arXiv:1108.0615v2 [math.CA] 15 Mar 2012

ON THE SCATTERED FIELD GENERATED BY A BALL INHOMOGENEITY
OF CONSTANT INDEX

YVES CAPDEBOSCQ

ABsTrRACT. We consider the solution of a scalar Helmholtz equation where the potential (or
index) takes two positive values, one inside a disk of radius € and another one outside. We
derive sharp estimates of the size of the scattered field caused by this disk inhomogeneity, for
any frequencies and any contrast. We also provide a broadband estimate, that is, a uniform
bound for the scattered field for any contrast, and any frequencies outside of a set which tends
to zero with e.

1. INTRODUCTION

We consider a scalar field satisfying the Helmholtz equation with frequency w > 0 in R2. Given
a prescribed incident field «?, a non-singular solution of
(L.1) Au® + wiqou’ = 0 in R?
we are interested in the solution u. € HllOC (R?) of

(1.2) Au, + w?q.ue = 0 in R?,

where, for |x| > ¢, u. = u' + u$, and ¢. equals ¢ inside the inhomogeneity and ¢y outside. We
take the inhomogeneity to be a disk of radius €. The coordinate system is chosen so that the

inhomogeneity is centered at the origin. In other words

{q ifr<e

ge(r) = q ifr>e

We assume that both ¢y and ¢ are real and positive. We assume that the scattered field satisfies
the classical Silver-Miiller [9, [10] outgoing radiation condition, given by

o o . s 1
(1.3) Prle ~ WUz =0 <\/;> ,

where, as usual r := |z|. Altogether, the conditions (1.1}1.2}[1.3) imply that the incident field u?,
the scattered field u and the transmitted field ul = u. for r < e, admit series expansions in terms
of special functions, namely

oo

(1.4) u'(z) ~ ; anJn (v/qowr) exp (inarctan (%)) ,
(1.5) ui(x) ~ _i an Ry (we, ) HY (\/qowr) exp (z n arctan (%)) ,
(1.6) ul(z) ~ i: anTy (we, N) Jp, (/qwr) exp (inarctan (%)) .

In the above formulae, J, (z) = §R(H,(L1) (x)), and © — HY (z) is the Hankel function of the first
kind of order n. The rescaled non-dimensional frequency w., and the contrast factor A are given
by
(1.7) we 1= y/qowe and X := qi
0
1
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The reflection and transmission coefficients R,, and T}, are given by the transmission problem on
the boundary of the inhomogeneity, that is, at » = €. They are the unique solutions of

Ty (we, N) I Mwe) = Jp (we) + Ry (we, \) HY (ws),
Ny (we, M) Jfy (Awe) = T (we) + R (we, A) HY' (w2)
which are
R (HD (@0) T (w) = M () HY (@)
(1.8) Ry (we, ) = — ,

HV (we) Ju (Awe) = Ay, (Mwe) HY (we)

and, after a simplification using the Wronskian identity satisfied by J, (-) and ) OF
2i 1
T B (we) Jn (Ae) — M we) HD (w2)

It is well known that both R,, and T,, are well defined for all A > 0 and w. > 0, see e.g. [4] for a
proof. Note that R,, = R_,,, and T,, = T_,, for all n.

In , and , the ~ symbol is an equality if the right-hand-side is replaced by its
real part, the fields being real. By a common abuse of notations, in what follows we will identify
u' and u? with the full complex right-hand-side.

Such expansions have been known for almost two centuries. They allow in principle, with the
help of modern computers and recent numerical methods, to compute the scattered field accurately,
given the incident field w, € and ¢/qo. Yet, they do not give any insight on the behavior of the
scattered field when the frequency, the contrast, or the radius € vary. When ¢ tends to zero,
the behavior of the scattered field for this problem has been studied recently in [4]. The cases
considered are either a,, = 0 for n > Ny, or I(q) > 0, or full reflection on the boundary of
the inclusion, that is, u. = 0 at » = . In this work, we focus on non lossy inclusions, that
is, when $(q) = 0, and we provide sharp estimates of the scattered field. These estimates are
derived for any sequence (a,), thus for any incident field. They are completely explicit, up to
the numerical values of the constants involved. Such detailed results are possible because of the
extensive studies of Hankel functions conducted by others. We will quote frequently the classical
treatise of Watson [17], and we will indirectly refer to the book of Olver [12] by frequently citing
the NIST Handbook of Mathematical Functions [I3]. Other papers related to properties of Bessel
functions [3] 6l [7, 8] 14} [15] [T6] are also cited in the proofs. Some additional estimates that we could
not find in the literature are provided in Appendix[A] Some of them could be new, but we have not
performed a comprehensive search of the vast literature on that topic. However with the exception
of Section [4] our main results are stated in a form that does not require any knowledge of the
literature related to Bessel functions, except possibly for some universal constants (approximate
numerical values are provided).

Let us now discuss the norms we shall use. Given any f € C°(R?), its restriction to the circle
|z| = R is a periodic function. We can therefore define its complex Fourier coefficients

2
en (f(lzl = R)) = ; f(R,0)e” a0,

(1.9) Ty (we, \) =

and f(|z] = R) can be measured in terms of the following Sobolev norm

o0

(1.10) If (2] = Bl o == V2| D lea (F(l2] = R))[2(L + [n|)?,

n=—oo

for any real parameter o. By density, this norm can be defined for less regular functions. If
f(|lz| = R) is L*(0,2m) for example it is bounded, for any o < 0. To measure the oscillations of f
only, we will use

27

1

(L.11) I1F (el = B) g = || f (o = B) = o /f(lwl = R)df

0 He
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For radius independent estimates, we shall use the semi-norm

(1.12) N(f)=Vor | sup fen (f(lzl = R)) P(1+ [n)>e
n#0 >

It is easy to see that this norm is finite for a smooth f with bounded radial variations. Finally, to
document the sharpness of our estimates, we will provide lower bounds in terms of a semi-norm,

(1.13) N7 (f) = V2m sup sup |e,, (f(|2] = R)) |(1 + [n])7,

|n|>p R>0
where p is a positive parameter. These norms are satisfy the following inequality
If (lz] = B)|l o < N7 (f), and NJ (f) < N7(f),

and if for all R, f (Jz| = R) only has one non-zero Fourier coefficient,
NT (f) = N7(f) = sup || f (2] = R)ll gz -
R>0

We choose these three (semi-)norms ||-|| ;», N7 and N7 because they are compatible with expan-

sions (1.4), (L.5) and (1.6)). For example,

1

[es] 9 2
(L1 lug (o] = B)ll o = m( > Ra (@es N anl (1 [nl)*” |HD (aoR)| ) :
and

1/2
(1.15) N7 (') == v2r [ > Janl* sup [, (2)* (1 + |n)*”
n£0 x>0
Furthermore, it is known [7] that for all n # 0
4 1 6 1

1.16 s < JIn < co—m,
119 AR R e AR IE

therefore N9 (u’) has upper and lower bounds depending on a,, only, namely,

(1.17) 87” S lanl? (L 077 < (V7 () < 16777 S Janl? (14 0] 2.
n#0 n#0

The motivation for this work comes from imaging. In electrostatics, the small volume asymp-
totic expansion for a diametrically bounded conductivity inclusion is now well established, and
the first order expansion has been shown to be valid for any contrast [II]. It is natural to wonder
whether such expansion could also hold for non-zero frequencies, even in a simple case.

Section 2] addresses the case A < 1. In Theorem [2.I] we derive perturbation-type estimates when
Aw. < 1, that is, proportional to (A — 1)w? at first order, for all z such that |z| > e. This can be
seen as a generalization of the electrostatic case. We show that the range of frequencies for which
this result applies is sharp. In Theorem we provide an upper estimate for the scattered field
valid for all frequencies and all |x| > ¢, and we document its sharpness by providing a lower bound
for the supremum of the scattered field for all frequencies. Section [3| ] [f] address the case A > 1.
Theorem is similar to Theorem and applies when A\vVIn A+ 1w, < 1, and when Aw. < 1
if there is no zero-order term. In Section 4] we provide a detailed study of quasi-resonances.
These are frequencies located just after the perturbative range, at which the near-field becomes
arbitrarily large. Theorem provides lower bounds for the near field in this regime. We also
provide numerical examples of quasi-resonant modes. Section [f] provides far field estimates, that
is, for = such that |z|\ > e, valid for all frequencies. As in Theorem we show that the bounds
provided are sharp.

Another inspiration for this work is recent results concerning the so-called cloaking-by-mapping
method for the Helmholtz equation. In [5], the authors show that cloaks can be constructed using
lossy layers, and that non-lossy media could not be made invisible to some particular frequencies
(the quasi-resonant frequencies). In Section @ we show in Lemma that if an interval around
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these frequencies is removed, contrast independent estimates for the near-field can be obtained.

When A = 7, the following proposition is proved as a corollary of Lemma
Proposition. Assume ¢ < 1/7, and A = €~*. Then, for any o, 3 > 0, there exists a set I
depending on e, and B and a set Iy depending on € and [ which satisfies
In|lne
< el 1) < e
B
(lnel +1)

such that for all R > ¢,

18 1-28 )
sup  u (ja] = R)lI3, € | NI (u),
V@owe(0,00) \ I T aV R

and
1 7 1
sup %/ug(\ﬂ:R)ng —
Vawe©.00\ 1o |27 Vel + 172 R

We do not prove that this result is sharp. Combining Lemma with results of the previous
sections, we show in Theorem that broadband estimates uniform with respect to the contrast
are possible. In particular we show that when observed at any fixed distance |z| = R > 0, the
scattered field vanishes in the limit ¢ = 0 except in a set of frequencies of zero measure.

Section [7] is devoted to the proof of intermediate estimates stated without proofs in Section
and [3] Section [§]is devoted the proof of an intermediate estimate used in Lemma [6.2

2. INCLUSIONS WITH RELATIVE INDEX SMALLER THAN ONE

This section is devoted to the case when ¢ < gg. We estimate the scattered field at a distance
R > ¢ from the center of the inclusion. Our first result addresses the case of moderate frequencies.

Theorem 2.1. Let yo1 be the first positive solution of Yo (x) = 0. Whene < R, A <1, and
we < Yo,1, there holds

o Gl = Rl < (1= ) (345 1 ol = 2y + 90 o) | (Vo).

Furthermore, if for some p > 0 the first p Fourier coefficients of u' (|z| = (ew)™") are zero, then
for all we. < p there holds

s € %
2 (2] = Bl o <3 (1= N e/ = [l (2] = &) | v
To compare Theorem with known results, we derive the following variant.

