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ABSTRACT. In a previous work by the first author with J. Turl [2], a stastic variational inequality has been
introduced to model an elasto-plastic oscillator with Boi®A major advantage of the stochastic variational
inequality is to overcome the need to describe the trajgdipiphases (elastic or plastic). This is useful, since
the sequence of phases cannot be characterized easilytibufza, when a change of regime occurs, there are
numerous small elastic phases which may appear as an aéfile Wiener process. However, it remains
important to have informations on both the elastic and astases. In order to reconcile these contradictory
issues, we introduce an approximation of stochastic vanat inequalities by imposing artificial small jumps
between phases allowing a clear separation of the elagliplastic regimes. In this work, we prove that the
approximate solution converges on any finite time intenwéilen the size of jumps tends @o

1. Introduction. The elastic-perfectly-plastic (EPP) oscillator undend&rd white noise excitation is the
simplest structural model exhibiting a hysteretic behavibloreover, the model is representative of the
behavior of mechanical structures which vibrate mainly twgirtfirst deformation mode. In the context of
earthquake engineering, relevant applications to pipysesns under random vibrations can be accessed
this way [6,7]. The main difficulty to study these systems esrfrom a frequent occurrence of nonlinear
phases (plastic phases) on small time intervals. A nonlipbase corresponds to a permanent deformation,
or in other words to a plastic deformation. A plastic defatiorais produced when the stress of the structure
exceeds an elastic limit. Denoting byt) the elasto-plastic displacement, we consider the problem

I+ cot + F(x(s),0 < s <t)=w, (1.1)
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with initial conditions of displacement and velocity
z(0)=2z , #(0)=uy.

Herecy > 0 is the viscous damping coefficierit,> 0 the stiffnessy is a Wiener process afd({z(s),0 <
s < t}) is a nonlinear functional which depends on the entire ttajgc{x(s),0 < s < ¢} up to timet.
Denotey(t) := z(t). Equation[(1.1l) written as a stochastic differential eque(SDE) reads

dy(t) = —(coy(t) + F({x(s),0 < s < t}))dt + dw(t), dz(t) = y(t)dt. (1.2)

Beyond a given threshold”({z(s),0 < s < t})| = kY for the nonlinear restoring force, the material goes
through plastic deformation (see e.@l [9]). Introduciyg), the total plastic yielding accumulated up to
timet, we can define a new state variablg) asz(t) := z(t) — A(t). It follows that in the plastic regime,
Z(t) = 0. From now on, we choose to express the restoring fétger(s),0 < s < t}) in (1.2) in terms of
the new variable:(t) asF ({z(s),0 < s < t}) := kz(t) where|z(t)| < Y. In other words we consider a
linear restoring force of the variabl€t) (whose modulus equals Y during the plastic phases). Thiesdfp
force characterizes the elasto-perfectly-plastic bednavi

In [2], for the previous choice faF, it is shown that[(1]2) is equivalent to a stochastic vasial inequal-
ity (SVI). In addition, existence and uniqueness of an ilrd@rmeasure for the solution of SVI have also
been proven. For a general framework dealing with this @éssequalities we refer the reader to [1] and to
[5] for specific deterministic applications to mechanicdthAugh SVIs have been already studiedin [1] to
represent reflection-diffusion processes in convex setspnnection with random vibration problems had
been made so far. Froml [2], the solutign(t), z(t)) € R? of (L.2) satisfies

y(t) = —(coy(t) +kz(t)) + (), (2(8) —y(®)(¢ —=2(t)) 20, Vo[ <Y, [z()[<Y.  (1.3)

In terms of dynamics of the proce$s(t), z(t)), a plastic deformation begins whetit) reaches and is
absorbed by (resp. —Y") with positive (resp. negative) slopg(t) > 0. (resp. y(t) < 0) i.e. when
sign(y(t))z(t) = Y. Then, the plastic behavior ends when the velocity charigas At that time, the elastic
behavior is reactivated. However, around 0, the velocitictvis subjected to white noise, changes sign an
infinite number of times during any small time interval. @ft¢his leads to a return into plastic behavior in
a short time duration. This phenomenon is calteidro-elastic phasingnd has been studied in| [8] using
the numerical method developed fin [4] for the SVT{1.3). lyd a crucial role on frequency and statistics
of plastic deformations. Because of this phenomenon, &eqy of occurence, statistics (time duration or
absolute plastic deformation) and the sequence of entryastip phase (as well as the sequence of exit)
are not well defined. In this paper, we consider an EPP osxillander standard white noise excitation
subjected to jumps (presented below) to study phase ti@msitlt has the advantage of separating phases
clearly, while being an approximation. We prove the congaag of the approximated process towards the
solution of the stochastic variational inequality {1.3).

