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SEMICLASSICAL SZEGÖ LIMIT OF RESONANCE CLUSTERS

FOR THE HYDROGEN ATOM STARK HAMILTONIAN

PETER D. HISLOP AND CARLOS VILLEGAS-BLAS

Abstract. We study the weighted averages of resonance clusters for the
hydrogen atom with a Stark electric field in the weak field limit. We prove
a semiclassical Szegö-type theorem for resonance clusters showing that the
limiting distribution of the resonance shifts concentrates on the classical
energy surface corresponding to a rescaled eigenvalue of the hydrogen atom
Hamiltonian. This result extends Szegö-type results on eigenvalue clusters
to resonance clusters. There are two new features in this work: first, the
study of resonance clusters requires the use of non self-adjoint operators, and
second, the Stark perturbation is unbounded so control of the perturbation
is achieved using localization properties of coherent states corresponding to
hydrogen atom eigenvalues.
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1. Introduction: Semiclassical Szegö limits

The behavior of eigenvalue clusters resulting from the perturbation of highly
degenerate eigenvalues of elliptic operators on compact manifolds has been stud-
ied by many researchers, notably by V. Guillemin [3] and by A. Weinstein [9].
The basic idea is the following. Suppose that EN is an eigenvalue of an elliptic
self-adjoint operator P with multiplicity dN , growing with N . For bounded
perturbations QN , satisfying ‖QN‖ → 0 as N → ∞, there is a cluster of nearby
eigenvalues EN,j , with the same total multiplicity dN as EN , that tend to EN as
N → ∞. The eigenvalue shifts νN,j are defined by νN,j ≡ EN −EN,j. The basic
question concerns the distribution of these eigenvalue shifts as N → ∞. Since
the eigenvalue EN is increasing with N , the Hamiltonian is rescaled so that
the eigenvalue Ẽ is independent of N . This rescaling results in a rescaled per-
turbation and rescaled eigenvalue shifts ν̃N,j. If the rescaled perturbation Q̃N

vanishes with a rate κ(N), then the rescaled eigenvalue shifts ν̃N,j vanish at the

same rate. Consequently, the point measure (1/dN )
∑dN

j=1 δ(λ − ν̃N,j/κ(N))dλ

should have a weak limit as N → ∞. In particular, if ρ ∈ C0(R), then, roughly
speaking, one proves that

lim
N→∞

1

dN

dN
∑

j=1

ρ

(

ν̃N,j

κ(N)

)

=

∫

A
ρ(Q̃(α)) dµ(α), (1)

where A is a parameterization of the classical Hamiltonian orbits with energy
Ẽ and µ is an invariant measure on this energy surface. The effective potential
Q̃ is the average of a re-scaled perturbation over one of these orbits.

In the semiclassical context, we interpret h = 1/N as Planck’s constant,
and then this formula (1) is what we mean by a semiclassical Szegö limit for
the appropriately rescaled eigenvalue shifts of perturbed operator. Formula (1)
expresses the weak limit of the distribution function of the eigenvalue shifts in
terms of averages of the perturbation over corresponding classical orbits.

The behavior of eigenvalue clusters for bounded perturbations V of the Lapla-
cian −∆Sn on L2(Sn) were studied by Guillemin [3]. Weinstein [9] studied
these Szegö-type limits for the Laplacian on a compact manifold perturbed by
a bounded, real-valued function V . In both cases, the semiclassical parameter
is the index of the unperturbed eigenvalue. The integral on the right in (1) is
the average of potential perturbation V over closed geodesics of the manifold.
Brummelhuis and Uribe [2] extended these results to the study of the semiclas-
sical Schrödinger operator −h2∆+V on L2(Rn). The potential V ≥ 0 is smooth
with V∞ ≡ lim inf |x|→∞ V (x) > 0. They studied the semiclassical behavior of

the eigenvalue cluster near an energy 0 < E2 < V∞. They proved an asymp-

totic expansion of Trρ[(H
1/2
h −E)h−1] as h→ 0 and related the coefficients to

the classical flow for p2 + V on the energy surface E.
Uribe and Villegas-Blas [8] extended these results by considering perturba-

tions of the hydrogen atom Hamiltonian by operators of the form ǫ(h)Qh where
Qh is a zero-order pseudo-differential operator uniformly bounded in h and
ǫ(h) = O(h1+δ), for δ > 0. The main novelty comes from the fact that for a
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fixed negative energy, there are two types of classical orbits for the Hamilton-
ian flow on an energy surface for negative energy. There are bounded periodic
orbits corresponding to nonzero angular momentum, and there are unbounded
collision orbits with zero angular momentum. Uribe-Villegas [8] used Moser’s
regularization of collision orbits so that all orbits are considered periodic or-
bits. In this regularization, all orbits correspond to geodesics on the sphere S3.
Those passing through the north pole are the collision orbits. The geodesics on
S
3 are parameterized by a certain five-dimensional set A described in Appendix

1, section 6.
In this paper, we extend these results to resonances of the Stark hydrogen

Hamiltonian. We prove a Szegö-type result on the semiclassical behavior of
the distribution of the resonance shifts. To explain this in more detail, let
EN (h) = −1/(2h2N2) be an eigenvalue of the hydrogen atom Hamiltonian
HV (h) = −(1/2)h2∆ − |x|−1, defined on L2(R3) (see (3)), with multiplicity
dN = N2. Applying an external electric field of strength F > 0, the resulting
Hamiltonian HV (h, F ) = HV (h) + Fǫ(h)x1, called here the Stark hydrogen
atom Hamiltonian (see (5)), has purely absolutely continuous spectrum equal
to the real line R. We will keep F > 0 constant assume that ǫ(h) vanishes as
h→ 0 corresponding to weak field limit. Under the perturbation by the electric
field, the eigenvalue EN (h) < 0 gives rise to a cluster of nearby resonances
zN,i(h, F ), i = 1, . . . ,KN , with total algebraic multiplicity equal to dN . We
have ℜzN,i(h, F ) ∼ EN (h) and the imaginary part of the resonance ℑzN,i(h, F )
is exponentially small in 1/(hF ).

To study the semiclassical limit, we take h = 1/N as in Uribe-Villegas
[8]. Then, the family of hydrogen atom Hamiltonians HV (1/N,F = 0) has
a fixed eigenvalue EN (1/N) = −1/2. The Stark hydrogen atom Hamiltonian
HV (1/N,F ) has a cluster of nearby resonances zN,i(1/N,F ) that converge to
−1/2 as N → ∞. Our main result is the following Szegö-type theorem for this
resonance cluster in the large N limit corresponding to a weak electric field.

Theorem 1. Let F > 0 be fixed, and let ρ be a function analytic in a disk
of radius 3F about z = 0. Let ǫ(h) = h6+δ, for some δ > 0, small, and
take h = 1/N , with N ∈ N. For the resonance cluster {zN,i(1/N,F )} near
EN (1/N) = −1/2, we have

lim
N→∞

1

dN

dN
∑

j=1

ρ

(

zN,i(1/N,F ) − EN (1/N)

ǫ(1/N)

)

=

∫

Σ(−1/2)
ρ

(

1

2π

∫ 2π

0
F · (φ̃t(x, p))1 dt

)

dµL(x, p), (2)

where φ̃t is the Hamiltonian flow for the Kepler problem on the energy surface
Σ(−1/2) with collision orbits treated as in [8], and φ̃t(x(t), p(t)))1 is the pro-
jection of this flow onto the first coordinate axis x1. The measure µL is the
normalized Liouville measure on restricted to the energy surface Σ(−1/2).

This result parallels and extends the result of Uribe and Villegas-Blas [8]
on eigenvalue clusters formed by bounded perturbations Qh of the hydrogen
atom Hamiltonian. There are three new main components in this work. The
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first is that the Stark perturbation is unbounded. The bounded perturbation
Qh of Uribe-Villegas [8] is replaced by the unbounded perturbation Fǫ(h)x1
with small field strength as h → 0. Control of the unbounded perturbation is
obtained by utilizing the localization properties of coherent states of the hydro-
gen atom Hamiltonian. The second is the fact that we work with resonances
that appear as eigenvalues of non self-adjoint operators. Consequently, many
estimates appearing in [8] have to be established for non self-adjoint opera-
tors. Thirdly, we use a semiclassical result of Thomas-Villegas [7, Theorem
4.2] to evaluate the trace of the Stark perturbation restricted to certain finite-
dimensional subspaces (see Theorem 5.)

1.1. Contents. In section 2, we rescale the Stark hydrogen atom Hamiltonian
using the dilation group. This establishes a countable family of rescaled Hamil-
tonians all having a fixed eigenvalue −1/2. In section 3, we review the results of
Herbst [4] on resonances for the Stark hydrogen atom Hamiltonian. We prove
several important resolvent estimates necessary for our work, extending some
estimates of Herbst [4]. The main semiclassical result is proved in section 4.
We show that the semiclassical Szegö-type limit can be obtained by evaluating
the trace of the Stark perturbation restricted to the eigenspace of the hydrogen
atom Hamiltonian. This requires decay properties of the analytically continued
coherent states. The final part of the proof of Theorem 1 is proved in sec-
tion 5. We apply a theorem of Thomas-Villegas [7] to polynomially bounded
perturbations in order to evaluate the large N limit of the trace of the Stark
perturbation restricted to the hydrogen atom Hamiltonian eigenspace.