Corollary 2.2. Whene < R, A <1 and w, < yp,1 we have

o il = Rl < 9.1 = )2 (Jut0)] |” ()] + yous ).

Remark 2.3. Under this form, one can read for example that the first order term in € is correct
both with respect to € and with respect to the contrast. First order asymptotic expansions for
small volume or small contrast perturbations [T}, 2] derived for a fixed frequency are of the order
of €2. Note that this estimate holds up to frequencies of the order e~': this shows that the
inhomogeneity can be viewed as a perturbation up to frequencies of that order.

Our second result is an estimate valid for all frequencies.

Theorem 2.4. When ¢ < R and \ <1 there holds

; ) , ) R
@1 sl el = Rl < 5y 547 (@) + VT )1 (D)

€
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Furthermore,
1 .
2.2 sup ||us (|z| =€)l o = —=Ng _(u'),
(22 sup 2 (Ja] = <)l > NG, (o)
where ng is the smallest positive number such that
49
2
<
A <1 9n2/3

for alln > ng.

Remark 2.5. The lower bound (2.2) shows that the upper bound (2.1)) is sharp in the case when
N7, and N are equivalent norms. We give a more precise upper bound in remark

The proof of these results is based on a careful study of R,, (w., A) conducted in Section [7]] We
prove that the following proposition holds

Proposition 2.6. Let y, 1 be the first positive solution of Y, () = 0. When A < 1, there holds,
foralln >1

o For all w. < yn1,

[ B (0, 2) B (00)| < 2 1 (0)
o For all w. < n,
1 We
[Ro (e, ) B ()| € 21 = 0 =55 [ (o)

o when \2 < 1— (3n+/3)2, then
1
R (0, 2) B ()] > 5 | ()]

For n =0, there holds
o For all w. > 0,

o When z < yo1,

2
Ro (we, A) H(Y (mf)‘ < (1 - Aw?

Proof. This follows from Lemma and Proposition O
Proof of Theorem[2.1} From formula (1.14]), we have

2
2| Hy (aowR)

lu (j] = R)|77e =20 Y lanl* (L4 |n])*" | Ro (we, A) JHED (w2)

1
2 HyY ()
2 (1) 2
+ 27 |ag| ’RO (we, \) HY (@wR)(
Note that yo,1 < 1. Proposition [2.6] shows that when w, <n and n > 1,
(1) ) e )W
[ B (e ) HED ()| £ 20 2) 2055 L ()| £ 30 X) (o o ()l

When n # 0, /z |H}(x)] is decreasing [I7, 13.74], therefore
2

)

2
R|HD (VaowR)| < e|HD (w.)

On the other hand, ag = u*(0), and Proposition shows that

2
™
[Ro (we, ) HEY (VagwR)| < (1= %) S zu? | B (VawR)

2V2
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Combining these estimates we have

2 (o] = B)IGe < (301 =Nwer/ 5 ) 20 D Jaal® (14 Inl)* > |, (o)
e i)
7T5 1 2
+ (W0 (1= Nw?)* T B (Vawn)|
= (3(1-Nw.)’ (; (ol = )| oy + 92 ' 0) | " (\/qT)wR)f) ,

and the conclusion follows. If for some p > 0 the first p Fourier coefficients of uf (|z| = (ew)™!)
are zero, a, = 0 for n =0,...,p — 1, and the argument above proves our claim.

Proof of Corollary[2.3 For all n > 1, it is known that [14] for 0 < z <y <mn,

" y2—ac2
< — .
nw < S wew (525

In particular,

,1

2
w Y
I (we) < nyJn (y0,1) €xp (?) <3we Jp (90,1) .

This implies that

Hui(|m|:w6)”H 1 < 3w Hu (|z| = yo.1) H -1

inserting this upper bound in the estimate provided by Theorem |2.]] - proves our claim. (]

2
Proof of Theorem[2.4 Starting from the formula (1.14]), using the monotonicity of ‘Hfll) (ac)‘
for n > 1 as in the proof of Theorem we obtain

s 2
[u2 (|2 = B)[[7zo < 2r Yy lan|* (1+ |n))*

In|£0

2
Ry (e, ) [HDY (wo)| =

2
21 |ao|? ‘RO (we, \) HSY (@WR)‘

Thanks to Proposition
R
(2.3) [Ro (we, ) HEY (VagwR) | < ‘ng <y0,1€)‘ .
and when n > 1, and w. < yn 1,
5 )
(2.4) B (e WS (2| < 5 1 ()] < 5 sup i (2)].
x>

On the other hand, the definition of R, (1.8) shows that |R,, (we, A)| < 1. Tt is known [I7, 13.74]

that for x > n >0,
x—= Va2 —n?|H,(x

is an increasing function of x, with limit 2/7. Consequently, since yYn,1 > N+ 14n1/3, 17, 15.3],
[13], for all w. > y,, 1 we have

2 1 4 1
(2.5) R (w2, 2) HY (02) =

< — <
- W,/wgfrﬂi (1+n
thanks to (1.16)). Combining (2.4)), and (2.5) we have obtained that for all w. > 0,
O o s N2
27rZ|an| 1+ |n)* 5/\/ (u')”,
In|#0
which concludes our proof of the upper bound (2.1)).

7
7 < g S (1)

2
Ry (we, A [HY (we)| <
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Turning to the lower bound, we have

an (1 + |n|)cr Ry, (we, A) H’I(Ll) (we)| -

sup [|uZ (|z| = €)[ly, = sup supv2m
w>0 * ‘n|2n0w>0

We know from Proposition that provided A2 < 1 — 93%,
1
|Ro (0, ) [HD ()] 2 50 ()

Since it is known [I7, 8.54] that n — n3.J, (n) is increasing,

J1 (1) 1
> ——=sup |Jn (7)],
o2n3s V10 1:>0| @)l
where in the last inequality we used a variant of (L.16)), [7]. Choosing w such that w. = n, we
obtain

‘Rn (n,\) HY (n)‘ >

1 .
sup ||[us (|z] = €)|| o = —=N7 (u'),
w>%H 2 (|=| )HH* = /10 Lo( )

as announced. O

Remark 2.7. The lower bound was obtained for w. = n, that is, in the special case when the
order and argument are equal. This is precisely the upper limit for w. in Theorem When the
argument is much larger than the order, one should expect a decay gain of 1/2 and not 1/3. The
bound given by Theorem is of this form, and applies here also (when A is replaced by 1).

3. INCLUSIONS WITH RELATIVE INDEX LARGER THAN ONE: THE PERTURBATIVE REGIME

In this section, we consider the case when g > ¢p in the case of moderate frequencies and
moderate contrast. Our result is expressed in terms of a threshold m) which depends on the
contrast, given by

1
AMIn A\ +1

Theorem 3.1. Suppose R > ¢, and A > 1. When

1
we < min (,m)\)
2
we have

s (2] = B)l| 70 < (1= N)we <3\/§ [ (2 = ) oy +23eeX o (0)] |57 (\/qT)wR)D :

Furthermore, if for some p > 0 the first p Fourier coefficients of u (|z| = (sw)*l) are zero, then
for all we < X~ 'p there holds,

o2 1 = Rllge < 31— ey 5 [ el =]

The proof of Theorem [3:1] is, mutatis mutandis, the same as that of Theorem using Propo-
sition [3.2] proved in Section [7]in lieu of Proposition [2.6] and we omit it.

(3.1) my =

Proposition 3.2. When A > 1, there holds, for alln > 1

o For all w, < )\’lyiﬂ,

n

‘Rn (we, A) HY (w,)

o For all w. < A~ 'n,

jRn (wey A) HD (w,)

For n =0, there holds
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e For all w. such that min (%,mA) we <1,

R R
’RO (we, A) HSY (a:) HY (w> '
€ €
e For all w., we have

R 1 R
RgHél) (m) <5 Hél) (min (,mA> ) ‘ .
€ 2 €
Proof. This is follows from Lemma and Proposition O

2
< %(A — 1)Aw?

In contrast with the case A < 1, the range of frequencies for which Theorem [3.1]is valid becomes
increasingly small as the contrast increases. The two extreme contrast cases, A = 0 and A = oo
are therefore of a very different nature. As we will see in Section [d] the range of frequencies for
which Theorem applies is sharp: the behavior of the near field is drastically different when w,
is larger.

4. INCLUSIONS WITH RELATIVE INDEX LARGER THAN ONE: QUASI-RESONANCES

In this section, we investigate the behavior of the scattered field when ¢ > ¢g, and the product
of the effective frequency and the contrast Aw. is bounded. In such a case, a quasi-resonance
phenomenon occurs: near the inclusion, the scattered field becomes extremely large, for some
frequencies. We refer to such frequencies as quasi-resonant frequencies. They are defined in
Definition E.11

Before we proceed, we remind the readers of usual notations and known properties of zeros of
Bessel functions.

When n > 0, the k-th positive root of J, () = 0 is written j, . The first positive root of
Y, () = 0 is written y,, 1. When n > 1, the k-th positive solution of J), (z) = 0 is written

jfll,)C. When n = 0, we count non-negative solutions, that is, jé’ll) = 0. The first positive root of

Y, () = 0 is noted yfﬂ It is known [I7, 15.3] that

whenn >1, j,1=n+ an,lnl/?’, with a1 > lim a,; ~ 1.86,
n— oo

i =n+ant/3, with ol > lim ol ~0.81,
, , 1> m a,
(4.1) Yn1 =0+ bpan/3, with b, > lim b, = 0.93,
n—oo

Yoy =+ by,

Wnt/3 ) with b > lim b\ ~ 1.82,
? ’ n—o0 ’
when n=0, jo.~240, j51 =0, yo1~0804 yi~2.20.
The zeros of J,, (-) and Y,, (+) are interlacing [13] 10.21] and we have

1 1 . (1 .
M < g <y <na <o <G < <o

and the first inequality is strict when n > 0. Using the notations

(43) My (@) =\ o (@)° + Yo (2)2, 60 () = axa(Ja(@) + ¥ (),
we have [13], 10.18§]

(4.2) n<j

. T d 2n+1
(44) S @) ==5, 5 v

m for z large.

This shows in particular that for n fixed, the size of the intervals ( j,(:L Jn,1) is strictly decreasing,
and tends to m/2.

