequality

(Eb B E) < T Nl [flhee
icl,jed

X X

F

[~ {197 E}

[ aloi) — (g5 6)1E5
jele

F

In the following we make use of the positive self-adjoint ier
Ni= N+ 2Re(z 60"+ | |21

Observe that we have for ay € [0,2m] andr > 1,

|L| — (fi, 02 )EL = _|L|a(f|)(N+1)p7ﬂ(t)Qo
F 1= F
< r|‘ia(f.)(l<l+1) Pa(fr) 7 (t)Qo
I= 7
- rria(fl)[a(fr),(N+1) Plw (1)Qo| .
I= F

We easily show that
la(f)? (R0l 7 < |Ifrllizw) Ve 17 (Ol 2, 71y -
Furthermore, we have

Ifafe), (N+ 1)) (R +1) P[], 5, <Con,
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using [2B) and the fact théa(f,), (N + 1)P] is a Wick polynomial where we gainegj in its symbol, see
[AmNi1} Proposition 2.7 (ii)]. Recall also that we have b thumber estimat¢ (10) ar{d|28),

r—1
|_|a(fi)(l§l+1)’p <C,
= 2(7)
uniformly innand6’ € [0, 2m]. Therefore, we have
4Py —i[(N—#3)8—(n—#)0'] /=t pWick 2p—(#+#) "%
e (Ey, BYIMEY) dode’| < C yaer” —0. (47
o<#%3<p(2")2 (0,27 o "

It still to control the terms = p,#J = p—1 and # = p— 1,#J = p which are similar. In fact, remark that
we have

ép:)i 02172 e l(-PO-(n=prLOlEL BVIKEL) dode’ =
0,2

4an

/ dn-p+1) 6’<Et Bchk glt/&nHen ¢ (n—p) ) do’ .

Now, a similar estimate a§ (47) yields that

i A —i[(n-p)6—(n— ick 2 n—o
e ((n=Po-(n-p+1)8] (gL BVIKEL) dode’| < C yny/E — 0.
’(271)2. 0272 (Eg I Ap o) <Cywhven —
Thus, we conclude th%t limn —b(¢r) =0. |
Remark 7.2

1) Let V{(n be the k-particle correlation functions, defined tﬂ/ (3),amsated to the states™ é/anEnqb@”.
Then Proposmor.l implies the following convergencéattace norm

lim = $e(xa) -~ 9 (%) Be(ya) -~ ey -

2) In terms of Wigner measures, introduced in JAnNIiL, AthNizhpRsition[7.1 says that the sequence
(e 1t/&nHen 05" )neny @dmits a unique (Borel probability) Wigner measyegiven by

1 27T
Zr./o 8404, 06,

wheredgoy, is the Dirac measure onA(R) at the point & ¢;.

Appendix

A Elementary estimate

Lemma A.1 Foranya > 0 and any®" €.7(R"), we have

| 2 .
'/Rn71|w<n>(><2,xz,...,xn)| i+~ < 5 (D5, W W) g + f|w oz - (48)

Proof. Letx, &’ € R"! andg € .7 (R"). Let us denote the Fourier transformgply

§(&) = / e % g(x) dx

JRN

We have L L
_ x& [ + [ 4 / /
00) = g [, (55 [ 06 £ 081 ) a
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Cauchy-Schwarz inequality yields

_ dé
’/9517 dEl /|g (£1,€")| (a1 + a&P)dé; x /Wlaff'
Therefore, we get
: , B /
L, . Jo0x)Fax — 4n2( o /Rnl/gél, dey| de
< / 2(a 1 ag)dEyde’.

Setg(xg, -+ ,Xn) = W (X XXy, .. %), we obtain

V2 7 V20
‘/]Rn—l

2 2
WO (o, %0, -, Xn)| dXp---dxy = 190, %) | dxe- - dxg

IN

(a 1+ a&?+a&?)d&dé’

NP (a t4+ a2+ ak?)dédE’ .