Acknowledgment.
PDH was partially supported by NSF grant 0803379 during the time this

work was done. CV-B was partially supported by the project PAPIIT-UNAM
IN 109610-2 and thanks the members of the Department of Mathematics of the
University of Kentucky for their hospitality during a visit.

2. Scaling

The hydrogen atom Hamiltonian HV (h) with the semiclassical parameter h
acts on the Hilbert space L2(R3). It is the self-adjoint operator given by

HV (h) = −h
2

2
∆− 1

|x| . (3)

The discrete spectrum consists of an infinite family of eigenvalues Ek(h)

Ek(h) =
−1

2h2k2
, k ∈ N, (4)

each eigenvalue having multiplicity k2. The spacing between successive eigen-
values is O(k−3).

With the choice of h = 1/N and k = N , we see that Ek=N (h = 1/N) = −1/2
is in the spectra of the countable family of Hamiltonians HV (1/N), N ∈ N. The
multiplicity of the eigenvalue −1/2 grows as N2.
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The unscaled Stark hydrogen Hamiltonian is

HV (h, F ) = −h
2

2
∆− 1

|x| + ǫ(h)Fx1

= HV (h) + wh(F ), (5)

where F ≥ 0 is the electric field strength and we have chosen the x1-direction
for the field. We consider a parameter ǫ(h) = hK+δ, for 0 < δ < 1. We will
choose K ∈ N below.

The dilation group Dα, α > 0, a representation of the multiplicative group
R
+, has a unitary implementation of L2(Rd) given by

(Dαf)(x) = αd/2f(αx). (6)

We scale the Hamiltonian in (5) by α = h2:

Dh2HV (h, F )Dh−2 =
1

h2

(

−1

2
∆− 1

|x| + h4ǫ(h)Fx1

)

. (7)

We call this rescaled Hamiltonian Sh(F ) so that

Sh(F ) = −1

2
∆− 1

|x| + h4ǫ(h)Fx1

= HV + h4ǫ(h)Fx1, (8)

where we write HV ≡ HV (1) and Wh(F ) = h4ǫ(h)Fx1 is the rescaled pertur-
bation. Note that for F = 0, the eigenvalues of Sh(0) are given by Ek(1) =
−1/(2k2), with k ∈ N. We will keep F > 0 fixed. The effective electric field
is h4ǫ(h)F and we can make this small be taking h→ 0, or, equivalently, with
h = 1/N , by taking N → ∞.

3. Resonances of the Stark hydrogen Hamiltonian

The hydrogen atom Hamiltonian HV (h, F ) with an external electric field Fx1
is given in (5). We write H0(h, F ) for the Stark Hamiltonian with V = 0. For
this section only, we take h = 1 and write HV (F ) = HV (1, F ), for the hydrogen
atom Stark Hamiltonian, and HV = HV (1, 0), when the field F = 0. The
Stark Hamiltonian with V = 0 and h = 1 is denoted by H0(F ) = H0(1, F ) =
−(1/2)∆ + ǫ(h)Fx1. and HV = HV (1, 0). For F 6= 0, the spectrum of HV (F )
is purely absolutely continuous and equal to R. We are interested in the fate
of the negative eigenvalues of HV when the field F is turned on. We review
the results of Herbst [4] on the resonances associated with the F 6= 0 case.
Herbst’s article deals with more general Stark Hamiltonians but we cite and
use his results only for the hydrogen atom case of interest here for which V is
the Coulomb potential.

3.1. Dilation analyticity. The dilated Stark hydrogen Hamiltonian is ob-
tained by conjugating (5) with the unitary dilation group Dα defined in (6).
We take α = eθ > 0, for θ ∈ R. We obtain

HV (F, θ) = Dexp(θ)HV (F )Dexp(−θ)

= −e
−2θ

2
∆− e−θ

|x| + eθFx1. (9)
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We are interested in extending this formula to θ with ℑθ 6= 0. There are
two properties that need to be checked: the analyticity of the potential, and
the analyticity of the Stark Hamiltonian. Since the potential is a Coulomb
potential, we have V (θ) = e−θV , so V (θ) is a type A analytic family of op-
erators. Furthermore, as V (−∆ + 1)−1 is a compact operator, it follows that
V (θ)(−∆+1)−1 is a compact operator-valued analytic function of θ for θ ∈ C.
In accordance with the Herbst’s hypothesis [4, p. 287], we may take θ0 = π/3,
the maximum width of the strip of analyticity allowed by the purely Stark
Hamiltonian H0(F ) = −(1/2)∆+Fx1. In order to understand the origin of the
bound π/3, we note that for F ∈ R

H0(F, θ) = −(1/2)e−2θ∆+ Feθx1 = e−2θ[−(1/2)∆ + Fe3θx1]. (10)

Herbst proved results on the operator −(1/2)∆+Fe3θx1 when θ becomes com-
plex in section II of [4]. The effective electric field Fe3θ has a nonzero imaginary
part, necessary for Herbst’s results, only if 0 < |ℑθ| < π/3.

Herbst [4] proved the following theorem about the dilated operator HV (F, θ).
We consider F > 0 fixed.

We recall that for a closed operator with an isolated eigenvalue z0, the alge-
braic multiplicity of the eigenvalue is defined as the dimension of the range of
the corresponding Riesz projector.

Theorem 2. [4, Theorem III.2] For 0 < ℑθ < π/3, the operator HV (F, θ) is
closed on D(−∆)∩D(Mx1

). The operator family HV (F, θ) is an analytic family
of type A operators in θ. The spectrum on HV (F, θ) is discrete, independent of
θ, and the algebraic multiplicity of each eigenvalue is independent of θ.

3.2. Resonances. Herbst [4] proved that for V = 0, the closed operatorH0(F, θ),
F 6= 0, has no spectrum for 0 < |ℑθ| < π/3. As stated in Theorem 2, Herbst
also showed, using the techniques of dilation analyticity, that for 0 < ℑθ < π/3,
the non self-adjoint Hamiltonian HV (F, θ), with V a Coulomb potential, has iso-
lated eigenvalues with finite algebraic multiplicity. Furthermore, Herbst proved
that these eigenvalues are connected to the eigenvalues of the F = 0 and ℑθ = 0
operators.

Theorem 3. [4, Theorem III.3] Suppose that E0 is a negative eigenvalue of
HV , defined in (3) with h = 1, of multiplicity N0. Then for F > 0 small,
there are exactly N0 eigenvalues, counting algebraic multiplicity, of HV (F, θ),
as defined in (9) with 0 < ℑθ < π/3, nearby, and as F → 0+, these converge
to E0.

We also apply Theorems 2 and 3 to the scaled operator Sh(F ) defined in
(8) with F of the theorem replaced by h4ǫ(h)F , and take h = 1/N . For any
fixed N ∈ N, we consider the resonance cluster {zN,j(h, F )} of Sh(F, θ) near the
eigenvalue −1/(2N2) of HV (θ). Note that the operator Sh(F ) has an effective
electric field with strength h4ǫ(h)F that vanishes as h→ 0. Hence, Theorem 3
states that the resonances zN,j(h, F ) converge to the N2-degenerate eigenvalue
EN as h→ 0.
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3.3. Resolvent estimates. We summarize the resolvent estimates needed from
[4]. We recall that for a closed operator A with domain D(A), the numerical
range of A, denotedW (A), is the smallest convex set generated by {(u,Au) | u ∈
D(A)}. We let H0(F ) = −(1/2)∆ + Fx1 be the Stark Hamiltonian. Following
Herbst [4], we review the results on Stark Hamiltonians with complex electric
fields.

Proposition 1. [4, Theorem II.1] We write F = Eeiφ, with E,φ ∈ R, E 6= 0,
and 0 < |φ| < π/3.

(1) The spectrum of H0(F ) is empty.
(2) The numerical range of H0(F ) is the half-plane

W (H0(F )) =

{

z ∈ C | ℜz >
(

cosφ

sinφ

)

ℑz
}

, (11)

independent of E 6= 0.
(3) The resolvent is bounded

‖(H0(F )− z)−1‖ ≤ [dist(z,W (H0(F )))]
−1. (12)

We now consider the dilated Stark Hamiltonian H0(1, F, θ) ≡ H0(F, θ), as
defined in (9),

H0(F, θ) = −(1/2)e−2θ∆+ eθFx1. (13)

The following operator plays an important role in the analysis:

K(F, θ, z) ≡ V (θ)(H0(F, θ)− z)−1, (14)

where the dilated Coulomb potential is given by

V (θ) =
e−θ

|x| . (15)

We prove a convergence estimate for K(F, θ, z) − K(0, θ, z) with a precise
rate of convergence as F → 0 (recall that h = 1 here). This estimate is possible
since the potential is a Coulomb potential.