Definition 4.1. For any n > 0, the triplet (n,z, \) is called quasi-resonant if
0<z<yYn1,
and if the reflection coefficient given by 18 of mazimal amplitude, that is,
R, (z,\) = —1.
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When (n,we, A) is quasi-resonant, problem (|1.2)) has the following particular solution

%Jn ()\wa‘ﬁ—‘) exp (inarctan (ﬁ)) when |z| <&

(4.5) Ue = le|
Y, (w5?> exp (inarctan (ﬁ)) when |z| > e.

Note that u. is not truly a resonance, since Y, (-) does not satisfy the outgoing radiation condition.
The solution u. contains an incident field given by

i || . T ™
u' =J, | we— |exp|inarctan | — | + = | .
€ || 2

The almost resonant behavior of this solution is apparent in the near field. The amplitude of
the incident field at |z| = ¢ is J, (w.), whereas the amplitude of the scattered field is given by
|H7(ll) (we)|. Suppose for example that w. ~ nK, with K > 1 fixed - as Proposition m below
shows, this is the generic case. Then at |z| = € the amplitude of u. grows geometrically with n,
[13, 10.19]

lim Y, (we) |+ = (K—i—\/K— 1) eVi~%

whereas the amplitude of the incident field and its normal derivative at decays with the inverse
rate,

E_om 1L T = ! -Vi-%
T e = e =

The size of the scattered field is therefore not controlled by the size of the incident field: this
behavior can be compared to that of a resonant mode. Note that the amplitude of the scattered
field is also large compared to the maximal amplitude of the incident field anywhere, as the
uniform bound indicates. The lower bound for the maximal value of the incident field is
the motivation from the restriction w, < y, 1 in the definition of quasi-resonances. Indeed, when
We > Yn,1, using the bound [I7, 13.74]

35, 1 ()

2

P -
T/ w2 — n?

)

we obtain, for all n >0

(46) [H® ()] < Lsupl, (@)
) x>0
therefore the scattered field, and in turn the full field, is comparable to the maximal amplitude of
the incident field in this regime.
The following variant of Dixon’s Theorem on interlacing zeros [I7, 15.23] proves the existence
of quasi-resonances.

Proposition 4.2. For anyn >0 and A > j,.1/yn1, in every interval

j(ll)cj k j(li
Upi = (K’Z’) such that Uy, C (Z,ym)

there exists a unique frequency wy i such that the triplet (n,wy i, A) is quasi-resonant. There are
no quasi-resonances in the interval (O,js%/)\) when n > 1, or when A < jn.1/Yn1-

The proof is given at the end of this section. To illustrate this result, we consider the case
when A = 2 and n = 30. The quasi-resonances are to be found in the interval (jéé?1/2,y3071) =
(16.28,32,98). There are 8 such frequencies. The first one is wsg,1 ~ 17.4211682, and the last one
is w3p,8 ~ 31.4683226. Figure @ shows two plots on a logarithmic scale. The red line shows the
radial component of full field u., corresponding to a relative index A = 2, an effective frequency
ws0,1- The blue line shows the radial component of the incident field u?, J3o (ws0.1-). Note that
the blow-up region is concentrated around . At |z| = Ae = 2¢, the full field and the incident field
are of the same order of magnitude. This is the far field regime discussed in Section [5]
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5.110° 4

1.010% 4
1.010%4

1.010" 4

0.010°

0.0 € 2e 3e
FIGURE 4.1. First quasi-resonant solution for A = 2 and n = 30.

0.3 7

—0.3

0.0 € 2e 3e
FIGURE 4.2. Last quasi-resonant solution for A = 2 and n = 30.

Figure [f.2] shows a plot the radial component of full field u. in red, corresponding to a relative
index A = 2, an effective frequency wsos, and the radial component of the incident field u,
J30 (w30,8°), in blue.

This last quasi-resonance, situated close to the upper bound ys9,1, does not show a blow-up
around |z| = . This vindicates the choice to limit the definition of quasi-resonances to the interval
(Ov yml)'

Quasi-resonances provide lower-bounds for frequency independent scattering estimates, as the
following Theorem shows.

Theorem 4.3. Given A > 1, let ng be the smallest integer such that

y’l’bo,l
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Then, for any p > ny,
: o jn1 R
@) sl el = B)lye 0 <X < iy} = sup (14 a8 (152 2)).
no<n<p €

Furthermore, if X > exp(2),

= ()
3 szl = R)|l o, 0 < dwe < 1+
bup{““ (|$| )HH W, \/m 2\/lr17/\

[ V2 1 \ER
(48) > [ag|H{ (wm (14575 >

Remark 4.4. Note that j, 1/yn1 = 1+ O(n=2/3) so for any A > 1, ng exists and is finite. Since
Jna/n=1+0(n"2/3) < 4, the lower bound also matches the end of the perturbative regime
described in Theorem [3.1] which required w. < n/A\.

As we noted earlier, the lower bound blows-up geometrically with n. Thus, taking p = oo, if
the coefficients a,, decay only polynomially with n, then

sup [[u? (|z] =€)l o = o0
w>0

for any s > —oo. This is the case for plane waves, for example, since
; o~ . x ¢ m
exp(iwz - ) = ZJ" (w|C||z]) exp(in(arg <|x| — |C|) + 5))

Estimate (4.8) shows that even low frequencies are affected by quasi-resonances. However, the
blow-up is milder. Indeed, Jy () tends to 1 close to the origin, whereas

(i ()

This quasi-resonance also occurs just after the perturbative regime, which applies when w, < m.
We may therefore argue that the estimates provided by Theorem are optimal in terms of
frequency range, up to a multiplicative factor of at most 4.
R
1
i (o))

2
~ In(A).

Proof of Theorem[{.3 Starting from formula (1.14]), we have

sup luZ (o] =Ry = sup  sup V27 [Rn (we, A) ap| (1 + [n])”

we<jp,1/A we<jp,1/Ano<n<p

sup \/%‘CHM (1+ In[)?

no<n<p

Y

Where we used that | Ry, (wn,1,A)| = 1. Since z — ’H,gl) (x)‘ is decreasing and from Proposition
Wn,1 < jn,1/A, we obtain (4.7]). The second bound (4.8]) is proved similarly, using the monotonicity
of z — ’H(gl) (z)|, and Lemma below which shows that when A > exp(2),

wp,1 < 1+ .
AVIn A\ 2v/In A

O

Let us now turn to the proof of Proposition [4.2] From the definition of R, (1.§), it is clear that
R, (z,A) = —1 if and only if
S (HY (@) T () = AT, (A) B (@) = Y, (2) Jn (A2) = M, (M) Yo (2) = 0

When 0 < ¢ <y, 1, inequalities (4.2)) show that Y, (x) < 0 and Y,, (z) > 0. Dixon’s Theorem [17]
15.23] shows that J, (z) and J, (z) have no common zeros. Thus quasi-resonances cannot occur

at any jp /A or 37(112/)\ Lastly, note that when n > 1, in the set (O,jflly%/)\), both J, (Az) and
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7.7( ) 7j30 2 W30,6 Y30,1
2 30,1 2 s s s

—0.44

—0.8

—1.24

—1.5-
FIGURE 4.3. Quasi-resonant frequencies for A = 2 and n = 30.

J], (Az) are positive, thus no quasi-resonance can occur. The quasi-resonances can only be in the

(1)
j .
sets < ok j”)\”“ ), and are the solutions of

! /
W) NAOIRAC)
In(Az) Y, (x)
Figure [4.3| shows a plot of & — 2.J4, (22) /J30 (22), in blue, and  — Y, () /Y, (x), in red, in the
interval (jé(l)?l/27y30,1) ~ (16.28,32,98). The dashed lines represent the solutions of J3q (2z) = 0
in this interval. The eight red dots on the horizontal axis mark the quasi-resonant frequencies
corresponding to n = 30 and A = 2. To study the solutions of , we introduce, when n > 1

o x J), (v) o Y, ()
(4.10) n 1= w7 (@) and k, =2 — AL
when n = 0,
_ Jo(x) _ Yg(x)
(4.11) go(z) == — ng(x) and ko(z) ==z — —acYZ(x)

and we rewrite (4.9) as
(4.12) gn(Az) = —kp(z).

Proof of Proposition[{.2 From the recurrence relation satisfied by Bessel functions, we derive that
for all n > 0,

with the notation ny = max(n,1). In particular, for x > n, g, is decreasing. Thus, on each
interval Uy, i, * — gn(Az) decreases from 0 to —oco. When n > 1, on [jr(:%/)\,yn,l), ky, is positive,
thus there exists at least one solution to (£.12). When n = 0, since (ko(z) + go(z))/z tends to oo
as x tends to zero, therefore at least one solution exists in (0, jo,1/A).

To show uniqueness, we compute that the derivative of g, (A) + kn(-) is

A () + K (@) = - (1= W) + 2 (k@) — g2 (M)
ny X
so at any point where g, (Az) = —k,(z), we have

Agn(Az) + K, (z) = — (1 =A%) <0.

x
4
Thanks to the Intermediate Value Theorem, there can therefore only be one solution. Finally, note
that when A < j.1/Yn1, 7 (kn(2) + gn(Az)) tends to +oo both at z = 0 and = = y,, 1, therefore
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there cannot be a unique solution of ky(z)) + gn(Az) = 0 in this interval, and consequently there
is none. (]
We conclude this section by an upper and lower estimate of wy ;.
Lemma 4.5. The quasi-resonant triplet (0,wo 1, A) satisfies
2 1 2 1
\[ 1-— <w0,1<\f(1+ ),
AVin A 24/In(X) AVin A 2v/In A

(4.14)

for all X > exp(2).
Proof. Introducing the functions f and f_ given by
V2 1
fe(\) = 1+ ,
AvVin A 24/In(X)
thanks to Proposition [I.2] it is sufficient to check that

9o(Af+ (X)) + ko(f+(A)) <0, and go(Af-(A)) + ko(f-(A)) > 0.
The following bounds

1 1 1 1
75172 - Ex4 < go(z) < 75:172 — Efl forall0 <z <1,
and 1 1 1 1
—71+fo < ko(z) S—ix—i—xQ forall0 <z < =.
’y+ln(§) 2 ’y+ln(§) 4

can be derived using the asymptotic expansions of Bessel functions around z = 0 given in [I3].
The proof becomes a study of a function of one variable, A. We omit this tedious but
straightforward calculation. It is easy to visually confirm this result using a modern scientific
computation software, using the built-in formulae of Jy (z), Ji (z), Yo (x) and Y7 (z) to compute
go and ko, and then verify for example that +go(Afi(A)) + Lko(fr(N)) < 0, and that both
expressions are of order (In\)~3/2 for large A\. The lower bound A > exp(2) is not optimal: it
is convenient because of the form of the ansatz for kg given above. Numerically, it appears that
holds almost up threshold value jo 1/y01 (up to 1.003 times that value). O

5. INCLUSIONS WITH RELATIVE INDEX LARGER THAN ONE: FAR-FIELD ESTIMATES

As we could notice on Figure the effect of quasi-resonances is localized close to |z| = . We
now show that in the far field, that is, when Ae < |z|, estimates valid for all frequencies can be
derived in the spirit of Theorem

Theorem 5.1. When 1 < X and X < R there holds

)2(7

. 5 [y e 2 (1+]n|
sup 02 (2] = )y < S0/ [ (1] = )] +2 | 3 faf? DT
w>0 0 (]ﬁi%) —n?