1.1. Model definition and convergence results.In this subsection, we introduce a stochastic variational
inequality whose dynamics is “almost" similar to the one[®f3] except that the second component is
subjected to jumps of magnitude > 0 at some random times corresponding to the various exitseof th
plastic phases.

Precisely, we describe the evolution of the new pro¢gss), z¢(¢)) by the following procedure; we start
by definingr§ := 0 and by(y§(t), z5(¢)) the solution of[(1.B), with initial conditions:

yo(0) =y and 2z5(0) =z, (y,2) e Rx (=Y,Y):=D.
Then, we define
i :=inf{t >0, y5(t)=0 and |z(t)|=Y}.
Fort > 71, let (y§(¢), z5(t)) be the solution of (1]3) with initial conditions:

yi(r1) =0 and zi(r7) = sign(z;(r1)) (Y —€),
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again, we define
75 :=inf{t > 71, yi(t)=0 and |2{(¢)|=Y}.
In a recurrent manner, knowingj, v, (¢), andz5 (¢), we define
Toy c=1nf{t > 75, yr(t) =0 and |z, ()] =Y},
and(ys,, 1 (t), 25,4, (t)) be the solution of (113) with initial conditions:
Ynt1(Tns1) =0 and zj 4 (7744) = sign(z;, (7;41)) (Y =€) .

Now, we define the procesg(t), 2°(¢)) on each interval of timgr, 7, , ;) as follows:

ye(t) = =(coy () + k2°(1)) +w(t),  (2°(t) =y ()(¢ — 2(1)) 20, Vig| <Y, [5() <Y (1.4)
with the following jump-conditions:
Y (=) =0, 2(1—) = zpa(m);
and
y(rn) =0, 2(my) = sign(z;, (7)) (Y — e).
Remark 1.1. By construction, the procesg“(t), 2°(¢)) is cadlag; hence it is regular. In particular, for
each fixedimeT" > 0, the number of jumps arise {10, 71, is finite a.s.

We will prove that the solutioify“(¢), z¢(¢)) converges tdy(t), z(t)) on any finite time interval, whea
goes ta) in the sense described below.

2. Main results. Our main result is the following theorem.

Theorem 2.1. Fix T' > 0, and consider the processég(t), z(t)) and (y(t), z2°(¢)) satisfying(L.3) and
(L.4)respectively. Suppose that> X (¢p) := % (—% + oy /% + 4%). Then, the following convergence
property holds:

lIEE [ sup {\y(t) —y )2+ k|2(t) — ze(t)lz}] —0 as e—0.
€ 0<t<T

Remark 2.2. Observe that the above condition relatihgnd ¢, is purely technical. It will appear clearly
in the proof of Lemmia_2.5 below.

2.1. Preliminary results. For(y, z) € D := Rx(-Y,Y), we consider the “elastic" procegs,. (t), z,-(t)):

—ent t ¢
2y (t) = e 2 {zcos (wt) + l(y + %Oz) sin (wt) } + 1 / e~ 2 (=9 sin (w(t — s))dw(s),
w w Jo
Co _ cot . Co ! —20(t—s)
Yy (t) = —Ezyz(t) +e 2 {—wzsin (wt) + (y + 52) cos (wt)}+ [ e = cos (w(t — s))dw(s).
0

where, assumingk > ¢,
\/ 4k — 6(2)
="

Remark 2.3. The terminology “elastic” is justified from the observatitmat (y,.(t), z,-(t)) is actually the
solution of

W=

y(t) = —(coy(t) + kz(t)) +w(t), 2(t) =y(t), (yy=(0),2,:(0)) = (y,2),
that is the explicit solution ofl.3)when the threshold” = oo (purely elastic case). Note that the condition