We recall the basic resolvent estimates. Let H0(θ) = −(1/2)e−2θ∆, and
H0(F, θ) = −(1/2)e−2θ∆ + Feθx1 be the Stark Hamiltonian. For any F 6= 0,
we have the following basic estimate from Proposition 1:

‖(z −H0(F, θ))
−1‖ ≤ 1/d(z,W (H0(F, θ)). (16)

Let γN be a simple closed contour about ẼN = −1/2N2 of radius 1/(8N3). For
z ∈ γN , we have

‖(z −H0(θ))
−1‖ ≤ 1/d(z, e−2θ

R
+) = O(N2). (17)

The contour γN is chosen so that it contains only one eigenvalue ẼN of HV (θ).
Recall that V (θ)(H0(θ) + 1)−1 is a compact analytic operator valued function
for |ℑθ| < π/3.

Proposition 2. [4, Proposition III.1]

(1) The operator K(F, θ, z) is compact and jointly analytic in (z, θ) on the
region

{(θ, z) | z ∈ C, 0 < |ℑθ| < π/3}. (18)



8 P. D. HISLOP AND C. VILLEGAS-BLAS

(2) We have the following convergence on the contour γN with 0 < |ℑθ| <
π/3:

‖K(F, θ, z) −K(0, θ, z)‖ = O(FN4), (19)

as F → 0. This convergence is uniform on the larger set {(θ, z) | d(z,W (H0(F, θ))) >
0, 0 < |ℑθ| < π/3}.

We need the following lemma summarizing several key estimates on resol-
vents.

Lemma 1. Let z ∈ γN and 0 < |ℑθ| < π/3.

(1) ‖(H0(F, θ)− z)−1‖ = O(N2)
(2) ‖(H0(θ)− z)−1‖ = O(N2)
(3) ‖V (θ)(H0(θ)− z)−1‖ = O(N)
(4) ‖e−2θp1(H0(θ)− z)−1‖ = O(N2), where p1 = −i∂/∂x1.

Proof. 1. The first estimate follows from the bound (12) and the fact that the
numerical range is a half-plane located a distance O(1/N2) from the contour
γN .
2. The second estimate follows similarly as the spectrum of H0(θ) is the half
line e−2ℑθi

R
+, see (16).

3. The third estimate requires the following bound. Let C3 denote the constant
C3 = (2π)−3/2(

∫

R3(1+ |p|2)−2 d3p)1/2. For any ψ ∈ H2(R3), and for any λ > 0,
we have

‖ψ‖∞ ≤ C3

λ1/2
‖∆ψ‖+ C3λ

3/2‖ψ‖. (20)

This follows from the Sobolev embedding theorem and standard estimates with
the Fourier transform. We decompose the Coulomb potential as V = V χBN (0)+
V (1 − χBN (0)) ≡ V2 + V∞, where χBN (0) is the characteristic function on the

ball of radius N > 0 centered at the origin. We have that V2 ∈ L2(R3) and

V∞ ∈ L∞(R3), with ‖V2‖ = ω
1/2
3 N1/2 and ‖V∞‖∞ = 1/N . With the help of

(20), and choosing λ = 1/N , we write

‖V ψ‖ ≤ ‖V2‖‖ψ‖∞ + ‖V∞‖∞‖ψ‖
≤ (ω3N)1/2C3‖∆ψ‖+ (ω

1/2
3 C3 + 1)N−1‖ψ‖, (21)

where ω3 = 4π. Recall that (H0(θ) − z)−1 : L2(R3) → H2(R3) and that
|z| = O(N−2) for z ∈ γN . Taking estimate (21) with ψ = (H0(θ) − z)−1φ, for
any φ ∈ L2(R3), together with estimate (2), we easily obtain estimate (3).
4. The proof of estimate (4) follows from

‖e−2θp1(H0(θ)− z)−1‖ ≤ max
{

|p1(|p|2 − e2θz)−1
}

= O(N2), (22)

since z ∈ γN .
�

We can now give the proof of Proposition 2.

Proof. 1. As in Herbst [4], we write

K(F, θ, z) = V (θ)(−∆+ 1)−1J(θ, z), (23)
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where

J(θ, z) = (−∆+ 1)(H0(F, θ)− z)−1. (24)

The Coulomb potential has the property that V (θ)(−∆ + 1)−1 is an analytic,
compact operator-valued function for any θ ∈ C. The quadratic estimate (147)
implies that J(θ, z) is bounded. For an appropriately defined circle γ, a contour
integral representation

J(θ, z) = (2πi)−2

∫

γ

∫

γ
dw dφ(w − z)−1(φ− θ)−1J(φ,w) (25)

is used to verify that J(θ, z) is analytic in the region described in the proposi-
tion: 0 < |ℑθ| < π/3 and z ∈ C.
2. Using the resolvent formula, we write the difference on the left in (19) as

K(F, θ, z)−K(0, θ, z)

= −Feθx1V (θ)(H0(θ)− z)−1(H0(F, θ)− z)−1

+FeθV (θ)(H0(θ)− z)−1[H0(θ), x1](H0(θ)− z)−1(H0(F, θ)− z)−1.

(26)

The commutator [H0(θ), x1] = −2e−2θip1, where p1 = −i∂/∂x1. Note that
‖x1V (θ)‖ ≤ e−ℜθ, since the potential is Coulombic. From the resolvent esti-
mates in Lemma 1, we obtain

‖K(F, θ, z) −K(θ, z)‖ ≤ Feℜθ‖(H0(F, θ)− z)−1‖{A+B}, (27)

where

A = e−ℜθ‖(H0(θ)− z)−1‖ = O(N2), (28)

and

B = ‖V (θ)(H0(θ)− z)−1‖+ 2‖e−2θp1(H0(θ)− z)−1‖ = O(N2). (29)

Consequently, we find from (27)–(29) that

‖K(F, θ, z) −K(0, θ, z)‖ = O(FN4). (30)

This proves part (2) of the proposition. �

We recall that our F is Fh4ǫ(h) so that with h = 1/N and ǫ(h) = hK+δ, part
(2) of Proposition 2 states that uniformly for z ∈ γN , with |γN | = 2π(8N3)−1,
we have

‖K(F, θ, z)−K(0, θ, z)‖ = O(N−K−δ), (31)

as N → ∞.

4. A semiclassical trace identity for resonance clusters

We now return to the scaled Hamiltonian Sh(F ) = HV +Wh(F ), with F > 0
fixed, the perturbation Wh(F ) = h4ǫ(h)F , with ǫ(h) = hK+δ, and K ≥ 6. We
will take h = 1/N and consider N → ∞. We need a basic trace identity relating
the resonance shifts zN,j(1/N,F ) − EN (1/N), with EN (1/N) = −1/2, to the
eigenvalues of a reduced, finite dimensional matrix obtained from the Stark
perturbation Wh(F ). This is the main result of this section stated in Theorem
4.
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In section 3, the dilation was written as eθ. The real part of θ does not affect
Theorems 2 and 3. Consequently, we will now write the dilation as eiθ, with
θ ∈ R and in the range 0 < |θ| < π/3. The operators are obtained by analytic
continuation as discussed in section 3.

As above, we fix N ∈ N. We study the non self-adjoint operator Sh(F, θ)
obtained from Sh(F ) in (8) by dilation Dexp(iθ), for θ ∈ R as above:

Sh(F, θ) = Dexp(iθ)Sh(F )Dexp(−iθ) = HV (θ) +Wh(F, θ), (32)

where the dilated, scaled hydrogen atom Hamiltonian is

HV (θ) = Dexp(iθ)HVDexp(−iθ) = −e
−2iθ

2
∆− e−iθ

|x| , (33)

and the dilated perturbation is

Wh(F, θ) = Dexp(iθ)Wh(F )Dexp(−iθ) = h4ǫ(h)eiθFx1. (34)

We write Wh(F ) =Wh(F, 0) and note that Wh(F ) = h4ǫ(h)Fx1 is self-adjoint.

Let Π0
N be the orthogonal projector for the eigenvalue ẼN = −1/(2N2)

of the scaled hydrogen atom Hamiltonian HV defined in (8). Under dilation,
these remain eigenvalues ofHV (θ). Let PN (θ) be the projector for the resonance

cluster {z̃N,i(h, F )} near ẼN of the non self-adjoint operator Sh(F, θ). We write
for the resonance shift

z̃N,i(1/N,F ) = ẼN + νN,i, νN,i ∈ C. (35)

The following trace estimate for the resonance shifts is the main result of this
section.

Theorem 4. Let νN,i be the complex resonance shifts defined in (35), and
let τN,i be the eigenvalues of the self-adjoint operator Π0

NWh(F )Π
0
N . For any

m ∈ N, and for h = 1/N , we have the following trace formula:

1

dN

dN
∑

i

(

νN,i

h2ǫ(h)

)m

=
1

dN

dN
∑

i=1

(

τN,i

h2ǫ(h)

)m

+O
(

1

Nβ

)

, (36)

for some β > 0.

The proof of Theorem 4 requires two main steps. In the first, we express
the left side of (36) in terms of the trace of the operator PN (θ)(Sh(F, θ) −
ẼN )mPN (θ). In the second step, we evaluate the trace of this operator and
express it in terms of the finite-rank operator Π0

NWh(F )Π
0
N .