Thus, by Plancherel’s identity we obtain

' 2 a 2 2
Lo 190020, ) P < 55 D+ DLW W) g + 2 ﬁw 2, -
Thanks to the symmetry 68(" | it is easy to see that
(D2 +D2)WM W) = 2(D2 W Yim),
Hence, we arrive at the claimed estime@ (48). |

B Commutator theorems

Here we first recall an abstract regularity argument fronisHaavine work , Theorem 2].
Theorem B.1 Let A be a self-adjoint operator and let S be a positive sdjbiat operator satisfying
e 7(S C2(A),
o Li[(AW,SW) — (SW,AW)] < c||SY2W| |2 for all W € 2(9).
Then2(S) is invariant by e for any te R and the inequality
1526 Ay < &l ||SH/2y)|
holds true.

Next we recall the Nelson commutator theorem (seg, [RS, Theorem X.36’]|E\l]) with a useful regularity
property added as a consequence of Faris-Lavine’s Thelorgém B

Theorem B.2 Let S be a self-adjoint operator on a Hilbert spa#é such that S> 1. Consider a quadratic
form a(.,.) with 2(a) = 2(SY?) and satisfying:

(i) |a(W, ®)| < c1||SY2W|| ||SY2|| for anyW, d € 2(SV/?);
(i) |a(‘-IJ7SCD) - a(SP,¢)| < CZHS]-/ZLIJH ||Sl/2CD|| foranyW, o ¢ @(33/2)_
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Then the linear operator AZ(A) — #, 2(A) = {® € 2(SY?): # 5 W — a(W,d) continuous} asso-
ciated to the quadratic form(a .) through the relation

(W,AD) , =a(W,d) forall W e 2(SY2),d € 9(A)

is densely defined and satisfies:

1. 2(§ c Z(A) and||A¥[| < c[|S¥|| for any¥ € Z(S);

2. Ais essentially self-adjoint on any core of S;

3. e A preserves7(SH/2) with the inequality

18426 Aw|| < &2t |2y
whereA denotes the self-adjoint extension of A.

Proof. The point (3) follows from Theore@.l since its assumptions

e 2(5C2(A),

o +i[(AW,SW) — (SW,AW)] < c,||SY2W||?, for anyW € 2(9),

hold true using items 1), 2) and hypothesis (ii). |
We naturally associate to a self-adjoint opera&or 1 acting on a Hilbert space?’, a Hilbert rigging
1 Wheres#, is defined as7(S'/?) endowed with the inner product

<LIJ7 ¢>,}f+1 = <Sl/2w1 81/2(0>,}{’7
and.# 1 is the completion of7 (S %/2) with respect to the inner product
(W, 9) 1, = (S2W,S20) .
Assumption (ii) of Theorer@.z can be reformulated in sonepslightly different ways.

Lemma B.3 Consider a self-adjoint operator S satisfying>Sl with the associated Hilbert rigging#Z,
defined above. Let A be a symmetric bounded operatef (7.1, .7 1), then the three following state-
ments are equivalent,

(1) There exists ¢ 0 such that for any, ® € 2(S¥?),
[(S¥,AD) — (AW, SD)| < ¢ [|W[L, [Pl

(2) There exists ¢ 0 such that for any, ® € 2(SY?) andA > 0,
[(AS+1)7'SW,A(AS+1)710) — (A(AS+1) MW, (AS+1)'SP)| < c||W||r, 197,

(3) There exists ¢ 0 such that for any, ® € 2(SY?) andA > 0,
[{(AS+1) 1S, A®) — (AW, (AS+1)1S®)| < ¢ [|W]|y, [Pl L, -