(5.1) + V107 [ (0)] ‘Hél) (min (;mu) R)

3

9

Furthermore,

R 2 € qo—1
(52 sup [ (ja| = R)ll g > 51 AENT ¥ ().
Remark 5.2. Just like in Theorem the upper bound (5.1)) can be replaced by the frequency

independent bound
s 5 € o/ i : (1) . (1 R
(5.3) |lus (Jz| = R)|| o < 3 )\R./\/' (u') + V107 [u*(0)| |Hy "’ | min >ma ) =)
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We chose the form (5.1)) to obtain an optimal decay rate in n for R > . The dependence on the
zero order term is sharp, as we have seen in Section |4} Note that the lower bound (5.2]) and upper
bound ([5.1]) have the same dependence on the contrast, and on &/R.

Y (aowr) |

o forn > 1 as
Hy/ (Awe)

Proof. Starting from the formula (|1.14)), using the monotonicity of =
in the proof of Theorem [2.I} we obtain

s 2 € 2 20
2 (2] = R) 370 < A% <2wZ|an| (1+ [n])
I

2
Ry (we, A) [HED ()|

2

R
2 A2 (1 20 Ry (we, ) [HD ([ Mew, =
W?Ia\(ﬂn\) Roy (we, A [H,,7 ( Awe—

)

2
2 fao|* | Ro (e, ) HS (/o R)

where I is the set of indices n for which 0 < |n| and Aw. < jl(il) 1> and I is the set of indices n

for which 0 < |n| and Awe > j (1) Thanks to Proposition

n,l

‘RO (we, \) HSY (\/qT)wR)‘ <5 |HM

and when n € Iy,
5}

|Ro (e ) B (w2)] < 5 (@2

Alternatively, as in Theorem when n € I,

| Do
—_

R (e, ) B (w2)

<

Therefore, altogether, we have obtained that for all w. > 0,

2
21 3 Janl? (14 [n))* | Ry (we, A) [HS (we)

Inl#0
2
< Por S janl (14 0 Jn ()
n#0
(1+|n])*
—&-42\ nl? TORY .
n#£0 (jnlg) n?

which concludes our proof of the upper bound. Turning to the lower bound, we have

o R
lut (2] = R)l e > V27 sup sup [REan| (1-+ )7 |HY <w>
|n|>1we>0 €
R
> \ﬁsup lan| (1 + |n|)” [HY “’“12 ,
In|>

where we used the first quasi-resonant frequency wy, ; given by Proposition Since /x ’H%(m)’
decreases to /2/m [17), 13.74],
R 2e
HY (wpr= || >
n | @Wnt € T Rw, 1
and, in turn, since from ((1.16)),
2 -2
Jua _4n  (n+1)Y3 (6
< <4 (= Iy ,
< 3 7) Bl ()]
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) 2 € 1,
2 (ja] = B)ll gz > £\ [A5NT (),

as announced. O

we obtain

6. BROADBAND CONTRAST AND FREQUENCY INDEPENDENT ESTIMATES

In the previous sections, we have seen that we cannot hope for contrast independent estimates
for all frequencies, because of the appearance of quasi-resonances. Combining Theorem [2.4] and
Theorem we see that scattered field tends to zero at a rate e, when observed at a fixed
distance, say R = 1, provided the contrast A does not grow faster than e~° with § < 1. On the
other hand, when X is of size e =1 or larger, the lower bound provided by Theorem shows that
for some frequencies, the quasi-resonant frequencies, some components of the scattered field will
be of size one or larger.

The following proposition shows that if an interval around quasi-resonant frequencies is ex-
cluded, the scattered field can be controlled by the incident field. It is proved in Section [8

1
1’

(6.1) I, 1 (7) == {x € Uy such that |g,(Az) + kn(x)] < 7|k, (x)|},
IfA>7,n>1and we € (0,yn,1) \ (Upln k(7)) then,

Proposition 6.1. For any 0 < 7 < 7, we define

R (we, ) HO (0] < 2iJn (.).
T

we have

(0,90, \ Ul e(m) = Oya)\ |J Lok ()

kEK(An)

where K (A, n) is the set of all positive k such that jfllll < nA. Furthermore,

1
U I, 1 (T) SGTTL:)\.

keK(A\n)
IfX>7,n=0 and we € (0,¢) \ (Ul r(7)), where (o ~ 0.3135 is defined Proposition then
5 5
[Ro (we ) B (w0)] < S50 (we) < 2=

We have
0,60\ (UkTo k(1) = 0,00\ |J  Ton(r)

k€K (X,0)

where K(X,0) is the set of all positive k such that jéyl,z < Ao. Furthermore,

U Io k(1) S7T@.

kEK(X,0)

Proof. This is the result of Proposition (together with Lemma for w. < 37(11% /A and Propo-
sition when n = 0), and Proposition O

This result allows us to prove the following.

Lemma 6.2. Suppose A > 7. Let nyax be the following decreasing function of the contrast

3ln A
2 max — 5 "y -
(6.2) 1 57X

Given a > 0, for any n > 0 such that

1
n S ~—TImax
(%
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there exists a set I depending on n,a,e and \ such that
|1 < U
€

and, for any R > ¢

s € Mmax y ro4-24a (. i
sup [us (|z] = R)|| 5o < 184/ =—=N u') .
JTwEOo\ T e VR na ()

Let ng be given by

_ 7ln(lnA)
4N
for any n > 0 such that
n<1po
there exists a set In C (0,¢y) which depends on n,e and X such that
Il < 2
€
and, for any R > ¢
27
1 H(l) my 2
sup —/u§(|x|:R) S?@ 70(1)( )
Vaiwe(0,00)\ Ip | 2T ] | Hy’ (my)

Remark 6.3. Lemmal6.2]shows that by excluding some frequencies, around quasi-resonances, near-
field estimates can be obtained, up to the boundary of the inclusion |z| = €, at the cost of a little
more than two powers of n when compared to the near field estimates given by Theorem [2:4] for
A < 1. We showed in Theorem that if the quasi-resonances are not excluded, the blow up is
geometric in n. The most striking feature of this result is that since nyax and 7y tend to zero as
A tends to oo, the size of the set of frequencies to exclude shrinks as the contrast increases.

HY (VaowR) 2

Proof of Lemma[6.3 Starting from the formula (1.14)), using the monotonicity of x T on)

for n > 1 as in the proof of Theorem 2.1 we obtain

2 € 2 1 % 2
[ug (lz] = R)|[7, < 7|27 > Jan] — (L [n)™ | Ba (we, ) |HY (/\we)‘ ;
|n|#0 "

for any sequence of positive parameters 0 < 7,, < % to be chosen later. Next we divide the non
zero indices into three parts. The first set of indices is

N := {n # 0 such that Aw, < jl(;‘)l or wg > n} .
In Ny, thanks to Proposition [3.2] and Proposition [7.3] we have that either

) 5
| R (s 0 [ ()| < 50 () < 2 supl i (@)
2 2 2>0

or we > Yn 1, and (4.6) shows that

) ?
‘Rn (wer V) [HY) ()

We define the sets
Ny = {n # 0 such that ‘gw()\x) + k|n|(a:)‘ <7, ‘kz‘m(x)’} ,
and
N3:={n#0,n¢g S, and n & Sy} .
Proposition shows that for all n € N3
91 91
R w2 0) B (@02)] < 5 =T (w2) < 5= suplJ, (@)

Tn Tn >0
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We have obtained that for all w such that Ny = (), we have

2 9 2 € 1 20 2
. s = s < 2 -] = nl — (1 n .
(63) o bl = R <2 (3) 2 lonl g (Il s )

Thanks to Proposition the forbidden values for ,/gow lie in a collection of intervals O, :=
e Uy Ink(T0) of total size of at most

= 61n A\ max S
|OE| SZnTnjzllnE Zn'l—n.
n=1 n=1
This leads us to choose
no 1
T =

(1 + [n])*+* dnmax
Then, an upper estimate of the total size of the forbidden intervals is
oty ot
o | (Ln)tte = &’

and from (6.3)) we obtain

s € Nmax , 7o a (i
[uZ (|2] = R)|| o < 18\/§n7f\/ e (),

as announced.
Let us now consider the other estimate. We have, from (1.5])

2m
R

5 [ e el = 0| = ) [Ro N Y (1D .

0
Proposition [7.7] shows that when w, < my,

Y (s

€

HSY (my)

[

HY (my)

P ()|

IN

1
.

R
Ry (we, \) HY <w€€>’ <4

Proposition [7.6] shows that when w. > (o,

1 R (. R e [2 3 [z
- A\) H, -— || < |H, =</ s = <3/ =
Bo (e, 3) Ho (“’s) ‘ 0 (405)’ VEV=e <2V R

From Lemma we know that
e,

3

RJ

€

HSY (my)

therefore when w. > (o,

Hy" (my %)
HY (my)

On the other hand, Proposition [6.1| shows that if w. € (mx, Co) \ Urer(r,0) Lo.k(7) We have

1
‘RO (we, A) H(gl) (we)] < b1

1
‘Ro (we,y A) Hél) (wER)‘ < =

3 T

371

Therefore, Lemma shows that z — ‘Hél) (m?)/HSl) (x)’ is decreasing,

(1) R
R H we

‘Ro (we, A) HS (w)‘ |°(1)( -2)
¢ Hy " (we)

[Ro (we, ) Y (w2)

51

51| Hg” (ma k)
37 '

HSY (my)
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We have obtained, for all we € (0,00) \ Ujex(x,0) L0,k(7), and all 7 < 1,

R 51 |HY (my &
‘Ro (we, A) Hél) (o&)‘ < 22|20 VAe) (m,\a)

= a._ 1
€ 37 Hé ) (my)
The total size of the set of forbidden values for /gow is bounded by
0.] < 71n1n()\)z7
A€
thus choosing 7 = %nﬂo establishes our claim. O

As an application of Lemma we provide a broadband estimate for the case A = ¢~ 1.