4.1. Step 1. A trace calculation. Since Sh(F, θ) is non self-adjoint, the
projector PN (θ) is not self-adjoint. The range of PN (θ) is a finite-dimensional
subspace EN with a dimension N2 that is equal to the geometric multiplicity
of the eigenvalue ẼN of HV . Let z̃N,j(h, F ), j = 1, . . . ,K, with 1 ≤ K ≤ N2

be a listing of the distinct resonances that converge to ẼN as N → ∞. Let
PN,j(θ) be the projector onto the generalized eigenspace EN,j corresponding to
the resonance z̃N,j(h, F ). The subspace EN admits a direct sum decomposition

EN = ⊕K
j=1EN,j, where the finite-dimensional subspaces EN,j, j = 1, . . . ,K have

the following properties:
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(1) EN,j = ran PN,j(θ) and dimEN,j = mj

(2) PN (θ) =
∑K

j=1 PN,j(θ)

(3) the algebraic multiplicity of the resonance zN,j is given by mj

(4) N2 =
∑K

j=1mj

(5) the projectors satisfy PN,j(θ)PN,m(θ) = δjmPN,j(θ)
(6) on the invariant subspace EN,j, we have Sh(F, θ)|EN,j = z̃N,jIEN,j

+DN,j,
where DN,j is nilpotent with order mj and commutes with Sh(F, θ)

(7) ker(Sh(F, θ)− z̃N,j)
mj = EN,j.

We refer to Kato [5, chapter III, section 6.5] for proofs of all these properties.
The main part of the proof of step 1 is the evaluation of the trace

Tr
(

PN (θ)(Sh(F, θ)− ẼN )mPN (θ)
)

. (37)

Using the facts listed above, we find

Tr
(

PN (θ)(Sh(F, θ)− ẼN )mPN (θ)
)

=

K
∑

j=1

Tr
(

PN,j(θ)(Sh(F, θ)− ẼN )mPN,j(θ)
)

=

K
∑

j=1

Tr
(

PN,j(θ)(z̃N,j(h, F ) − ẼN +DN,j)
mPN,j(θ)

)

=
K
∑

j=1

(z̃N,j(h, F )− ẼN )mTrPN,j

=

K
∑

j=1

mj(z̃N,j(h, F ) − ẼN )m

=
K
∑

j=1

mj(νN,j)
m. (38)

We also used the facts that TrPN,j(θ) = mj, and that TrPN,j(θ)DN,j = 0,
since DN,j is nilpotent and DN,jPN,j = PN,jDN,j = DN,j .

The distinct complex resonance shifts νN,j are defined in (35). We now
change notation and list the shifts with multiplicity included. That is, νN,j is
listed mj times. It then follows directly from (38) that

Tr

(

PN (θ)(Sh(F, θ)− ẼN )mPN (θ)

(h2ǫ(h))m

)

=

dN
∑

i=1

(

νN,i

h2ǫ(h)

)m

. (39)

4.2. Step 2. Evaluation of the trace. The second step in the proof of
Theorem 4 is to estimate the trace on the left side of (39). This requires that
we replace PN (θ) by Π0

N (θ) and that we control the perturbation Wh(F, θ)
defined in (34).

In order to replace the projector PN (θ) by Π0
N (θ), we need some results

relating the projector Π0
N (θ) to PN (θ) as N → ∞, which means that h =

1/N → 0.
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Lemma 2. For fixed θ ∈ R with 0 < θ < π/3, we have

‖Π0
N (θ)− PN (θ)‖ = O(N6−K−δ), (40)

for K ≥ 3 and δ > 0. Consequently, if P⊥ ≡ 1− P , we have

(1) ‖(Π0
N )⊥(θ)PN (θ)‖ = O(N6−K−δ),

(2) ‖P⊥
N (θ)Π0

N (θ)‖ = O(N6−K−δ).

Proof. 1. We consider the contour γN , a circle of radius 1/(8N3) > 0 about the

eigenvalue ẼN . We write the projectors as contour integrals

Π0
N (θ)− PN (θ) =

1

2πi

∫

γN

dz[(z −HV (θ))
−1 − (z − Sh(F, θ))

−1]. (41)

Recall that Sh(F, θ) = HV (θ)+Wh(F, θ), and thatH0(h, F, θ) = −(1/2)e−2iθ∆+
Wh(F, θ). We define a kernel (as in section 3)

Kh(F, θ, z) = V (θ)(H0(h, F, θ)− z)−1. (42)

From the second resolvent identity for H0(h, F, θ) and Sh(F, θ), we obtain

(z − Sh(F, θ))
−1 = (z −H0(h, F, θ))

−1(1 +Kh(F, θ, z))
−1, (43)

whenever the inverse on the right exists. Substituting this back into the second
resolvent identity for H0(h, F, θ) and Sh(F, θ), we obtain

1

z − Sh(F, θ)
− 1

z −H0(h, F, θ)
= − 1

z −H0(h, F, θ)

1

1 +Kh(F, θ, z)
Kh(F, θ, z).

(44)
We note a similar identity for h = 0 comparing HV (θ) = H0(θ) + V (θ) with
H0(θ) = −(1/2)e−2iθ∆. We let K0(θ, z) ≡ V (θ)(H0(θ) − z)−1 in analogy with
(42) for F = 0.

1

z −HV (θ)
− 1

z −H0(θ)
= − 1

z −H0(θ)

1

1 +K0(θ, z)
K0(θ, z). (45)

2. We subtract (44) from (45) and substitute the difference into the integral
in (41). Since both (z −H0(h, F, θ))

−1 and (z −H0(θ))
−1 are analytic on and

inside γN , their contribution to the contour integral vanishes. Consequently,
the difference of the projections in (41) is equal to the contour integral

1

2πi

∫

γN

dz

[

1

z −H0(h, F, θ)
Kh(F, θ, z)

1

1 +Kh(F, θ, z)

− 1

z −H0(θ)
K0(θ, z)

1

1 +K0(θ, z)

]

. (46)

From Proposition 2, part (2), we have thatKh(F, θ, z) andK0(θ, z) are compact
and that Kh(F, θ, z) → K0(θ, z) in norm. We also use the fact that (z −
H0(h, F, θ))

−1 → (z−H0(θ))
−1 strongly as h→ 0. We rewrite the integrand in
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(46) as a sum of three terms:

I ≡ 1

z −H0(h, F, θ)
[Kh(F, θ, z) −K0(θ, z)]

1

1 +Kh(F, θ, z)
(47)

II ≡
[

1

z −H0(h, F, θ)
− 1

z −H0(θ)

]

K0(θ, z)
1

1 +K0(θ, z)
(48)

III ≡ 1

z −H0(h, F, θ)
K0(θ, z)

[

1

1 +Kh(F, θ, z)
− 1

1 +K0(θ, z)

]

. (49)

3. We need estimates on the operators K0(θ, z) and Kh(F, θ, z) and their resol-
vents at −1 that appear in (47), (48), and (49). We begin with the estimates
for K0(θ, z). From part (3) of Lemma 1, we have

‖K0(θ, z)‖ = O(N). (50)

From the definition of K0(θ, z), we easily find that

(1 +K0(θ, z))
−1 = 1− V (θ)(H0(θ) + V (θ)− z)−1. (51)

Recall that the Coulomb potential V is relatively H0-bounded with relative
bound less than one. So there exist constants 0 < a < 1 and b > 0, so that for
all u ∈ H2(R3), we have

‖V u‖ ≤ a‖H0u‖+ b‖u‖. (52)

Scaling by eiθ, with θ ∈ R, we find

‖V (θ)u‖ ≤ a‖H0(θ)u‖+ b‖u‖. (53)

Replacing u by RV (θ)w = (H0(θ) + V (θ)− z)−1w, for z ∈ γN and w ∈ L2(R3),
we obtain

‖V (θ)RV (θ)w‖ ≤ a‖w‖+ (a|z| + b)‖RV (θ)w‖ + a‖V (θ)RV (θ)w‖. (54)

Since 0 < a < 1 and |z| = O(N−2), we obtain

‖V (θ)RV (θ)‖ ≤ C1 + C2‖RV (θ)‖. (55)

It follows from (51), (55), and the fact that ‖RV (θ)‖ = O(N3) that

‖(1 +K0(θ, z))
−1‖ = O(N3). (56)

4. The second estimate we need concerns 1 +Kh(F, θ, z). We write

1 +Kh(F, θ, z) = [1 +K0(θ, z)]

×[1 + (1 +K0(θ, z))
−1(Kh(F, θ, z)−K0(θ, z))], (57)

from which it follows that

(1 +Kh(F, θ, z))
−1 = [1 +Mh(F, θ, z)]

−1[1 +K0(θ, z)]
−1, (58)

where
Mh(F, θ, z) = (1 +K0(θ, z))

−1(Kh(F, θ, z)−K0(θ, z)). (59)

It follows from part (2) of Proposition 2 and (56) that

‖Mh(F, θ, z)‖ = O(N3−K−δ), (60)

so if K ≥ 3, this term is less than 1/2 for all N large. It follows from (58) that

‖(1 +Kh(F, θ, z))
−1‖ = O(N3). (61)
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5. We estimate each term I, I, and III in (47), (48), and (49), uniformly in
z ∈ γN , using the estimate of Proposition 2. For the first term I in (47), we use
part (1) of Lemma 1, part (2) of Proposition 2, and (61), to obtain for K ≥ 3:

‖I‖ = O(N2 ·N−K−δ ·N3) = O(N5−K−δ). (62)

As for II in (48), we use the quadratic estimate in [4, Proposition II.4] (presented
in appendix 8) in order to prove the bound

‖x1(H0(h, F, θ) − z)−1‖ = O(1), z ∈ γN . (63)

Recalling that H0(h, F, θ)−H0(θ) =Wh(F, θ) = h4ǫ(h)eiθFx1, we find that

‖II‖ = O(N−4−K−δ ·N2 ·N ·N3) = O(N2−K−δ). (64)

Recalling that K ≥ 3, we see that the term II vanishes uniformly on γN as
N → ∞.