Proof. e (1)=(2):
Observe that i\ > 0 then(AS+1)"12(SY?) c 2(S¥?). Assume (1) and let us prove (2) ft,® €
2(SY?). Using (1) with® = (AS+ 1)~ W ¢ 2(S¥2) and® = (AS+ 1) d € 2(S¥?), we obtain

|(SP,A®) — (AP, SB)| < c[|[(AS+1) W], x[(AS+1) Tt . (49)

Itis easy to see that the right hand side[of (49) is bounded| 84| -, , [|P|| ,,. Thus, we obtain (2). Now,
to prove (2)=(1), we observe thdd S+ 1) 2(S¥?)  2(SY?) and use (2) with¥, = (AS+1)W € 2(SY?),
D, = (AS+ )P € 2(SY?) such thatV, ® € 2(S¥?). Therefore, we get fok > 0

[(SV.AD) — (AW, S0)] < ¢ Wi L, % @, - (50)
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LettingA — O in the right hand side ofI]SO), we obtain (2).

e (2)&(3):

LetW,® ¢ 2(SY?) andA > 0, we have as identity it (7,1, 1)
AAS+1)(AS+1) 1=AASAS+1) 1+ AAS+ 1)L,

sinceAS(AS+ 1)t € Z(#1) and(AS+ 1)t € L(H#,1). Therefore, sincéA S+ 1)~1SW € J#,; and
(AS+1)71Sb € 7, 1, the following computation is justified

(AS+1)71SW,AD) — (AW, (AS+1)1SD)
= (AS+1) ISV ANASH1)(AS+1) 1) — (AAS+1)(AS+1) W (AS+1) 1sb)
= ((AS+1) 1SW AAS+1) D) — (AAS+1) W, (AS+ 1) 1sp).

So, this shows the equivalence of the statements (2) and (3). |

C Non-autonomous Schodinger equation
Consider the Hilbert rigging
FC CH C I

This means that# is a Hilbert space with an inner product.),» and%; is a dense subspace of’
which is itself a Hilbert space with respect to another inpr@duct(.,.) », such that

Ul = V(U u)se < |JUllg =/ (WU)y  YUEAL.
The Hilbert space’” is defined as the completion g with respect to the norm

Ul = sup  |(f,u) (51)
te b1, =1

This extends by continuity the inner prodyct) ,» to a sesquilinear form o’ x %, satisfying
(W, &)l < lUlloe, |Ellr. Yue I NE €52

Furthermore, we have

lUlley = sup |(u, &)l (52)
gt ||Ell =1

Letl be aclosed interval & and Iet(A(t))tel denote a family of self-adjoint operators g#f such that
Z(A(t))Ns# is dense i, andA(t) are continuously extendable to bounded operatog (7., 722 ).
We aim to solve the following abstract non-autonomous &dimger equation

{ iGu=A{t)u, tel

u(t=0)=up, (53)

whereug € 57 is given andt — u(t) € J% is the unknown. This is a particular case of the more gen-
eral topic of solving non-autonomous Cauchy problems whe#gt) are infinitesimal generators -
semigroups (se€ [Si[,[Ki]). We provide here a useful regTitteoren] CJ2) which follows from the work of

Kato [K3].

Definition C.1 We say that the map
I x1>3(t,s)—U(t,s)

is a unitary propagator of the problerﬂSS) iff:

(@) U(t,s) is unitary onZ,

(b)U(t,t)=1and U(t,s)U(s,r) =U(t,r) forallt,sr el,

(c) The map & | — U(t,s) belongs to &(1, . (#,)) NCL(I,.£ (., ")) and satisfies

idUt, 9w =AU, 9P, YYe AVt sel.
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HereCX(1,%) denotes the space kicontinuously differentiablé-valued functions whergs is endowed
with the strong operator topology.

Theorem C.2 Let | be a compact interval and le¥?. ¢ ¢ C 2#_ be a Hilbert rigging with(A(t))
family of self-adjoint operators og?” as above satisfying:

()1 5t— At) € L (5 ,2.) is norm continuous.

(i) R > 11— €™ ¢ 2(7,) is strongly continuous.