4k > c is needed so thaty(t), z(¢)) have real valued solutions.
3



Define
0(y,z) :=inf{t >0, |z.(¢) =Y}, (2.5)
where(y,.(0), zy-(0)) = (y, 2). Fort € [0,T], we setu(y, z,t) := P[A(y,z) > T — t]. This function is
regular and satisfies the mixed Cauchy-Dirichlet paratfilid
—u+Au=0,inD; wu(y,Y,t)=0, y>0; wu(y,-Y,t)=0, y<0; wu(yzT)=1 (2.6)
with )
Au = —glyy + (coy + kz)uy — yu..
Fort < T, the functionu(y, z,t) is locally smooth. On the other hand, in the particular caberw
(yy=(0),2,-(0)) := (0,Y — €), we consider the probability density functiphof (yo y—(t), z0,y—e(t)). It
is also known thap® satisfies Chapman-Kolmaogorov’'s equation
pi+ AP =0, p(y,20)=3doy—e(y,2), (2.7)
whereA* represents the adjoint operator.4fthat is

. 1
ATpE = —opyy — ((coy + k2)p°)y + yps.

Next, observe that the processgs —(t) andyg y—(t) are gaussian processes. The key point is to express
the solution of[(2.6) through its variational formulatiorithvp¢ as test function (see proof of Lemmal2.4).

The mean, variance and covariance@f _.(t) andyg y —.(t) write:

€ —cot c . 2 1 ! —C0S (32
me(t) .= (Y —e)e” 2 (coswt + —sinwt), o2(t) :=— [ e “°sin”(ws)ds, (2.8)
2w w? J,
q(t) .= —(Y — e)ﬁe_c%t sinwt, o2(t) = /t e~ %(cosws — X gin ws)?ds (2.9)
' w R 2w ’ '
and
0y (t) = ie_cmtsim2 wt (2.10)
YA 902 ’ :

The densityp® then explicitly writes

. B 1 1 (y —q“(t)? | (z—m-(t))?
Py, 21) "m0, (o, ()1 — 22T {_2(1 ~20) [ 2@ o2
_ 2p()(y — ¢ () (z —m ()
7)1 I} 1

where the correlation coefficieptt) is defined by, . (t) /o, (t)o.(t). Observe that for = 0, (Z.13) reduces
to

0 _ 1 1 (y—d’(®)* | (z—m’(t))
P s e, = e {_2<1 ~ ) [ 20 o)
2p(t)(y — ¢°(t))(z = m°(t))
) Pt (212
with L
mO(t) == Ye_c%t(cos wt + 26—2} sinwt), ¢°(t) == —Y;e_c%t sin wt. (2.13)
From [2.8)4Z2.1B) we can easily see that
me(t) =m(t) = ef(t), q°(t) =q"(t) +eg(t), (2.14)
with
_cot co . ko _cot .
f(t):==e 2 (coswt + %smwt) and g(t) := e sin wt.
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Plugging [2.1#) into[(Z.11), we obtain

. B 1 1 (y — [2°(t) + eg(1)])?
P00 = e o —2or? ™ {_2@ = 20) [ :

(2 = [m0®) —ef(O])? 200y — [¢°(1) + eg(®)])(= — [m°(t) — ef (1))
210 7, {)0-(0) |

Now, notice that

(y — [¢°(t) +eg()])? L= [m°(t) —efW)])*  2p(t)(y — [¢°(t) + eg®)]) (= — [m°(t) — ef (1)])

20 20 7400
LU OP | o mOR 0= O o[£, 10 | 2]
200 200 7y0)0-(0) 20 020 o, e.0)
N (VR0 VO R i 0) (G R R U
e | T B (= 010~ (- m0)ste) |- @26

Then considerind (Z.12), we have

e - % (3 — qo()r(t) = (z = mo(t))s(2)
p (y7 Z7t) _po(% th) exp {_EA(t) te ?1 _ pz(t))O'y(t)O'Z(Ot) } ’
(2.17)
where
1 (PP 2009t f )
A0 = e <05<t> o2t " oy e. ) >
0 = L% e,
s = LW gt

We now give a representationef0, Y —¢, 0) in terms of the densitigs® andp® of the Gaussian processes
(20,y—e(t), yoy—e(t)) and(zo,y (t), yo,v (t)) respectively. The proof is postponed to Seclibn 3.