Finally, for the last term III in (49), part (1) of Lemma 1, estimate (50),
together with (61), (56) and part (2) of Proposition 2, yield

‖III‖ = O(N2 ·N ·N3 ·N−K−δ ·N3)

= O(N9−K−δ). (65)

6. The difference of the projectors on the left side of (40) may be estimated
from (46) and the above estimates, recalling that |γN | = 2π(1/(8N3)):

‖Π0
N (θ)− PN (θ)‖ ≤ |γN |(‖I‖+ ‖II‖ + ‖III‖) = O(N6−K−δ), K ≥ 3. (66)

So for K ≥ 6, we obtain the vanishing of the difference as N → ∞. Parts (1)
and (2) of the lemma follow from (40) simply by writing

(Π0
N (θ))⊥PN (θ) = (Π0

N (θ))⊥(PN (θ)−Π0
N (θ)), (67)

and similarly for part (2). �

4.3. Step 3. Estimates on dilated coherent states. In order to con-
trol the perturbation Wh(F, θ), we need estimates on the following operators:

Π0
N (θ)Wh(F, θ)Π

0
N (θ), Π0

N (θ)Wh(F, θ), and the operators PN (θ)(Sh(F, θ)−ẼN )PN (θ)

and PN (θ)(Sh(F, θ)−ẼN )Π0
N (θ). Estimates on the first two operators are given

in Lemma 3, and on the second two operators are given in Lemma 4.
Heuristically, we are able to control the first two operators due to the fact that

the matrix elements of moments of the position operator ‖x‖ in the eigenstates
ψN (θ) of HV (θ) satisfy

〈ψN (θ), ‖x‖mψN (θ)〉 ∼ N2m. (68)

This decay is due to the fact that the eigenstate is well localized about the
Bohr radius and the Bohr radius scales like N2. A proof of this localization
property of the eigenfunctions is given in the Appendix 2 in section 7. This
localization, however, is too weak to control the operator norm of the opera-
tors Π0

N (θ)Wh(F, θ)Π
0
N (θ) and Π0

N (θ)Wh(F, θ). Using (68), we easily arrive at
estimates of the type

‖Π0
N (θ)Wh(F, θ)Π

0
N (θ)‖ = O(N2ǫ(h)h2), (69)

and the N2 growth will not allow control of the trace in (36) since this is
divided by h2ǫ(h). Instead of using (68), we use coherent states Ψα,N that form
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an overdetermined basis set of functions for the eigenspace of the hydrogen
atom Hamiltonian corresponding to the eigenvalue ẼN . These coherent states
were described in detail in the papers of Bander and Itzykson [1] and more
recently in [7, 8]. We recall the main points that we need here in Appendix 1,
section 6. Recall that the dimension of the range of the projector Π0

N (θ) is N2

and that ǫ(h) = hK+δ, for K ≥ 6.
We use the following notation for operators that occur as remainder terms

and that have bounds depending on h but uniform with respect to any other
parameters. Let K(g(h)), for a function g(h), denote a bounded operator with

‖K(g(h))‖ = O(g(h)). (70)

an example of a function g(h) is (ǫ(h)h2)m. We will also write K(O(h−ℓ)) to
mean a bounded linear operator with ‖K(O(h−ℓ))‖ = O(h−ℓ). The actual form
of K is unimportant and may vary from line to line but a bound of the type
(70) or of the type O(h−ℓ) will always hold.

Lemma 3. There exists a constant r0 > 1, independent of θ with |θ| < π/4, so
that for any n ∈ N, we have

Π0
N (θ)D−1

N2‖x‖nDN2Π0
N (θ) = Π0

N (θ)D−1
N2‖x‖nχ‖x‖≤r0DN2Π0

N (θ)

+Π0
NK(O(N−∞)), (71)

where χ‖x‖≤r0 is the characteristic function on the set {x ∈ R
3 | ‖x‖ ≤ r0}. As

a consequence, we have the following estimates on the perturbation restricted to
the eigenspace of HV (θ):

(1) ‖Π0
N (θ)Wh(F, θ)Π

0
N (θ)‖ = O(N−K−2−δ) = O(ǫ(h)h2) ,

(2) ‖Π0
N (θ)Wh(F, θ)‖ = O(N−K−2−δ) = O(ǫ(h)h2).

Proof. As mentioned above, the key to controlling the perturbation is the strong
localization property of the coherent states. Coherent states for the hydrogen
atom are reviewed in section 6. We prove below that the dilated coherent
states Ψα,N (eiθx) are L2-valued analytic functions of θ provided |ℜθ| < π/4 and
provide uniform bounds. Since, as above, ℑθ pays no role in the calculations,
we set ℑθ = 0.
1. We first prove a decay estimate for the dilated coherent states that is the
analog of [7, Lemma 4.1]. We prove that there exists a constant r0 > 1, inde-
pendent of α ∈ A, N ∈ N, and |θ| < π/4, so that for all n, s ∈ N,

lim
N→∞

N s

∫

‖x‖>r0

‖x‖n|DN2Ψα,N (eiθx)|2 d3x = 0. (72)

This estimate implies that
∣

∣

∣

∣

∫

R3

Ψ∗
β,N (eiθx)D−1

N2‖x‖nχ‖x‖>r0DN2Ψα,N (eiθx) d3x

∣

∣

∣

∣

= O(N−∞). (73)

This estimate is uniform with respect to α, β ∈ A. We turn to the proof of
(72). For any b ∈ S

2, we will prove

lim
N→∞

N s

∫

|x·b|≥r0/2
|x · b|n|DN2Ψα,N (eiθx)|2 d3x = 0. (74)
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By making appropriate choices of b we recover (72) by a finite sum. Following
the proof of [7, Lemma 4.1], we first prove that for any q ≥ 0, there exist
constants c2, c3 > 0, independent of θ, α and N , so that

(
∫

R3

|x · b|2q|DN2Ψα,N (eiθx)|2 d3x
)1/2

≤ c3q!N
1/2ec2N

(N/240)q
, (75)

for any b ∈ S
2. We repeat the argument from [7, Lemma 4.1] showing how

the estimate (75) implies (74). Given n and s from (74), we take m ∈ N so
that N − 1 < m + n < N and set q = (n +m)/2. Since |x · b| ≥ r0/2, we use
Chebyshev’s inequality and Stirling’s formula for q! to estimate (74) from (75),

N s

∫

|x·b|≥r0/2
|x · b|n|DN2Ψα,N (eiθx)|2 d3x

≤ N s

(r0/2)m

∫

R3

|x · b|m+n|DN2Ψα,N (eiθx)|2 d3x

≤ N s

(r0/2)m

[

c3q!N
1/2(N/240)−qeNc2

]2

≤ c5N
s+3

(r0/2)N−1−n
eNc4 , (76)

where c4 ≡ 2c2 + log 120− 1 > 0. We choose r0 > 2 so that r0/2 > e2c4 so that
the right side of (76) is bounded by

c6N
s+3e−Nc4 , (77)

and this vanishes as N → ∞. This proves (74).
2. To prove (75), we change to the momentum variable (see (135)) so that

‖(x · b)qDN2Ψα,N (eiθ·)‖2

=

∫

R3

∣

∣

∣

∣

∣

(

1

N
b · ∇p

)q ( 2

e−2iθ‖p‖2 + 1

)2

a(N − 1)(α · ω(e−iθp))N−1

∣

∣

∣

∣

∣

2

d3p.