Corollary 6.4. Assume ¢ < 1/7, and A\ = e~L. Then, for any o, 8 > 0, there exists a set I
depending on €, and B and a set 1y depending on € and B which satisfies
In |1
Ll < e nel, o] < —oel_
(lnel +1)

such that for all R > ¢,

s 18 5172’8 - o i
sup ”us (|£L’| = R)”?—I;’ < — V R N A (’LL ) ’
V@ow€(0,00) \ I o

and
27
17 1
sup %/ue(\ﬂ:f{)gu —.
Ve \ 1o | 27 Vel + 172 R

Proof. This is an application of Lemma[6.2] In this case ngmax = € |Inel, and 7o = eIn |Ine|. Choose
n= 5Bnmax. We have

|| <P Inel
and
s 2 21 [el-28
sup u (ja] = R, < /T
V@ow€(0,00) \ I «
Choose n = ([lne| 4+ 1)"? ny. Then,
In|lne
1] < el
(lne|+1)

Using the bound ‘Hél) (m,\)‘ > 2(1+|ln¢l), and the usual upper bound (7.13),

27

1 / ) [2 soigr 1 1
sup — [ ul(Jz| = R)| <144/ = ([lne| + 1) 1 12 .
VGow€e(0,00) \ To 2m ) m VR \/(|ln€| + 1)3/2—25 R

IN

O

Combining Lemma [6.2) with Theorem 2.4 and Theorem [5.1] we obtain the following broadband
result, which provides a uniform estimate for all contrast, and almost all frequencies.
Theorem 6.5. Suppose given X > 0 and % > e > 0. For any a > 0, there exists a open set
I (a, A, €) C R satisfying
I (o, My e) | < e'/¥|Ine

and for any R > €'/* we have

\ 9 21 [el/4
(6.4) sup luZ (o] = R)l[yo < —1\/

< N’O’+2+OL ui )
V@ow€(0,00) \ I1 a R ( )
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When A < e=3/4, (6.4) holds with I, = (. There exists another open set Iy (£, ) C (0, (o) satisfying

Inlne +2
Ip (A S —
o (N8| = Ine+1

and such that for any R such that (|lne| 4+ 1)1/12 R <1, we have

2
1 2 HSY (my 2
(6.5) sup — /ug (lz| = R)| < 21 max i3 0 (1)(m,\ -) )
Vqow€(0,00) \ Ip 27 A (|1H€| + 1) R HO (m)\)

where my is defined in (3.1) and equals

1
AW A +1
When A1 > ¢ ([Ine| +1)/*2, (6.5) holds with I, = 0.

Remark 6.6. Note that both I; and I, have zero measure when € tends to zero: in this limit,
the estimate is true almost everywhere. This is not a far-field result in the sense of as we
do not require AR > . Any fixed positive R is possible for € small enough. The decay of the
size of Iy is logarithmically slow, even though the quasi-resonances of the zero order term are at
most logarithmic in the contrast, see Theorem Note that the upper bound in is always
smaller than the numerical constant 21. Naturally, many variants of Theorem [6.5] can be derived
by other combinations of Lemmal[6.2] Theorem and and more precise broadband estimates
can be obtained if A is known to be in a particular range with respect to €. Corollary gives an
improved estimate in the case A = e 1. The dependence on 7 in could probably be improved
by a precise study of the distance between the roots of the Bessel Function J,, () for x € (n/e,n).

Proof. When 0 < A < 1, Theorem implies (6.4), with I; = §. Similarly, when 1 < A < e=3/4,
Theorem implies (6.4), with I; = §. . Let us therefore suppose A > £ 3/% > 7. We apply
Lemma [6.2] with

my —

_ 83
7)—96

Note that Since A — A~1In \ is decreasing when \ > 7, therefore

® Nna-
9
TNmax < g ‘11’16| 33/47

and there exists a set I; such that
|I,] < &'/8|Ing|

s 2 21 81/4 o « %
sup laz (lz] = B)l[pze < A/ N ().

V@ow€e(0,00) \ I

for which

Let us now turn to the zero order term, and assume u*(0) = 1 by linearity. The cases A < 1 or
my > 1/2 are consequences of Theorem and Theorem with Iy = ). When m) < %, and

1
e(|lne| + 1)7/127

R
! () ’ |

Since H(gl) (+) is decreasing, an upper bound is found by choosing A = Ag. Then, In A\ < |ln¢|, and

)\S)\[)Z:

Theorem shows that with Iy = 0,

2

1

—/u§(|x| = R)| < V107w
0

2

1
ey =(Ine+ 1)/ ———— > (|lng| + 1)/*2

\/111)\0 +1
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which yields

27
1 R 1
(6.6) Q—/u;(m = R)| < V10r |H" (m)‘ <5 .
J c \/R(\ln5|+1)1/12
When
No< )< (lne| +1)1/12
0 —
€
we have
1 €

my > my 1= .
A L S (1+|ln5\)7/12

We turn now to Lemma We have

Inln) _ InlnX
no — LA Aoy il (1 4 el
4 )\ Ao
Choose
_4 1
T U+ el ™
Then,

In|lne|
(lng| + 1)t/12

is decreasing by Lemma outside of Iy we have

HY (m B))|

[Io| <

and since z — ’Hél) (xg) ’ / ‘Hél) (z)

2m

i 7 |
(6.7) 5 /u (|| = R)| <7 <4(1 + |1n€|)2/3) o) .
§ 0 ‘Ho (ml)’
We have ‘Hél) (ml)’ > 2(1+|In¢l), and therefore
1T 19 22+ e? 1 1
2—/u§(|x| =R)| < 39 M(H |1n5\)2/3’1+7/147. <29 .
"3 g R VR (14 [Ine))/12
Let us now assume \ > w In that case,
7ln(lnA) 11 In|lne|
M= S ¢ iz
4 A 6 (1+ [Ine)
Choosing n = %770 and applying Lemma we obtain
27 (1) R
In [} 1 A (ma2)
6.8)  |I| < n‘—né"m and  sup | — /u (J2| = B)| <21l———"-.
(1+|lne|) Vagwe(00o)\ I | 27 5 ‘H(() )(mx)‘
Combining , (6.7) and we obtain the (6.5]). O

7. ESTIMATES RELATING THE SCATTERED FIELD AND THE INCIDENT FIELD OUTSIDE
QUASI-RESONANCES

7.1. The n # 0 case. The main result of this section, Lemma proves Proposition [2.6] and
Proposition [3.2] when n # 0. Note that, for a given n, these results are focused on the case when
we is bounded, namely we < yp 1. Since yn 1 < jn,1 for all n > 0, we are thus only considering the
case when J,, (w.) > 0, and w. < yn,1. To compare the scattered field with the incident field, it is
convenient to introduce a new quantity, namely

Ry, (we, A) HY (w2)
I (w2) ’

(7.1) Sp(we) = —
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A simple manipulation of the equation, together with the Wronskian identity satisfied by J,, (x)
and Y, (x) shows that S, has two equivalent formulations, namely

(gn(Ax) B gn(x)) (1 + ttan on(x»

(7.2) ) = (Ga00) — gu(@) + 1 a0 00 (2) (g0 (00) + Bn(2))
_ () 3 (2)

(7.3) = Un(x)H’lg,l) ($)+i%Jn ()\:r)’

(7.4)

where 6,, is given by (4.3), g, and k,, are defined by (4.10) and (4.11]) and where w,, is given by
un(x) := max(|n|, 1)Jn (z) Jn (Ax) (gn(z) — gn(Az)) .

Note that these formulae are not defined when Az = j, 1, that is, at the singular points of g, (Ax).
However from Formula we see that these singularity can be resolved, and we define S,, as
the continuous limit of S,, towards these points (which is 1).

The main result of this section is the following Lemma.

Lemma 7.1. For all A € (0,00), and alln > 1, for z € [O7min (j

following bound

(1))\_1,yn,1)} we have the

n,l

[Sn ()] <

N | Ot

For x € [O,min (n/\_l,n)], we also have

X

[Su(@)] <203 =1| 5.

and if \2 <1 — (L)Z, then

3nl/3
1
[Su(m)] >+

To prove Lemma we shall use the following observation.

Proposition 7.2. For all0 < z <n, and all n > 1, we have the following bounds
<3)2 PR GG I (5)2

E L+ Y ()] [T (@)* '

2
We do not use the lower bound in this paper. We include it to document the fact that one
cannot hope for an upper bound tending to zero for n large, for example.

Proof. The proof is elementary from the inequalities (A.1)) given in Appendix |A]| Since

2 _kn  |Y T 5
S N7 I
it suffices to observe that
14+Y2(x)/J2(x)  1+tan?6,

LY (@) /| (2) 1+ a2 tan® 6,

therefore, since % <l< %,

(3)2< 1+ Y2 () J2(x) <<;)2.

5 14|V ()] /| ()] 2

The final intermediate result we shall use is the following bound.

Proposition 7.3. For all x € [n,y, 1], we have

1Sn| < V/5.
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Proof. Using that |R,, (we, A) | < 1, we have
1S, |2 < 1+ tan?6,,.

Remember that from (4.4), as x varies between 0 and y, 1, 6, () varies between —% and 0. The
map of n — —0,,(n) is decreasing to 7/3, and is always close to its limit, as

g > tan (=6, (n)) > V3 for n > 1.

see [I7, 15.8]. Consequently, for all z € [n, Y, 1], tan(—0,(z)) < tan(—6,(n)) < 2, and
15,|” < 1+ tan(6,(z))? < 5,

as claimed. O

We can now conclude the proof of the estimate of this section.