Lemma 2.4. Letu be a solution of{2.8). Then, it satisfies

u(0,Y —¢,0) = /D [pg(y, 2, T) —p°(y, z,T)] dydz

+/T yu(y,Y,t)p°(y, Y, t) [exp {—%E2A(t) + a pgzz)) t)} ] dydt
- [yt 0ot o {50 + U -1 e
(2.18)
with
Yh(t) = qo(t)r(t) + (Y —mo(t))s(t), h(t) := —g(t)r(t) + (1 = f(£))s(D),
Yi(t) = qo(t)r(t) — (Y +mo(t))s(t), I(t) := —g(t)r(t) — (1 + f(t))s(t),
DF = (0,T) x (0,00) and D7, := (0,T) x (—00,0).
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Now consider the terms

H¢ :/D [pe(yazaT) _po(y7Z7T)] dyd27

S RN G clwr() ~Yht) |
I —/Ty (y, Y, t)p ' (y,Y,t) [ p{ 5 A(t) + (l—pz(t))ay(t)az(t)} 1] dydt, (2.19)

T /D ity Y0y, —Y1) [exp {_%&4@) 4 _clyr(®) — Vi) (t)} - 1] dyd.

(1= p2(t))oy(t)o
Next, we study the behavior of these last integrals, witfatisfying [2.6) so that the previous lemma holds,
whene is sufficiently small. The proof is also postponed to Sed8on

Lemma 2.5. LetJ¢, I, and H¢ be the integrals of above. Suppose that

1 1
]{7>X+(Co) 325 <—%+C0 §+4%)> .

Then,
e liminf. ¢ I—: = 400,
e lim._, —E is finite,
° hmﬁ_m * is finite.
Therefore,
lim u(0,Y —¢,0) too and lim u(0,-Y +¢,0) _
e—0 € e—0 €

2.2. Proof of Theorem[2.1. We shall use the notatiosf, = sign(z¢(75—)). Recall that, for each > 1,
the stopping timer represents the instant of the-th jump of the proceséy*(t), 2°(¢t)). Hence, for all
T St <75 andn > 1, we deduce fronl (113) anf(1.4) that
y(t) = 9°(t) = = [co(y(t) —y*(¢)) + k(2(t) — 2°(#))], and
(2°(1) =y (1)(=(t) — () = 0,
(2(t) = y(®)(z°(t) — 2(t)) = 0.

By using the notatiorl/dt of derivatives, we obtain

L (w) ~ (1) = —eolylt) ~ v (1) ~ k(a(t) — (1), 2.20)
(0 =20 = ) =) ) () — =) <0, @.21)

Multiplying by (y(t) — y°(¢)) in (2.20) and using the product rule for derivatives, we getnf (2.20) and
2.23)

%% () =y (P + coly(t) =y (O < —k(2(t) — 2°(1) (y(t) — (1))
< 2L - )P 2.22)
forall 7¢ < t < rg+ andn > 1. Now, integrating[(2.:22) ofir¢, 75, ;) and noting thay(r$—) = y(75),
yE(Tﬁ—) =y (15) =0, z(15—) = z(7f), foralln > 1, we obtain
|y(Tr11 ‘ W =ly(mo)l +200/ " ly(t) — y (1) ditk |2(75, 1) — 2(T 40— ‘ "=k |2(r5) — 2°(75) ] < 0.

Tn

(2.23)
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But
kla(ry) =2 = k|(z(r) = 2°(r52) + (=) = 2 (7))
kla(ry) = 2 (=) + k €
+2ke oy, (2(15) — 2°(15—)) - (2.24)
Plugging [2.24) into[(2.23), and rearranging terms, weiabta

\y n+1| — |y(7, |‘%k‘ Trt1) — 2 (Thy1— |'—k| ") — 2775—)F
2 / () — g @) dt < ke + 2ke(0s2(5) — V),
We can drop the terrdke(of 2(75) — Y) < 0 and get
€ 2 6 € €
‘y(Tn-i-l) - ‘y( + k ‘ n+1 n+1 ‘ —k ‘Z( ) z ( n_)’2
Tt € 2 2
+2co ly(t) — y(t)|” dt < ke=. (2.25)

Observe that, folV € N*, we can iterate (2.25) far < n < N to obtain

ly(r5s)|” = )P + & |2(r5 ) — 2 (rf )| = kl2(rf) — 25(rf )