(78)

We next use the fact that b · ∇p generates translations in p so that for z ∈ C,

e(z/N)b·∇p

(

2

e−2iθ‖p‖2 + 1

)2

a(N − 1)(α · ω(e−iθp))N−1

=

(

2

e−2iθ (p+ (z/N)b)2 + 1

)2

a(N − 1)(α · ω(e−iθ(p+ (z/N)b))N−1(79)

We need some estimates. First, in order to guarantee that the function in (79)
remains in L2(R3), we observe that if |z|/N < 1/120 and |θ| < π/4, there are
finite constants 0 < C1, C2 so that

∣

∣

∣

∣

2e2iθ

(p+ (z/N)b)2 + e2iθ

∣

∣

∣

∣

2

≤
{
(

C1

‖p‖2+1

)2
‖p‖ > 2

C2 ‖p‖ ≤ 2.
(80)

This estimate is proved by estimating the absolute values of the real and imag-
inary parts of (p + (z/N)b)2 + e2iθ from below. So provided all other factors
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are uniformly bounded in p, the function in (79) is square integrable. Next, we
prove the uniform bounds on the other factors for |z|/N < 1/2 and |θ| < π/3.
These conditions are less restrictive than needed for (80). We note that

|α · ω(e−iθp)| ≤
√
10, (81)

for |θ| < π/3 since |α| =
√
2. In order to estimate ω, we expand about p and

write

ω(e−iθ(p+ (z/N)b)) = ω(e−iθp) +∇pω(e
−iθ p̃) · (z/N)e−iθb, (82)

for some p̃. It is easy to check that for |z|/N < 1/2, the gradient term satisfies

|∇pα · ω(e−iθ(p+ (z/N)b))| ≤ c1, (83)

so that

|α · ω(e−iθ(p+ (z/N)b))| ≤
√
10(1 + c2|z|/N). (84)

Consequently, for any N and z ∈ C so that |z|/N < 1/2, we have

|α · ω(e−iθ(p + (z/N)b))|N−1 ≤ cN0 e
c2|z|, (85)

for absolute constants c0, c1 > 0. Combining these, we obtain
∥

∥

∥

∥

∥

e(z/N)b·∇p

(

2

e−2iθ‖p‖2 + 1

)2

a(N − 1)(α · ω(e−iθp))N−1

∥

∥

∥

∥

∥

≤ c3N
1/2cN0 e

c2|z|,

(86)
since a(N − 1) ∼

√
N − 1.

3. We now use Cauchy’s theorem, with estimate (86), in order to estimate (78),
by integrating over a path in the z-plane of radius N/240 < N/120 about the
origin so that estimate (80) is valid. This gives

‖(x · b)qDN2Ψα,N (eiθ·)‖

≤ q!

2π

∫

|z|=N/240

|dz|
|z|q+1

∥

∥

∥

∥

∥

e(z/N)b·∇p

(

2

e−2iθ‖p‖2 + 1

)2

a(N − 1)(α · ω(e−iθp))N−1

∥

∥

∥

∥

∥

≤ c3q!N
1/2ec2N

(N/240)q
, (87)

where the finite constant c2 > 0 is a function of c0 and c1. This establishes
(75).
4. It follows from estimate (72) that for α, β ∈ A, we have

〈Ψα,N ,D
−1
N2‖x‖nχ‖x‖>r0DN2Ψβ,N 〉 = O(N−∞), (88)

where the error is uniform over A×A. Of importance for us is that this estimate
(88) implies that the moments of the position operator in coherent states satisfy

〈Ψα,N (·; θ),D−1
N2‖x‖nDN2Ψβ,N (·; θ)〉

= 〈Ψα,N (·; θ),D−1
N2‖x‖nχ‖x‖≤r0DN2Ψβ,N(·; θ)〉+O(N−∞). (89)

It now follows from (89) and the representation (138) of the projector, suitably
dilated, that we have the operator estimate

Π0
N (θ)D−1

N2‖x‖nDN2Π0
N (θ) = Π0

N (θ)D−1
N2‖x‖nχ‖x‖≤r0DN2Π0

N (θ)+Π0
N (θ)RNΠ0

N (θ),
(90)
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where the remainder RN is given by

RN ≡
∫

A

∫

A
〈Ψα,N (·; θ),D−1

N2‖x‖nχ‖x‖>r0DN2Ψβ,N(·; θ)〉 Pα,β dµ(α)dµ(β),

(91)
where Pα,β is the dyadic operator

Pα,β ≡ |Ψα,N (θ)〉〈Ψβ,N (θ)|. (92)

To estimate ‖RN‖, we use estimate (88) and the fact that the measure µ on A
is a probability measure. We obtain

‖RN‖ ≤ C sup
α,β∈A

(‖Ψα,N (θ)‖ ‖Ψβ,N (θ)‖)e−Nc4 , (93)

where c4 > log 240 as in (77). The L2-norms of the dilated coherent states can
be estimates using (80) and (81). They satisfy the bound

‖Ψα,N (θ)‖ ≤ CN2eN(log 10)/2, |ℑθ| < π/2. (94)

Consequently, it follows from (93) and (94) that ‖RN‖ ≤ C−Nc5 , for some
c5 > 0. Equation (71) then follows from (90), (93), and the fact that the
measure µ on A is a probability measure
5. We can now prove the lemma. Recall from (34) that

Wh(F, θ) = h4ǫ(h)eθFx1 = h2ǫ(h)D−1
N2(Fx1)DN2 , (95)

for N = 1/h. For part (1), we have

‖Π0
N (θ)Wh(F, θ)Π

0
N (θ)‖ ≤ c0(h

2ǫ(h))Fr0 +O(N−∞), (96)

for a constant r0 > 1. For part (2), we use ‖(Π0
N (θ)Wh(F, θ))

∗(Wh(F, θ)Π
0
N (θ))‖ =

‖Wh(F, θ)Π
0
N (θ)‖2 = ‖Π0

N (θ)Wh(F, θ)‖2, so that estimate (90) with n = 2 pro-
vides the estimate. �

4.4. Step 4. Reduction of the perturbation. We now turn to controlling
the operators PN (θ)(Sh(F, θ) − ẼN )PN (θ) and PN (θ)(Sh(F, θ) − ẼN )Π0

N (θ).
Using Lemmas 2 and 3, we can prove the analog of [8, Lemma 5].

Lemma 4. For any positive integer m, we have

Π0
N (θ)

(

Sh(F, θ)− ẼN

ǫ(h)h2

)m

PN (θ) = (Π0
N (θ)W̃h(F, θ)Π

0
N (θ))mPN (θ)+Π0

N (θ)Rm,N ,

(97)

where ‖Rm,N‖ = O(N−β), for some β > 0, independent of m, and W̃h(F, θ) =

eiθh2Fx1, with θ ∈ R and 0 < |θ| < π/4.

Proof. 1. To simplify notation, we suppress the θ in the notation. We begin
with a simple identity:

Π0
N (Sh − ẼN )PN = Π0

N (Sh − ẼN )Π0
NPN +Π0

N (Sh − ẼN )(Π0
N )⊥PN . (98)

We need an identity that follows from analyticity. Since ẼN remains an eigen-
value of the dilated hydrogen atom Hamiltonian, HV (θ), we have

Π0
N (θ)(HV (θ)− ẼN )Π0

N (θ) = 0. (99)
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Using this (99), and the fact that Π0
NHV (Π

0
N )⊥ = 0, we have

Π0
N (Sh − ẼN )Π0

N = Π0
NWhΠ

0
N (100)

Π0
N (Sh − ẼN )(Π0

N )⊥ = Π0
NWh(Π

0
N )⊥. (101)

Substituting these into (98), we obtain

Π0
N (Sh − ẼN )PN = Π0

NWhΠ
0
NPN +Π0

NWh(Π
0
N )⊥PN . (102)

2. To estimate the second term on the right in (102), we use part (1) of Lemma
2 and part (2) of Lemma 3:

‖Π0
NWh(Π

0
N )⊥PN‖ ≤ ‖Π0

NWh‖ ‖(Π0
N )⊥PN‖ = O(N4−2K−δ). (103)

We take the mth power of (102) and, because of (103), we have

(Π0
N (Sh − ẼN )PN )m = (ΠNWhΠ

0
NPN )m +Π0

N R̃m,N , (104)

where the error term R̃m,N has the form

R̃m,N =

m
∑

ℓ=1

(

m
ℓ

)

‖Π0
NWhΠ

0
NPN‖m−ℓ‖Π0

NWh(Π
0
N )⊥PN‖ℓ, (105)

From Lemma 2 part (1) and Lemma 3, we obtain

‖Π0
NWhΠ

0
NPN‖m−ℓ‖Π0

NWh(Π
0
N )⊥PN‖ℓ ≤ C(θ)(ǫ(h)h2)mO(N−δ). (106)

Consequently, R̃m,N satisfies the estimate

‖R̃m,N‖ ≤ (ǫ(h)h2)mO(N−δ). (107)

3. We next prove that

(Π0
NWhΠ

0
NPN )m = (Π0

NWhΠ
0
N )mPN +Π0

NK((ǫ(h)h2)mO(N−δ)), (108)

for all m ∈ N by induction on m, where we use the notation K introduced
before Lemma 3. We proceed by induction. Equality (108) is trivially true for
m = 1. We assume it is true for m− 1 and verify it for m. We write

(Π0
NWhΠ

0
NPN )m = (Π0

NWhΠ
0
NPN )(Π0

NWhΠ
0
NPN )m−1

= (Π0
NWhΠ

0
N −Π0

NWhΠ
0
NP

⊥
N )[(Π0

NWhΠ
0
N )m−1PN

+Π0
NK((h2ǫ(h))m−1O(N−δ))]

= (Π0
NWhΠ

0
N )mPN + (Π0

NWhΠ
0
N )K((h2ǫ(h))m−1O(N−δ))

−Π0
NWhΠ

0
NP

⊥
N (Π0

NWhΠ
0
N )m−1PN

−Π0
NWhΠNP

⊥
NΠ0

NK((h2ǫ(h))m−1O(N−δ)). (109)

Using the estimates in Lemma 3 for Π0
NWhΠ

0
N , we establish (108).

4. We next prove a similar estimate

(Π0
N (Sh − ẼN )PN )m = Π0

N (Sh − ẼN )mPN +Π0
N (ǫ(h)h2)mO(N−δ). (110)

In order to estimate the resonance term (Sh − ẼN )PN , we write

(Sh − ẼN )PN = (Sh − ẼN )PN (PN −Π0
N ) + PNWhΠ

0
N . (111)

Noting that ‖Π0
N − PN‖ < 1, we have from (111),

PN (Sh − ẼN )PN = PNWhΠ
0
N (1 + (Π0

N − PN ))−1. (112)
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From Lemma 2, we obtain the estimate

‖(Sh − ẼN )PN‖ ≤ c0h
2ǫ(h). (113)

Given estimate (113), we prove (110) by induction. Assuming (110) for m− 1,
we write

(Π0
N (Sh − ẼN )PN )m −Π0

N (Sh − ẼN )mPN

= Π0
N (Sh − ẼN )

[

PN (Π0
N (Sh − ẼN )PN )m−1−

−(Sh − ẼN )m−1PN

]

(114)

From (113), we have the bound

‖(Sh − ẼN )m−1PN‖ ≤ ‖[(Sh − ẼN )PN ]m−1‖ ≤ (c0h
2ǫ(h))m−1. (115)

Consequently, the norm of the left side of (114) may be bounded above by

‖Π0
N (Sh−ẼN )PN [−PN (Π0

N )⊥(Sh−ẼN )m−1PN+PNΠ0
NK((h2ǫ(h))m−1O(N−δ))]‖.