(iii) There exists a family of Hilbertian norm@)|.||;)

tel a

te1 ONIZ4 equivalent td|.|| . such that:

o> 0vy et ||yl < e S lylls and [[€0 gl < eyl

Then the non-autonomous Cauchy problEh (53) admits a uminjtery propagator Ut,s).
Moreover, the following estimate holds

Ve A, [UEIY[l < €3 [ys.

Proof. We follow the same strategy as iKa] and split the proof ihit@e steps. We assume, for reading
convenience, that the interials of the form[0, T], T > 0 however the proof works exactly in the same way
for any compact interval. Remark also that there is no w&iri if we assume that.|| . = |[|.||o-
Propagator approximation;
Let (to, - ,tn) be a regular partition of the intervhalvith
iT o
tj = il =0,---,n.

Consider the sequence of operator-valued step functidiredeby
n-1
An(t) == A(T) 1y (1) + Z)A(tj)l[t,- (),
=

for anyn € N* andt € |. Assumption (i) ensures that
lim [[An(t) = AM)l.2(2) =0,
uniformly int € I. We now construct an approximating unitary propagekdt, s) as follows:
-if tj <t,s<tj 1 thenUn(t,s) = e 1-9AM)
-iftj <s<tjp1 <o <t <t <tgthenUn(t,s) = e WAL .. gitiai=9Al) (54)
Siftj <t <tji1<--- <t <S<t,qthenUn(t,s) = e tlAL) . g Ii=9Al)

foranyj=0,---,n—landl =1,--- ,nwith j <I.
By definition, the operatofdy(t,s) are unitary ons# fort,s e | and satisfy

Un(t,t) == 1, Un(t,s)* == Un(s,t) . (55)
Moreover, one can first check that
Un(t,s)Un(s,r) =Un(t,r) forr <s<t, witht,s;r €l

and then extend it for anft,s,r) € 12 with the help of ). Thereforél,(t, s) satisfy the properties (a)-(b)
of Definition[C.}. Again by[(54) and assumptions (i)-(ii) wave

'atUn(taS)w:An(t)Un(taS)w and _iaSUn(tvs)Lp:Un(taS)An(S)wa (56)
foranyy € s and anyt,s#tj, j=0,--- ,n.

Convergence of the approximation:
Assumption (i) implies that

|| iSnAlln) .. gmisAl) || < TSt %) |||,
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and

||e 1Al ... gisnAlln) |5 < TS+ |y |7,

foranys; >0, j =1,---,n. Hence, using the equivalence of the notir% = ||.||» and||.||t one shows
the existence dfl > 0 (M = €*T) such that

Un(t,9)||. () <M €S and by duality |[Un(t,S)||z(x) <M e, (57)
Furthermore, the same argument above yields
[[Un(t, ) @[l < ST/, (58)
Using (56) we obtain for any € 7,
Jr [Un(t, n)Um(r, )] = iUn(t,r)[An(r) — Am(r)Um(r, )y, (59)
forr # j%,r #* % with j = 1,--- ,max(n,m). Integrating [59) we get the identity

Unit, 90— Un(t, 910 =1 [ Un(t.r) [Aa(r) — An(r)] Un(5 91 .

Now (57) yields

[1Um(t.S) = Un(t.S)|| 2 e ) < M|t — s|e?t SquIIAn(r) —An(N) 2. - (60)
re

Therefore, for any,s € |, the sequenc(t,s) converges in norm to a bounded linear operakdr, s) €
ZL(A,, ). SinceUy(t,s) are norm bounded operators gff uniformly in n, it follows by (57) that
they converge strongly to an operator#i(.#”) continuously extending (t,s). Moreover, this strong
convergence yields

lim (@, Un(t,5)@).r = (QU(L,9)W)r VY € VP E H, .

where(.,.) » is the continuous extension of the inner produc#éfto the rigged Hilbert space#”.. Thus,
using (5), we obtain

(@U(t,9)0)r| < Me™ @l (@], -
Hence, it is easy to see @52) that
U (9] 2() <M,
A similar argument yields
U (t,9)]] ) < 1. (61)
Now, sinceUp(t,s) satisfy part (b) of Definitiol, we easily conclude that
utt)=1 U({,nU(rs =U(,s), tsrel, (62)

by strong convergence i (7). Furthermore, combining (51) anld |62) we show the unitasity (t,s)
on 7. Thus, we have proved thef(t,s) satisfy (a)-(b) of Definition C|1.