™
+2¢q / - ly(t) — y<(t)]* dt < kN

€
1

Also, recalling thay (r{) = 0, |2(r{) — z*(r{—)|* = 0, and that/;* [y(t) — y*(¢)|* dt = 0, we derive:

€ 2 € €(, € 2 TIEVJrl € 2 2
[y(Th)|” + K 2(TR) = 2 (TR o) +2Co/0 ly(t) —y“(t)|” dt <ke"N. (2.26)

Denote the total number of jumps of the procégst), z“(¢)) arising in the time interva(0, T") by N :=
maxy {75 < T'}. Note thatl” < 7y ;1. Hence, from[(2.26), we deduce

T
swp P +hsup ()~ (o) 2 [0 - g OF & < kENp @27)
1<n<NE+1 1<n<N§+1 0
Assume firstz(0) = Y — e. According to the definition of (2]5) sét := 6(0,Y — ¢) = inf{t >
0, [2°(¢)] = Y} = inf{t > 0, |z0v—c(t)] = Y}. Itis clear thatr{ > 6 a.s. and the®(r{ >
T) > P(6 > T'). Now, let us assume(0) = —Y + e. Itis easy to verify thai(—y, —z,t) = u(y, 2, 1),
which gives

PO >T)=u(0,Y —¢,0) =u(0,-Y +¢,0).
Thus, by Lemma2]5 we ha\%es%ﬂ — +o00. Therefore, if the initial conditior:(0) associated td (1.4),

is a random variabl& (law) P10y —c + (1 — p1)d_y+c independent of the Wiener procesét), then again

settingdf. := inf{t > 0, |zr(t)| =Y},
PO > T
y — +o0 as e— 0.

€
Coming back to equatiof (Z.26) and noting thét = > x (< <7}, We get

ENf =) Ex(ri<r) = EX{rp<r) + ) Exgrecr) (2.28)

n=1 n=2

Observe that for ath > 2 and thatr; — 7,_, is independent of;,_,

Exiri<r) = B [Xirp_<rirgors < )] SEXirp <nBX(rior <1 (229)
7



But note that
EX{re—re_,<ry <P(O° <T).

From the last inequality and using (2129), we deduce

EX{rg<ty < EXgrpzry(1 = u(0,Y —¢,0)" .

This yields
(1 — U(O, Y — €, 0)) EEX{TGST}
ENS < Exg e < ! . 2.30
TEEMHSTYT0Y —60) — eu(0,Y — €, 0) (2.30)
Hence, from Lemmds 2.4 ahd P.5
e EN; — 0 ase—0. (2.31)

Thus, as goes td), (2.27) and[(2.31) yield

1 €
- {E [ sup |y(7)I”
€ 1<n<Ng+1

Since the forced jumps have magnitudéhis implies:

1
_{E
€

sup  |z(7) — 2( ;_)‘2 — 0.

T
+2c0ﬂ-z/ () — g5 () dt + KE c
0 1<n<N&+1

(2.32)

T
sup |y(7‘fl)|2 + ZCOE/ ly(t) — yﬁ(7f)|2 dt + kE sup  |z(15) — ,26(7'”)|2 — 0.
0

lsn<Np+l 1<n<Ng+1
(2.33)
Also, by (2.22), we can see that any < ¢ < 7, Satisfies
ly(8) =y (O = ly(m)|* + kl=(t) — () = k|2(75) — 2(75)|* < 0.
This gives
sup  {[y(t) — g (O] + klz(t) — 2 (O} < [y(rs)|” + K |2(75) — (7).
T€<t<7—n+1
Hence,
2 € 2 € 2
sup_{ly(t) =y (O + klz() - ()P} < sup { sup  {Iy(t) =y (&) + k|2(t) — ()] }}
T <t<T 1<n<Np+1 | 75<t<7/ 4
< s )P + k() - (71}
1<n<NEA+1
Also,

sup {Iy(t) =y OP +k12(t) - = OP} < sup {Jy)P +kl2(m) - 2 ()P}

0<t<T 1<n<Ng+1

Therefore,[(2.33) gives

1
-E

€

sup {yy(t) — g B+ k|2(t) — zE(t)\Q}] —0 ases0.
0<t<T

8



3. Proof of the technical lemmas. This section is devoted to the proofs of Lemras 2.4[and 2.5.
Proof of Lemm&2Z]4From [2.6), we have