(116)
The estimate (110) for m now follows from this and (113) and (115). This
completes the proof of Lemma 4 �

4.5. Completion of the proof of Theorem 4. In order to estimate the trace
of (Sh(F )− ẼN )mPN on the left side in (39), we write

(Sh(F )−ẼN )mPN = Π0
N (Sh(F )−ẼN )mPN +(Π0

N )⊥(Sh(F )−ẼN )mPN . (117)

Due to Lemma 4, we have

(Sh(F )− ẼN )mPN − (Π0
NWh(F )Π

0
N )m = (Π0

N )⊥(Sh(F )− ẼN )mPN

+(ǫ(h)h2)mΠ0
NRm,N

−(Π0
NWh(F )Π

0
N )mP⊥

N . (118)

We estimate the trace norm of each term on the right in (118).
For the first term, we use the fact that ‖PN‖1 = dN , part (1) of Lemma 2,

and estimates on resonances in order to estimate ‖(Sh(F )− ẼN )mPN‖ as N−1,
and we obtain

‖(Π0
N )⊥(Sh(F )− ẼN )mPN‖1 ≤ ‖(Π0

N )⊥PN‖‖PN‖1‖(Sh(F )− ẼN )mPN‖
≤ dNN

−α−1. (119)

For the second term on the right in (118), we have

‖(ǫ(h)h2)mΠ0
NRm,N‖1 ≤ (ǫ(h)h2)m‖Π0

N‖1‖Rm,N‖
≤ dN (ǫ(h)h2)m‖Rm,N‖. (120)

The third term is estimated as

‖(Π0
NWh(F )Π

0
N )mP⊥

N ‖1 ≤ ‖Π0
N‖1‖(Π0

NWh(F )Π
0
N )m‖‖Π0

NP
⊥
N ‖

≤ dN (ǫ(h)h2)mN−α. (121)
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Finally, we write

Tr((Sh(F )− ẼN )mPN ) = Tr(Π0
NWh(F )Π

0
N )m

+Tr{(Sh(F )− ẼN )mPN − (Π0
NWh(F )Π

0
N )m}
(122)

with

|Tr{(Sh(F )− ẼN )mPN − (Π0
NWh(F )Π

0
N )m}|

≤ ‖(Sh(F )− ẼN )mPN − (Π0
NWh(F )Π

0
N )m‖1

≤ dN (ǫ(h)h2)mN−α. (123)

Finally, restoring the complex parameter θ, we analyze the function

ξ(θ) ≡ Tr((Π0
N (θ)Wh(F, θ)Π

0
N (θ))m). (124)

For θ ∈ R, we have,

ξ(θ) = Tr(Dexp(θ)(Π
0
NWh(F )Π

0
N )mDexp(−θ))

= Tr((Π0
NWh(F )Π

0
N )m). (125)

The function θ → ξ(θ) is analytic in a neighborhood of the real axis and inde-
pendent of θ on the real axis, and is thus constant. Hence we can write

Tr((Sh(F, θ)− ẼN )mPN (θ)) = Tr((Π0
NWh(F )Π

0
N )m) + Em,N (θ), (126)

where Em,N (θ) = O((ǫ(h)h2)mN−α). This completes the proof of Theorem 4.

5. Trace estimate for the Stark perturbation of the hydrogen

atom

The next step in the proof of Theorem 1 consists of evaluating the trace on
the right side of (36). Let W̃h(F ) = h2Fx1. The sum on the right side of (36)
is

1

dN

dN
∑

i=1

(

τN,i

h2ǫ(h)

)m

=
1

dN
Tr((Π0

NW̃h(f)Π
0
N )m). (127)

note that W̃h(F ) = Wh(F )/(h
2ǫ(h)). Since W̃h(F ) is a polynomially-bounded

perturbation, we use a general result of Thomas-Villegas-Blas [7, Theorem 4.2]
in order to evaluate the semiclassical limit of the expression on the right in
(127) as N → ∞.

5.1. Polynomially-bounded perturbations. The main result of [7, Theo-
rem 4.2] on the semiclassical limit for polynomially bounded perturbations is
the following theorem. We slightly change notation from [7] and write h = 1/N
and k = N .

Theorem 5. [7, Theorem 4.2] Let V be a polynomially bounded, continuous
function on R

3 and let g : R → R be continuous. Then, we have

lim
N→∞

1

N2
Tr(Π0

Ng(Π
0
NDN−2V DN2Π0

N )) =

∫

α∈A
g

(

1

2π

∫ 2π

0
V (x(t, α)) dt

)

dµ(α).

(128)
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We remark that when V is a polynomial, as in our case, the proof of Theorem
5 is easier. In order to apply this result to (127), we take g(s) = sm and

V (x) = Fx1. Then we have from (6) that (D−1
N2V DN2)(x) = W̃h(F )(x) with

h = 1/N .
Using the decomposition of the projector Π0

N into coherent states (138), the
trace on the left in (128), with g(s) = sm, may be expressed as an m-fold
multiple integral with respect to αj ∈ A of matrix elements, in the momentum
representation, given by

(i/N)〈J1/2KΦαi,N , (F∇p1)J
1/2KΦαi+1,N 〉, (129)

where Φα,N is the function of S3 defined in (133). Lemma 4.3 of [7] states that
for any δ > 0, the matrix element in (129) is given by

(i/N)〈J1/2KΦαi,N , J
1/2KΦαi+1,N 〉

(

1

2π

∫ 2π

0
F x(t, αi)1 dt+O(N δ−1/2)

)

+O(N−∞),

(130)

where x(t, β)1 is the first component of the vector x(t, β) ∈ R
3. This vector

and a corresponding momentum vector p(t, β), form a solution to Hamilton’s
equations for motion for the Hamiltonian h(x, p) = (1/2)p2 − |x|−1 with energy
−1/2. The parameter β ∈ A labels the Kepler orbit with energy −1/2. In the
limit as N → ∞, the matrix elements approach zero unless αi = αi−1. This
reduces the multiple m-fold integral to a single integral over A of themth-power
of the integral in (130).

5.2. Conclusion of the proof of Theorem 1. We have now proved the
following result. For ǫ(h) = h6+δ , with 0 < δ < 1 and h = 1/N , the resonance
shifts zN,i(F, 1/N) satisfy, for any m ∈ N, the limit

lim
N→∞

dN
∑

j=1

(

zN,i(F, 1/N) − EN (1/N)

ǫ(1/N)

)m

=

∫

α∈A

(

1

2π

∫ 2π

0
[Fx(t, α)1] dt

)m

dµ(α).

(131)
To finish the proof of Theorem 1, two steps remain to be done. First, we re-
write the integral over A on the right in (131) in terms of the integral over the
energy surface Σ(−1/2). Second, we show how to replace the monomial sm by
a function ρ that is analytic in a fixed disk about the origin.