Proof of Lemma|[7.. Let us first consider the case when = € [O,min (n,jﬁﬂ)\_l,yml)}. When

x > n, the result follows from Proposition [7.3]
We have

_ lgn(Az) — gn(:n)|2 (1 + tan? Gn) .
|gn()\.%‘) - gn(x)‘2 + tan® 0, |gn()‘m) + kn(x)|2

(7.5) |Sn()|”

From Proposition for Az < j(lj, gn(Az) > 0, and k,(z) > 0. The study of the function

n

(u—a)?(1+tan?6,)
(u—a)? +tan? 6, (u + b)?

u —

for u > 0,a > 0 and b > 0 shows that it has a minimum for v = a, tends to 1 for © — £oo and
decreases between 0 and a. Therefore,

2 2
" (1 +tan®0,
|Sn|2§max 1, |gl ( an )2 .
|9l + tan® O [Fon|
Now compute that
gn(@)” (1 +tan?(2)0,(2)) 14, (2)* /J, (2)°
|2

|90 (@)[* + tan? 0, (2) [kn ()] 14|y (@) / 1T} ()

and thanks to the Proposition this quotient is bounded by (%)2 We have obtained that
|Sn| < 5/2. From (7.5)), we derive that

gn(/\x) - gn(x)
kn(z) + gn(Ax)

As we will see in Proposition tan(0,)"2 +1 < % when x < n. Thanks to Proposition
gn(A) + kn(2) > kp(x) > 2n71/3, thus we have

> 1+ tan2 6, (z)

2
<
(@) < tan? 0, ()

72

2 100 2/3 2.2/ 1 2 2
Su@)? < 5en®3 (= 1% (g ()" < 40— 1P,
where we used the bounds on g/, given by Proposition
Let us now turn to the lower bounds. When A < 1, Consider the case x = n. Then Proposi-

tion shows that g,(An) > V1 — A2,

7 1 13 1 1
ém > kn(n) and T > gn(n) > —=—7z
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and [tan® 0,,(n)| > 3, therefore
B |gn (M) — g (n)[* (1 + tan? 0, (n))
 gn(Wn) = gn(n)]* + tan? 0, (n) |gn (An) + kn ()]
41gn(An) = gn(n)[*
|gn(An) = gn(n)|* + 3 |gn(An) + Fn—1/3
. VT3 = s
IWVT=A—n13)" 4 3|VT= A+ In-1/3°
1

>

S ()|

| 2

Za

when v1— 22 > 7/(3n'/3), or A < \/T i) =

7.2. The n = 0 case. We summarize here properties of gy and ky. They are derived using
methods similar to the ones used for k,, an g, for n # 0, and can be checked by inspection with
the help of a modern mathematical software. We therefore will omit the proof.

Proposition 7.4. The function go (resp. ko) is defined on (0,00) except at jox (resp. Yo.x),

k=1,..., and cancels at each j(()llz (resp. y(()lli .

o Where it is defined, go is decreasing. On (0, jo,1) go is concave.

Jim, go(a) ==, lim, gufe) = o0,
w<io,k ©>i0,k

o Where it is defined, kg is increasing, and

lim ko(z) = 400, lim ko(z) = —oc.
T=Yg ) T5Yo K
a.-<y07k z>y0,k
e For0<z <1,
1 1 1 1 4
—5332 — Ex‘l < go(z) < —5302 — Ex{ and |gj| < 30
o for0 <z < %,
1 1, 1 ,
—717—1—7:6 Sko(.’t)g—iz‘f‘x
y+In(3) 2 v+ (3)

Proposition 7.5. For all A <1, and all 0 <z < yp 1,

™ x
So()] < —— min(1,2 — 2X 2’1 (f ‘
[So@)] < 5775 min )2 in ()
ForallA>1and all0 <z < min(%,m)\),

1S0(2)| < 7 min (1, ;W) ¥ |in (5)]

Proof of Proposition[7.5 Let us first consider the case A < 1. Since g is decreasing, for all
x < jo,1, we have

g0 () = go (Ax) = (1 = N)zgy(Co) <0,
Then, for all z < yp 1, we have 0 < Jo(Az) <1 and 0 < uoYy. Consequently,

(7.6) uol) (Jo(a) + Yo (a)) + 2o ()| = 2 1y (Aa).

Thanks to Proposition [7.4] for all 0 < z < yo,1,

(7.7) |90 () — go (Az)| < min((1 = N |gg (x)], |96 ()] < min (;l(l —A) §) @,
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Note that for 0 < z < 1, there holds

. 3 x
(7.8) [Jola) +¥o(a)| < 575 ]m (5)‘ .
Together with , this shows that
luo(@) (Jo(z) +iYo(x))| = [Jo (Az)|[Jo (2)[|Jo(x) + iYo(2)] [g0(x) — go(Az)]
1 . 9 x
(7.9) < E min(1,2 — 2\)z ‘ln (§>‘ [Jo (Az)] .

Inserting the estimates (7.6) and (7.9)) in formula (7.2)), we obtain

|So| < \/Emln(l 2 -2\ ’hl( )‘

Let us now suppose 1 < A. For all x < 21>\, using the bounds on gy given by Proposition we
have

A2z2 A2 25
o0 (0) = 90 () < loo ()] < 25 (14 50 ) < N2

Alternatively, note that for x < my and X < €3, that is, when 2 > /In(\) + 1, we can also bound

N2z IO C I
90 (@) =90 M2)| = —5 (1 Xﬁf( —W>$2>

<)\23321 1+)‘2_L 1
- 2 A2 6 8X2) X2(In(\) +1)

25
7}\2 2.
< 18 x

Using that when x < %,

Jo(x) + iYo(2)| < Z m(3)]

and arguing as above, we obtain

(7.10) o (z) (Jo(z) + iYo(z)) | < %xQ)\Q ‘m (g)’ T (M) .

Alternatively, starting from the inequality

90 () — 90 O] < (A = Dy )| < 325 A%,
we obtain
(7.11) Juofa) (o) + ¥o()) | < 254?32 [ ()] 1o ().

Next, using the inverse triangular inequality,

(712)  [uo() (Jo(x) + i¥o(a)) +i2Jo ()

2 5.9 T 2 2
[ -aver i
> 2 (5)] - 2| 1o 00l > 211 )
provided x,/ ln % < \/7 Inserting the estimates and-ln formula (|7 ,We obtain
5A—
|SO|<7Tmin<1 37N ))\2 2‘1 ( )‘

Then remark that when x < my, then 3:1/ ln < \/>1 for all A > 1. O

Proposition 7.6. Let R > . For any A\ > 0 and any x > 0,

R\|* 2 ¢
1 cHY (2= )] < ==
(7.13) ’RO 0 xa ~—rmz R
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o (<)) [ (o)

1 R
If 1 < X then for all x > 0

RSHél) (mf)’ < \/S‘Hél) (min (;,m)) f) ' .

Furthermore, when r < min (%, m)\),
R
aM (2=)].
0 €

R 5772 A—1
REH(l) - 2)\2
‘ oo \TT )| =T T
2
Proof. Note that z H(()l) (;1:)‘ is an increasing function of x, with limit 2. Since |R§| < 1 for all
x > 0, this implies (|7.13)).
Suppose now A < 1. Note that Hél) (+) is decreasing, therefore using the simple bound |R§| < 1

we have for all x > yo.1,
R\ |? R
RSH(()l) <x€> < ‘H(()l) <yo,1 €>

For 0 < = < 1 it is easy to verify that,

If A < 1 then for all x > 0

Furthermore, when < yo 1,

R w2
REH(1)<>‘<1—)\ 2
‘ 0770 xE _2\/5( )x

2

YQ (.13) 4 T\ |2
1 1+ = ‘1 r ) .
+ Jo () Z b a2 [ (2)
Therefore we obtain
2 2 2
’ ReE( (ﬂ) < Lﬂz HY (ﬂ)
€ 1+ 2% In(%)] €

Thanks to Proposition we have, for all 0 < z < yg 1,
2 2 3 x 2
w (. B\[_ = 2 €0y 2 [ (5) Rl (B

The function

23 |In (2)]?
L, 2l
1+ 2 | (3)]
2
is increasing on (0, 1), and as we noted before, so is )Hél) (x)’ . Therefore an upper bound is
obtained by choosing « = yp,1 in the right-hand-side of (7.14)), which gives

2 2 )
REH(I) xﬁ < Tﬁw H(l) E < H(l) E
0tto e - 81+—21n(”°—f1)2 0 yO,lg < 0 yo’lg

where we used ([7.13)) in the second inequality. We have obtained that for all > 0,

2
R R
Ro (we, \) H(()l) <1'E> < H(()l) <yo,1€> .

Alternatively, note that the function (In(z/2)?)/(1 + 2% In(x/2)?) is decreasing on (0,1), with a
maximum of 72 /4, therefore (7.14) and (7.13) yield
R
g (B
o ()

R\|* =4
\RﬁHé” (”ﬁe)

2

)

2
< Ta-N%

)

forall 0 <z <wyo1-
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Let us now consider the case A > 1. We only consider the case when m) > 2, the proof in the
other case is similar. Arguing as before, we have for all x such that x > m)

R R
rans? (+2)] = ()]

Next, when = < my, we have

‘RSH(gl) (ﬂ) C M HO (ﬁ) ’
¢ L+ 2 i ()| ¢
2 444 £ 2 2
Smin(l 5A1) g2 2 A in (5 ‘2 aY <g;R)
2 A 1—|— |ln( )| €

Arguing as in the case A < 1, an upper bound is obtained by replacing = by its maximal value,
namely

’RSH‘(’D (9615)’2 - W2<1+1n(A>>§121(iAm)ﬁ)m+ n)’) ‘H(l) (wlnlA +1§) 2
(7.15) H—(25111)\) HY (mxf) 2

We have obtained that for all z > 0,

R\ |? R
o (2 <o ()

Alternatively, we also have, when = < my,

o) (o) <2 (3251)7 2
0770 e)| ~ 2 A + 2 m (2)]

5r2 )\ — 2232
<
(T A)

We conclude this section by an estimate which will prove useful for broadband estimations.

2

2

Proposition 7.7. Let R > €. For any A > 7 and any my >z > 0,

R HY (my B
(7.16) ’REH(()D (:v)’ <4 ’“(D(m* )|
¢ Hy" (ma)

Proof. Inequality (7.15)) shows that for all 0 < z < m), we have

(42 g ()
e 1+ (Z 1) E

We note (and can prove, it is a study of a function of one variable, In A) that

‘H(gl) (mx)’

F(Z )’

A=

is increasing for A > 7, and its value at A\ = 7 is greater than 3.2. This lower bound yields our
estimate. O
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8. BOUNDS NEAR QUASI-RESONANCES

This section is devoted to the proof of Proposition [6.1
We wish to bound the size of the "blow-up" regions, that is, the sets I, x(7) defined by (6.1)),

(1) > yp1 for all n > 0, thus &k, > 0 on

n,1l

centered on quasi-resonances. From (4.2)) we know that y
(0,Yn,1). Introducing

(8.1) Gn 1= (Ovyn,l)\uk{jn,k/)‘} - R
z - gn (AT)
kn(z) ’
we have

OnInk(r)=[-1—7,—-1+7]
We first verify that ¢,, is one-to-one on I,, ;(7), for 7 small enough and A large enough.