For anyy € %, the continuity of the map > t — Uy (t,s) € 5 follows from the definition of
Un(t,s). Now, we prove

!Lms(qovu(tas)w)ﬁf: ((pa w)jf VU’E&%@”V(PE«?ﬁa
by applying are/3 argument when writing

(@UtY)r — (@)l < (o= &Il Ut )Pllrrr + (o [U(t,s) —Un(t,s)]| @) x|
+ (@, [Un(t,s) = w)oe |+ llo— @l e @]
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where@q — @in .. Therefore, by the duality77, ) ~ 7., we get the weak limit
W—LmSU(t,s) =1,
in £ (). Now, observe that when— swe can show by[($7) that
imsup || (&7, < [WlLr.

So, we conclude that

I
©

imsup U (¢, 99— |13, < limsup(|[w]3. + 1€ 9Y[3. ~2Rew.U 9w )
This gives the continuity of >t — U (t,s) € % since we have iw#;
s—!iLr?U(t,s) = s—!imU(t,r)U(r,s) =U(r,s).
Now, we have foy € 7, as identity inz2
Ty = y—ine) [ e ™M Oyar, (63)

since this holds first fog € Z(A(s)) N7, and then extends by density 6f(A(s)) N7, in .. By (63)
we have

efiTA(S) Y-y
T

. 1 T
| HAGUILr < 71N zor e | [l 90— e, dr

and hence using assumption (ii), we show the differenttgtof 7 +— e Ay for € .. By differen-
tiating e -DASUL(r, s)@ with @ € 7, and then integrating w.r.t, we get

Un(t,S)ip — e {980y =i [ e (DA [A(S) — Ap(r)Un(r,s)ydr.
Lettingm — oo in the latter identity and estimating as 60), one obtains

. t
Ut )y — e IR < M2 /5 IA(S) = ALz (e ey dr | W]z, -

Using the fact that

. e lt=9Aly —y )
lim |t_s| / A ~ Al e ydr =0 and  lim®——F—F —_ing)y
it holds that Uty
. t,s)y— .
LmS — 1 s +IA(S)!,UH% =
Thus, we obtain with the help of (62)
(81— !imsu (t,s)U(s,tr)_ws—U (sNY _ AU (S0,

foranyy € 7, and any,s< |. Hence we have proved the existence of a unitary propagédtos) for the
non-autonomous Cauchy probleﬁl(53).

Uniqueness:
Suppose tha¥/ (t,s) is a unitary propagator foE’SS). By differentiatitg(t,r)V(r,s)@, ¢ € S with
respect ta we get

V(99 - Unit. 90 =1 [ Un(t.r)An(r) ~ AV (5,50
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Using a similar estimate aﬂ60) we obtain

VS0~ Ut 0l < ME 50D IV (1) | [ TIAT) = A0, ] L

refst]

and since the r.h.s. vanishes wiren> 0 we conclude tha¥/ (t,s) = U(t,s).
Finally, the uniform boundedness principle, equivalerfceasms||.||t, ||| and the inequality[(§8) give
us the claimed estimate,

Yy e Ay, (U)Wl < liminf [[Un(t,s)w[le < €S |g]ls.

Remark C.3 It also follows that(t,s) — U(t,s) € £ (5%, ) is jointly strongly continuous.