As for the first task, we refer to [8, pages 141-142]. It is noted there that the
push-forward of the measure µ on A is the Liouville measure µL on the energy
surface Σ(−1/2). Furthermore, the Kepler orbit corresponds to the Kepler flow

φ̃t(x, p) on this energy surface.
As for the second task, the function ρ of Theorem 1 is analytic in a disk of

radius 3F about the origin. Since the perturbation F · (φ̃t(x, p))1 is bounded by

2F for orbits φ̃t on the energy surface Σ(−1/2), the estimate (131) guarantees
convergence in the trace of the power series expansion for ρ. This concludes
the proof of Theorem 1.
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6. Appendix 1: Coherent states for the hydrogen atom

We review the construction and properties of the coherent states that form
an overcomplete set in the eigenspace Eℓ of the hydrogen atom Hamiltonian
corresponding to the eigenvalue Eℓ = −1/(2h2ℓ2). Let A be the five real-
dimensional subspace of C4 defined by

A = {α = (α1, α2, α3, α4) | αj ∈ C, ‖ℜαj‖ = ‖ℑαj‖ = 1, ℜα · ℑα = 0}. (132)

This provides a parametrization of the co-sphere bundle S∗
S
3 of the three-

sphere. There is a SO(4)-rotationally invariant probability measure on A that
we denote by µ. Coherent states on S

3 have the form

Φα,ℓ(ω) = a(ℓ)(α · ω)ℓ, ω ∈ S
3, α ∈ A, ℓ ∈ 0, 1, 2, . . . . (133)

The coefficient a(ℓ) ∼ ℓ1/2 is fixed by the requirement that the L2(S3)-norm of
Φα,N is equal to one, see [7, (2.11)]. These states are hyper-spherical harmonics.
They are eigenstates of the spherical Laplacian −∆S3 with eigenvalue ℓ(ℓ+ 2).
The entire family {Φα,ℓ(ω) | α ∈ A} is over complete and spans the eigenspace
of −∆S3 with eigenvalue ℓ(ℓ+ 2). We note that these states have the property
that as N → ∞ they concentrate on the great circle {ω ∈ S

3 | |α · ω| = 1}
generated by the real and imaginary parts of α.

In momentum space R
3, the coherent states have the following form. The

inverse of the stereographic projection from the three sphere S
3 to R

3 is the
mapping p ∈ R

3 → ω(p) ∈ S
3 defined by

ωj(p) =
2pj

‖p‖2 + 1
, j = 1, 2, 3

ω4(p) =
‖p‖2 − 1

‖p‖2 + 1
. (134)

For any α ∈ A, we define

Ψ̂α,ℓ(p) = a(ℓ− 1)ℓ3/2
(

2

ℓ2‖p‖2 + 1

)2

(α · ω(ℓp))ℓ−1, p ∈ R
3. (135)

These functions are in L2(R3). Their Fourier transforms are eigenfunctions of
HV with eigenvalue Eℓ [1, section II.B]. They form an overdetermined basis of
the ℓ2-dimensional eigenspace Eℓ ⊂ L2(R3) in the momentum space representa-
tion.

For θ ∈ R, we scale these momentum space functions by eθ to obtain

Ψ̂α,ℓ(e
θp) = a(ℓ− 1)ℓ3/2

(

2

ℓ2e2θ‖p‖2 + 1

)2

(α · ω(ℓeθp))ℓ−1, p ∈ R
3. (136)

These functions are analytic L2-valued functions for |ℑθ| < π/2.
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The configuration space coherent states are obtained by the inverse Fourier
transform:

Ψα,ℓ(x) =
1

(2π)3/2

∫

R3

d3p eix·p Ψ̂α,ℓ(p)

=
a(ℓ− 1)ℓ3/2

(2π)3/2

∫

R3

d3p eix·p
(

2

ℓ2‖p‖2 + 1

)2

(α · ω(ℓp))ℓ−1.

(137)

These form an overdetermined basis of normalized (but not orthogonal) L2-
functions for Eℓ ⊂ L2(R3) in the configuration space picture. Let µ be the
probability measure on A. The orthogonal projector Π0

ℓ onto the eigenspace Eℓ
may be written as

Π0
ℓ = ℓ2

∫

A
|Ψα,ℓ〉〈Ψα,ℓ| dµ(α). (138)

For θ ∈ R, the dilated coherent states are

Ψα,ℓ(x; θ) ≡ Dexp(θ)Ψα,ℓ(x) = e3θ/2Ψα,ℓ(e
θx)

=
e−3θ/2

(2π)3/2

∫

R3

d3p eix·p Ψ̂α,ℓ(e
−θp)

= a(ℓ− 1)ℓ3/2
e−3θ/2

(2π)3/2

∫

R3

d3p eix·p
(

2

ℓ2e−2θ‖p‖2 + 1

)2

(α · ω(ℓe−θp))ℓ−1.

(139)

From the comments after (136), it follows that Ψα,ℓ(x; θ) has an analytic con-
tinuation as an L2-valued function of θ for |ℑθ| < π/2. We also consider the
dilated projector Π0

ℓ(θ) = Dexp(θ)Π
0
ℓDexp(−θ). We extend these dilated opera-

tors to θ ∈ C provided |ℑθ| < π/2. As mentioned above, the coherent states
concentrate on the Kepler orbit as ℓ → ∞. Lemma 3 is a consequence of this
fact.

7. Appendix 2: Moments of the hydrogen atom eigenfunctions

We give the brief proof of the localization property of the eigenstates of the
hydrogen atom Hamiltonian discussed in section 4.3. The eigenfunctions of
HV may be written as ψnℓm(r, θ̃, φ) = e−r/nFnl(r)Ylm(θ̃, φ), with n = 1, 2, . . .,
the principal quantum number. The functions Yℓm are the spherical har-
monics (ℓ,m) labeling the angular momentum so that 0 ≤ ℓ ≤ n − 1 and

−ℓ ≤ m ≤ ℓ. The radial component Fnl(r) = Anℓ(2r/n)
ℓL2ℓ+1

n−ℓ−1(2r/n), where

L2ℓ+1
n−ℓ−1(r) is the associated Laguerre polynomial of degree n − ℓ − 1. The

normalization constant is Anℓ = (2/n2)
√

(n− ℓ− 1)!/[(n + ℓ)!]3. The dilated

eigenfunctions ψnℓm(θ)(r) ≡ (Dexp(θ)ψnℓm)(r) = e3θ/2ψnℓm(eθr) are analytic

L2-valued functions in the strip |ℑθ| < π/2. Consequently, the function f(θ) ≡
〈ψnℓm(θ), ‖x‖kψnℓ′m′(θ)〉 is analytic on the strip |ℑθ| < π/2. For θ ∈ R, we have

f(θ) = e−kθf(0). The function f̃(θ) = e−kθf(0) is an entire analytic function.

By the identity principle for analytic functions, we have f̃(θ) = f(θ) on the
strip |ℑθ| < π/2.
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We first want to estimate the large n behavior of the expectation of powers
of the position operator in the dilated eigenstates ψnℓm as in (68). Since f(θ) =
e−mθf(0), this reduces to an estimate on moments of the position operator. For
any k > −2ℓ − 1, these moments are well-known and computed in section 3,
Appendix B of Messiah [6]. Let

〈‖x‖k〉nℓm ≡ 〈ψnℓm(θ), ‖x‖kψnℓ′m′(θ)〉. (140)

Note that because of the spherical symmetry, the quantum numbers (ℓ,m) must
be the same in (140). Properties of the Laguerre polynomials leads to

〈‖x‖〉nℓm =
1

2
[3n2 − ℓ(ℓ+ 1)], (141)

and a recursion formula for higher moments k ≥ 2:

〈‖x‖k〉nℓm = n2
2k + 1

k + 1
〈‖x‖k−1〉nℓm− n2k

4(k + 1)
[(2ℓ+1)2−k2]〈‖x‖k−2〉nℓm. (142)

It is easy to verify from (141) and (142) that

〈ψnℓm, ‖x‖kψnℓm(θ)〉 = O(n2k), (143)

since 0 ≤ l ≤ n− 1 (see [6, section B.3]), verifying (68).
Secondly, we want to compute the matrix elements of the Stark perturbation.

It is easier to do the calculation with the electric field in the three direction
x3 because of the properties of the usual spherical harmonics. The result is
independent of the field direction so we assume this here. Recalling the identity
principle for analytic functions used above, the matrix element of the Stark
perturbation is

〈ψnℓm(θ),Wh(F, θ)ψnℓ′m′(θ)〉 = ǫ(h)h2eθF 〈ψnℓm(θ), x3ψnℓ′m′(θ)〉
= ǫ(h)h2F 〈ψnℓm, x3ψnℓ′m′〉, |ℑθ| < π/2.

(144)

We write x3 = r cos θ̃, where θ̃ is the angle with the x3-axis. By the Cauchy-
Schwarz inequality and the first moment estimate (141), we have

|〈ψnℓm, x3ψnℓ′m′〉| ≤ ‖r1/2ψnℓ′m′‖ ‖r1/2ψnℓm‖ = O(n2), (145)

since 0 ≤ l ≤ n− 1 (see [6, section B.3].)

8. Appendix 3: The quadratic estimate

We restate the quadratic estimate appearing in Proposition II.4 of [4]. In the
notation of that paper, let h(α) = −∆ + αx1 where |ℑα| > 0. Let θ = argα
and define two constants

c(α) = (3/2)(1 − | cos θ|)3/2| sin θ|3/2|α|4/3, β(α) = (1− | cos θ|)/2. (146)

then, for all ψ ∈ S(R3), we have

‖h(α)ψ‖2 + c(α)‖ψ‖2 ≥ β(α)(‖∆ψ‖2 + ‖x1ψ‖2). (147)

In our case, we have

H0(h, F, θ) = e−2iθ[−∆+ e3iθh4ǫ(h)Fx1] = e−2iθh(α̃), (148)
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where α̃ = e3iθh4ǫ(h)F . From (146), we find that

c(α̃) = O(N−(4/3)(4+K+δ)), β(α̃) = O(1). (149)

Consequently, we have the following bound for z ∈ γN :

‖x1(H0(h, F, θ)− z)−1‖ = O(1). (150)
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