Lemma 8.1. Suppose 7 < % and 7 < X. When n > 1 the function ¢, given by (8.1) satisfies

, 1— )2
onl®) < 52y <0
where ny = max(n,1), for all x € L, ()N (0,n) when n > 1 and for all x € Iy 1 (7)N (0, o) when
n = 0. Furthermore,
Ju
Io k() C (ma,y0,1), and forn =1, I k(1) C <’7yn,1> .

A
for all k.
Proof. We compute, using (4.13)) and (A.3)), for n > 0,
fa) = P (a2 g @) () (0 ny
82 o) = s (1= ) + PR (B g (o)),
Suppose first that n > 1. When = < n and —g,, > ky,
n x n
kn, n(Az))(— — = — — n(Ax)ky,
(k) + g ) (2 — & = g () < 0
therefore .
") < ——— (1= X2 :

On the other hand, when g, (Az) + k,(z) > 0 and = € I, ;(7), that is, when 0 < g, (Az) + k,(z) <
Tkn(z), we have

kn(z) + gn(Ax) /m z n co
SR (-2 = 2g.0a)kn(@)) < - (n? = 2?4+ n%k2)

Using the upper bound on &, given by Proposition we find that when % <z < &, we have
2T zAN -1 1z
<z

=" 2_ 2 21.2 <2 hadt 2_1
nx(n . —|—nl<;n)_ Tn A _Qn(/\ )
providedTgi. When &, <z <n,
2T , 5 5 9.9 x n?47/6n%° 931 xXN—-1 1z ,,
— - k2) < 2r= - —— (A —
nx( vk < Tn(n—4/5n1/3)2_)\2—1n A <2n( ),
when 7 < i and 7 < A. We have obtained that when x € I, (1),
/ x 2
< — (1= 0
d)"(x)_an’n(sc)( )< ?

as announced. Finally, note that at x = j,(:i//\ we have g,(Az) =0 > (7 — 1)k, (), thus I, x(7)
is a proper subset of U, ;. Let us now consider the case n = 0. We have

kofw) (1 — A2) =+ xW (—1 — ;gO(Ax)kO(m)> .

(8.3) o (x) =
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When —7ko(z) < go(Az) + ko(z) < Tko(z), thanks to Proposition [A.2] we have

1 1
- ko(z) —1>(1—7)— — 1
72 go()\I) O(I) = ( T) (036)2 > 07
when 7 < 1. Turning back to (8-3), this shows that when ko(z) + go(Az) < 0,
(1) < —— (1-22).

Let us now assume 0 < ko(x) + go(Ax) < Tko(x). We claim that on (0,m)), —¢¢ < 3/5. Therefore
no Iy ,(7) lies in the interval (0,my), since 7 < 1/4. Using the bounds on gy and ko given by
Proposition @ we find, when x < m) and A > 7, maximizing in x first and then in A,

_ 2,.2
—9(r) AT <2> (1 + 1)\4x4>

ko(xz)  — 2 xeY 12
1 V1 1 1 1
< In 220V/In A\ + (e
2In A\ +2 ev 12 (In A+ 1)2
<

1 aon 1 1 3

which is our claim. This is turn shows that when x € Iy ;(7), and x < (o, and 7 < A,

1 L s 1 2 N
(8.4) — ;go()\x)ko(x) < m—?\ko(m,\) < <mA (I (Z) ~ In(my)) +m,\> < TR

We therefore have obtained that for all x € Iy ,(7) N (0,¢o),

ko(z) + go(Ax) 1 2
xkﬂﬂz(ﬂ_zﬂdM%M@)ST%@%A—IL

which in turn shows that

o (@) < (1-22).

2]@’0(1‘)
O

We are now ready to compute an upper bound on the sum of size of the intervals I, ;(7) for a
given n.

Proposition 8.2. Suppose A > 7 and % > 7. Foralln > 1,

In A
(8.5) U sl <6r755,
keK(A,n)

where K (A, n) is the set of all positive k such that jflll)c < n\. We also have

(5.6 U loxln)| < 7r2d),

kEK(X,0)

where K (A,0) is the set of all positive k such that j(()lk), < (oA

Proof. When n > 1. We know thanks to Lemma that ¢, is a bijection on I, (7). We write
I, 1 (T) = [on ks Bn k], that is B, x € U,k is such that ¢(B, k) = —1 — 7 and i € Uy, i is such
that ¢(Bn k) = —1 + 7. We have

Bn,k 2 Bn.k
(8.7) %=w%w—wmm=/  (w)du > 1/ u_

Qn k 2 n,k nkn (u)
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From Proposition we know that, introducing x,, = n — 4/5n"/%, u — u/k,(u) is increasing on
(0, xn), and satisfies

) —1/2

P (2—271 when 0 < z < xy,,
= —1/2

nkn(2) (;‘—2 — 1) when x, <z < n.

Let k. be the largest indice such that o, 1 < xn. For all £ < &, we have

_ —1/2
47 Bk (2 1/2 n?
— > — -1 dr > |1, — =1
A2—17 /(,yn,k (xz ) v | )k(T)l Oé%L k

and when o, 1 > Xn,

_ —1/2
4T Bk (2 1/2 n?
> ——1 dz > |1 — —1
A2—17 /a " (332 > % 2 [T (7)] Xok

n

Observing that I, 5 (7) C Uk, and therefore n > j, /A > ap o > jflll)c/)\ > a0 = n/A we have
obtained that

ks 4r & n \°
U] < 752 (ank> !
k=1 k=1 .
47 nk Ok 1 n \? Unk  Onk
. n n,k—1 n n,k—1
< —_— LA Ak L 71(47 ,77)
< o (i (- ) ) () (e
<

k=1
dnTt . ot 1
X2 1 (irg“zil (an = “”7’“‘”) /A,l g2~ L
1

4rnAln A
= max
k<kx

A2 —1

()\an,k - )\an,kfl) ’

For £ > 1, the distance Aap g1 — Ao, i is at least jfllch — Jnk- We know from (4.4) that
this distance decreases with &, and tends to w/2. On the other-hand, using the estimates (4.1),

Aoy, 1 — Aag o > ]T(Lli —-n> %n1/3 > %. Therefore, we have

k

’ 5tnAln A
(8.8) kL_Jl Lip(M)| < =5

Using again the fact that ]7(1111 - jr(:,)cil is at least 7, there can be at most (n — x,,)\/7 intervals
Un.k in (Xn,n). Therefore

4 T n2
In,k(T) S N0 N Y5 1(” - Xn)
,cg T(A2—=1) | x3
dnt
- (A2 -1)

Altogether, we have

U Loo(r)| < ntln\ A2 51 4 < 6n7In A
A R W P I | rlnx)) = X
kEK(A,n)

which completes the proof of estimate (8.5]).

When n = 0. As above, with the same notations, we have

Bo.k A2 — Bo,k
(8.9) 27 = ¢(aok) — ¢(Bok) = / —¢'(w)du > Tl/ %du.
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Proposition shows that © — x/ko(z) is increasing until (o, and decreasing afterwards. Thus
)\2 —1 Q0. k
27> — |y (7)| ——.
5 Hox(7)] Folaon)

As before, we know that for k> 1, agx — g rs1 > A (Jor — j(()yllzﬂ) > A\"17/2. We have

ko(a 1 ko (o
ZM < max Z oloo) (k-1 — o,k)

k>2 .k E>1 o — O0,k+1 k>o o,k
Co

B[O hin,

T Jjoa/x T

2) . | Yo (Jo 1//\)’ 2

— In|——————| < =AIn(In)).
oo Yo(o) |~ (Ind)

Finally, using the bound (8.4))
Qp,1 A

ko(ao1) = VIn A

and we have obtained that

4\T 1 2 7In (In )
U foxn)| < o= ( +Zm (mx)) < L2
keK(X,0) A =1 \Vinx 7w A

which concludes our proof. O

Let us now check that away from w, ;, we can produce a bound S, similar to that of the
perturbative regime.

Proposition 8.3. Ifn>1 and x € (A‘ljfl{%,ynyl) \ (UIy k(T)), there holds

9

[Snl < 5
When n =0, if x € (mx, o) \ (Urlox(7)), we have

S0 < 3%
Proof. Case n # 0. When z € [n,y, 1] Proposition shows that |S,,| < v/5, which establishes
the bound. The proof is along the lines of that of Lemma [7.1] Starting from the formula

(gn(Ax) — gn(z)) (1 +itanb,)
(gn(Ax) = gn(2)) +itan by (gn(A2) + kn(z))’
we write a = g,(z) and b = k,(x), and the study of the function
(u—a)?(1+tan?6,)

(u—a)? +tan? 6, (u + b)?
fora>0and b >0, with u € (—o0,—(1+7)b) U (—(1 — 7)b, +00), shows that it has a minimum
for u = a, tends to 1 for u — oo, increases until —(1 + 7)b, decreases on (—(1 — 7)b,a) and

increases to 1 afterwards. Therefore, the maximum of S, is smaller than the maximum of the two
values A and B given by

Sp(z) =

u —

Ao (1 + tan?6,,) (1+7)b+a)’ B 1+ tan%6,
(14 7)b+a)” +tan? 0,720 14 72tan26, %% (1+ (147)2)
~ (1 +tan®6,) (1=7)b+a)’ B 1 +tan?6,

(1 =7)b+a)’ +tan® 6, 7202 2 -2
(1=7)b+a)” +tan 0,7 1+72tan29nb—2 (1+(1_T)b>
a a
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It is clear that
T T

<
1+(14+7)2 " 1+401-7)2
therefore the maximum is A. Noticing that, for b > aa

b
a7 aT

>
1+(1+7)2 " 1+4+2a

<1+2a>2 1+ tan20,, (1+2a>2
A< <

ot —1220‘ + tan? 6, aT

Thanks to Proposition we know that % < Q. We can therefore conclude that
A< <9 1) ’
2T
Case n = 0. The proof is slightly different when n = 0, as ko/go is unbounded near x = 0.
Note that when z < 1, (and (o < 1/3),

3 1 41 9 ko(a)+gol)
s SEO@ S s TS ony o Sb

Introducing u = %{;’;‘)(m), and v = (ko(x) + go(x))/ko(x) we have

<1

we obtain

which concludes the proof.