In the following we provide a more effective formulation difet above result (Theorem:.Z) which
appears as a time-dependent version of the Nelson commthatrem (sees.g, [, [@] and Theorem

B-2).

We associate to each family of self-adjoint operaf®8 )|, S} on.# such thatS> 1, S(t) > 1 and
2(S(t)Y?) = 2(SY?) for anyt € |, a Hilbert rigging.##.1 defined as the completion & (S*/2) with
respect to the inner product

(W, 0) 5, = (S, S 2g) ,,. (64)

Corollary C.4 Let| C R be a closed interval and I€tS(t )11, S} be a family of self-adjoint operators on a
Hilbert spaces# such that:

e S>landSt)>1,vtel,

e 2(S(t)Y/?) = 2(SY?), vt € 1, and consider the associated Hilbert rigging’.1 given by [64).
Let {A(t) }tel be a family of symmetric bounded operators#f{.7#; 1,7 1) satisfying:

o tcl— Alt) € L(51,5 1) is norm continuous.

Assume that there exists a continuous functioh + R such that for any € |, we have:
(i) for any ¢ € 2(S(t)¥?),

o (W, SOW)| < F() |ISOY2@;
(ii) for any ®,W € 2(S(t)%/?),
[(SHW,AM)P) — (ADW, S)®)| < f(1)]|S(H)2W||[|S(t)?D]].

Then the non-autonomous Cauchy probl@ (53) admits a unigiteery propagator Ut,s). Moreover, we
have

IS)Y2U (t,8)y|| < €1 10T | 51522y
In addition, if we have ¢ c; > 0 such that ¢S< S(t) < ¢S for te I, then there exists & 0 such that
U (t,9)]| 2, <C€ Kty e, (65)

Proof. First observe that the operaté(t) satisfies the hypothesis of Nelson’s commutator theorera<{Th
orem[B.p) for anyt € I. Hence, we conclude that) is essentially self-adjoint 0@(5@)3/2) which is
dense in#,.1. We keep the same notation for its closure. Moreover, theanngroupe ™ preserves
1 and we have the estimate

1S(6)"/ 2™ || < O ]y (66)

32



Now, observe that— e "y ¢ 7, is weakly continuous for any € .7, . This holds using a /3-
argument with the help of the estimate

(. (€~ 1)g)| < @+ D) 1= fulloe, @l + (€2 = DT, )

wheref, € S is a sequence convergenttdn 721 andt is near 0. Since strong and weak continuity
of the group of bounded operat@s'A(® in . (.#,1) are equivalent, we conclude that assumption (ii) of
Theoren{ C]2 holds true.

By assumption (ii), we also have

d
SISOV < 1St 2w

Hence, by Gronwall’s inequality we have
IS 2y]? < &0 s 2y)2, tsel. (67)
Now, we use Theore@.z with the Hilbert rigging
H =1 CIH CH =70
and the family of equivalent norms ot given by

Wl == 1|SE)Y 2] .

Indeed, assumptions (i)-(iii) of Theordm [C.2 are satisfiedriy compact subinterval dfwith the help of
(E)—). Therefore, we obtain existence and uniquenkasumitary propagatod (t,s) of the Cauchy
problem ) in the whole intervalwith the following estimate

U (t,9) ]| < €S My FO ||y,

for anyt,se | and wheré\(t,s) stands for the interval of extremitiess.
Using the multiplication law of the propagator, we obtain &my partition(t, - ,tn) of the interval
A(t,s) the inequality

n—1 =i
Hum$wms[lé n e T g,
J:

whereA; are the subintervals;,tj,1]. Sincef is continuous, by letting — o, we get
V9wl < &= |y,
Finally, the assumptioo;S< S(t) < c,Sfort € 1, allows to involve the nory.|| , ,. Thus we have

L

Ut 9P|z, < NG

1 t [ 1
Ut 9l < Eez”“md“ Wlls=<y/, &I FOT ],
[
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