9
u € (—o0, —7) U (7, 00) and 0 <wv <1,

l90(Az) — go ()| (1 + tan® Oy(x))
l90(Ax) — go(@)[* + tan? g (2) [go(Ax) + kn ()
lu—v[* (£ + ko(x)?)
lu — v|2 ko(x)? + qu -

\50(33”2 =

Relaxing u to an independent variable, we see that
2
u—o” (5 +ko(@)?) _
lu — v|* ko(z)2 + u2 N

ax(A, B, 1)

where )
=P (P k@) el () + ke(@)?)
7= vl ko()? + ()% |7+ 0| ko()? + (2)%r2
It is clear that A < B. Taking the maximum value for v and 7, we find

+ (ko) _ 25 1+ (Gko(ma)® _ 25

T Gko(@)2+(5)272 T 9 (Bky(my)) 42 9T
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APPENDIX A. MISCELLAENOUS PROPERTIES OF BESSEL FUNCTIONS

Proposition [A7] details properties of quotients of Bessel functions. This result is therefore
independent from the rest of the paper. Properties ii., v. and vi. could be new. Since many
authors have worked on Bessel Functions, it is quite possible that similar results were proved
before, but we are not aware of it.

Proposition A.1. For all real n > 1,

i. The function gy, is strictly decreasing on [0,00) \ Ugjn.k, and cancels at each 37(111)@
ii. On [0,jn.1), gn is concave.

iii. For 0 <z <n, g,(z) satisfies

Vi) <me < 1= (B) + 55

where ¢, = n'/3g,(n), satisfies

L, 13
— <cp < .
V2 14
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iv. ForO0<z<n,0<—g/(z) <g2(n). On (0,y,.1), the function k,, is positive. It decreases
until Ky, € (n — %n1/3,n), defined as the unique solution of

— /1 — —k2
2 'n,
v. For 0 <z <n, k, satisfies,

31<k< 7 1
515 < Fn(@) < max 2) s

More precisely, for all x < Kk,

1= (5) = o) < hate) <1 (2)

with kT > 1.91, whereas for all K, <z <n,

31 71
e < kn(x) < i
vi. Finally,
2 kup(x) 5
Al - -,
(A1) 5 < gn(x) < 3

Proof. Property (i) is well-known, see e.g. [I6] [6]. To obtain property (ii), notice that

(Jn (@) = Tn1 (&) Ju—1 (2)
(T ()

L 7/ (z)\°
n+1 n+2\ J,(z)
> (T S| 1
+%Z(+Wﬁ |
In () n+p—1n+p+1
The second identity is proved in [15] [16]. Since for > 0, x — Jy4+1 (x) /J,, (x) is an increasing
function as it can be readily observed from its continued fraction expansion, see [I3] 10.10], we

deduce that g,, is concave on (0, j, 1). For property (iii), using the recurrence relations for Bessel
functions, we notice that g, satisfies the differential equation (4.13). Since g,, is decreasing, we

deduce that
22
gn(l") >14/1— ﬁ

for x < n. We know [I7, 8.55] that n — n'/3g, (n) is an increasing function of n, therefore

—ngy(z) =

1 13
— < < I —.
ﬁ<gl(1)_cn_nlgrgocn< 11
Since g, is concave, we have for all x < n ¢/, (x) > g, (n) = —g2(n), and inserting this inequality
in (4.13), we obtain
2
x? x

as announced. This also proves the first part of property (iv). On (0,n), k, is strictly positive,

as * — Y, (x) is negative and increasing until y,, 1, since from (4.2 ygi > yn,1. The asymptotic
development

o (2) = 1 x? 1

r)=1-"———-——

" 2 n(n—1)

shows that k,, initially decreases. Note that k,, satisfies

(A3) kﬂ@=§(ﬁ@%&+ig

+O(z*)
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Since k,(n) > 0, there exists k,, < n such that k,(k,) =1/1 — Z—%, and k,, increases on (Kn, Yn1)-

The lower bound on k,, will be proved later. We now address property (v). The Wronskian identity
can be written

kn +9n =

mn (=J, (x) Y, (z))’

It is shown in [3] that for all x <n, and n > 0,
27 (—Jy (z) Y (2)) V2 — 22 < 2.09.

The lower bound on k,, k, > xTy/1— (%)2 — gn(x) follows immediately. To derive an upper
bound, we therefore need to estimate k,,(n). Using the Wronskian identity, we can write

Sy s o 2 I (n)
kn( ) g"( )+7T(Tl1/3c]n(n))2 < Y, (n)>

Note that n'/3g,(n),n'/3.J, (n) and —J, (n) /Y, (n) are bounded increasing functions of n, see
[I7, 8.54,855] and [8]. Therefore

é im [ —n'3g,(n 2 —Jl (1) n3k, (n

(A-4) 5= nleoo( an(m) + 7 (n1/3., (n))? ( Yi (U)) : Falrt),
T 2 - I (n) 3L (n

(48) 6= 0t A ,}m( Y (n)) = ).

We have obtained

b (1= (5305

as announced. We can verify by inspection that k1 > 3/5 on (0,1). Let us compute a lower bound
for n > 2. Note that we have obtained that k,(n) < 1. We compute

e A - R R
x2 n
< Ln + n(kn(n)* — 1) ln(x)} |
= g (i (in)? + (1 = k()2 In (1 — b (50)2))
nky(n)?
2

IN

En(kin)?.

This implies, using the bounds 7/6 > k,(n)n'/3 > 4/5,

\%

min_(kn(z)) = kn(rn) nk%(n) (=1 + V1 +2nk3(m))

0<z<1
1 . —14++/1+ 223
> —— min _—
nl/3 4/5<z<7/6 22
3
>

5nl/3°
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Let us show now that x,, > n — %nl/ 3. to conclude the proof of Property (iv). Differentiating the
identity (A.3) we obtain, when k], > 0,

EP@) = oK@+ 2 (25 + 2K, @)ha(2)

+ @ (2nky(z) — 1)

2
n
> 2 + ky, (2) (6n2/3 _ 1)
n
2

5

>

3.

Therefore, we can write using the upper and lower bound on &, and the lower bound on k,(f),

7T 3 1 " 2 (" 1
fo2y 4 o _ - ! > Z — = “(n—kK,)2
(6 5) 5 2 kn(n) — kn(kn) /nn ki, (t)dt > - /ﬁn (t — Kkp)dt (n — kKn)

n
117 4
_ < 218 213
n— Ky, < 30n < 5n ,
which is the announced bound.

Finally, let us address property (vi.). Note that for x > x1, k,, /g, is increasing, as the quotient
of an increasing function over a decreasing one, therefore the lower bound is in the interval [0, z1].
Thus, the maximum is either at x = 0 or x = x1, and

Consequently,

Ogcag;l(kn/gn) < max(1,kn(n)/gn(n)) <

Using the differential equations (A.3)) and (4.13), we obtain

ko) 2 ky,
() <3 - m) (3).
9gn TGn n 9n

An expansion around zero shows that

x2 R 4
l—ﬁ—kngn:mﬁ—FO(ﬂf ),

V2
- <

w| Tt

therefore k., /g, initially decreases. Since k,(n)/g,(n) > 0, it decreases until x5 < x; such that
kn(22)gn(x2) = 1 — 23/n?, and increases afterwards. Using the upper bound on g,, we obtain,
that, at that point,

272 2\ 1\ 2 -
balws) _1-abjn (Hgi(n)x(l_g) ) > 1+ 80 52
n

g0 (@2)  ga(ws)®  0sesm n ()2

as claimed. O
Proposition A.2. For any n # 0, let (,, be the first positive solution of

(i [¥2) () = 0.
On (0,(), x — x/kn(x) is increasing, and (, is the mazimum of x — x/k,(x) on (0,n) (resp.
on (0,y0,1)) whenn > 1 (resp. n=20).
When n > 1, we have (, > Ky. Introducing x, :=n — %nl/?’ forn>1, and x1 = 1/2, we have

2 -1/2
A6 T - (Z—Q— ) when 0 < z < xn,
( . ) len(l’) = n? 1 —1/2 L

- when xn, <z < n.
When n =0,

Co
ko(Co)

Co =~ 0.3135, and ~ 0.3524
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In terms of previously defined functions, it is the unique solution of

ko(Co) = % + %\/1 — 4¢3

Proof. From (|A.3)) we deduce that x — x/k,(x) is a solution of the differential equation

d [z _ nkyp(2)(1 — nky(2)) +n? — 22
i () - k2 ()

Clearly, while z < k,, that is, while k,, is decreasing, ©+ — x/k,(z) is increasing. We note that
nky(2)(1 — nk,(z)) + n? — 22 only has one root greater than 1/n. From the lower bound on
kn > 3/5n~'/3 given by Proposition and by inspection for n = 1,2, we verify that (z =1k, (z))’
cancels at most once on (k,,n). We find

d [z 1
— [ — n) = 0.
dz (kn) (on) = 5l >
Using the lower estimate on k,(n) given by (A.4) and by inspection for n = 1,2, we find

£(E)o-
(n)

Thus, there exists a unique maximum for z/k,,(z) on (0,n). Noting that k,(z)/z = —(In|Y,])'(z),
we conclude that this maximum is (,. For any z € [k,,n], we obtain that

x K 6n'/3 n? —1/2
>min( —2— —— ) > (= —1
nka@) = <nkn<mn>’ 7 > - (x% ) ’
where we used the upper bound for z < k,, given by Proposition

/ 2

and where y, =n— %nl/S is the lower bound k,, given by the same proposition. In the case n =1,
K1 =~ 0.52 > % Altogether, we have obtained

) —1/2
T (;L—g—l when 0 < z < xp,

2 -1/2
(%—1) when y, <z <n.

For n = 0, we compute that

d (1 1
Ir (xk0> =1+ ﬁk‘o (ko — 1)

Therefore x — %ko(as) is decreasing until (y, given by ko({y) = % + % 1 — 4k3, and increasing
afterwards. O

We conclude this section by a property of x — |H,§1) () | which is useful for broadband esti-
mates.

Lemma A.3. For any x > 0, the function x — ln|H(gl) ()] is convex. Furthermore, for any
y>1
1
|HY (ay)|
T — 7(1)
‘Ho (33)‘
is decreasing on (0,00), and
1
‘Hé )(fcy)‘ 1
1>—F > —.
H @) VI
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