T
0 = / /(—ut + Au)p® dydzdt
o Jp

T
1
B / / (—us — 5 Yyy + (coy + kz)uy — yu.)p* dydzdt

= / “(y, 2, T)dydz +u(0,Y —¢,0) / / up;dydzdt

/ / Supy, dydzdt — / / (coy + kz)p©),dydzdt

—/ yu(y,Y,t)p (y,Yt)dydt+/ yu(y, =Y, t)p(y, =Y, t)dydt

T

/ / yup; dydzdt. (3.34)
By using [2.7) and rearranging ternis, (3.34) becomes

U(O,Y—G,O)z/pe(y,z,T)dyder/ yU(y,Y,t)pE(y,Y,t)dydt—/ yu(y, =Y, t)p(y, =Y, t)dydt.
D - D

Dy T
(3.35)
In addition,p®(y, z,0) := o,y (y, 2), and

OZ/pO(y,z,T)dyder/ yU(y,Yi)po(y,Y,t)dydt—/+yU(y,—Y,t)po(y,—Y,t)dydt. (3.36)
D D; D}

Using [2.17) and substractinig (3136) fo (3.35), we can dedue result{2.18).

Proof of Lemma&aZ]5First note that, on a neighborhoodiof 0, we have the following expansions:

o f(t)= e_c%t(cos wt + 52 sinwt) =1 — k% + £0(c3 + 2w?)t? + o(t?),
o g(t)=Le~ Y sinwt = kt(l — D1) + o(t?).
From [2.8)42.1D), we also have
o o (t) =t —cot®> +o(t?), oy(t) = VE((1—2t)+o(t)),
o« 2(t) = £ — ot o(th), ou(t) = 1L ((1— D)+ o(t)),

o =W — L ((14%p)+o0(1)),

oy(t) — V3
o p(t) = L (1 - Lt +o(t)), recalling thaip(t) = Uy"(z)if?(t)-

Equation [[2.1B) yields
° qo(t) =—-Ykt(l-2 ) + o(t )
e m'(t) =Y (1— kﬁ) + o(t2).

Recalling thatr(t) = L@() + p(t)f(t) and s(t) = ()"(y)(t) + p(t)g(t) and using the previous es-
timations, we can check thatg(t)r(t) = —23¢ + 23 cokt? 1 o(t2) and (1 — f(1))s(t) = =3¢ +

f (k;2 — 3eok — ) t2 + o(t?). Thereforeh(t) ~ fP(co, k)t*> where

3
Pleo, k) = k2 + 2 — 0,



DenoteX  (co) = 3 (—— +coy/5+ 4%‘?). Since we have assumed that- X, (co), it then follows that
) =

1(0) = 0 andh” (0) = Y2ELok) ~ . we can thus consider a fixed interal ) such thath” () > 0 on
[0,%], henceh(t) > 0 on (O,t). Also, we haver(t) = @(1 — @t +o(t)). Hence, there exists a positive
constantt such that-(¢) > 0 on[0,#]. Letty := min{¢,}. This implies thata(t) > 0 andr(t) > 0 on
(0,t0). Recall thath(0) = 0. Now write, from [2.19)

If = It + I,
with
toNT 0
IT = /0 /_ yu(y, Y, t)p°(y, Y, t) [exp {—%6214@) + (1£ (())) Y(}Z)(z)z)( )} - 1] dydt,

T 0 e(yr(t) —
5 = /tOAT /_OO yu(y, Y, t)p° (y, Y, t) [exp {—%6214(1‘/) + a E pz((z))oj(?)(ff)z)(t)} — 1] dydt.

From the definition ofy, A(t) > 0 andr(t) > 0for 0 < t <ty A T. Moreover,y < 0in I, so we have
elyr(t) = Yh(t)  _
(1= p2(t)ay(t)o=(t) ~

Therefore, the integrand ifi is a positive function. Now, using the basic inequakityp{—z} — 1 <
—zexp{—=x}, forz > 0, we can write

AT 0 . | (yr(t) — V(1)
s [y”(y’”)p (v, 1) [56‘4“) T p?(t))ayu)az(t)]

1 e(yr(t) —Yh(t))
X exp {—562,4(15) + 0= 2V (0. () H dydt.

= T/ ) | Tiilf)af?tﬁ?ia)]

« e {—562,4(0 i (ff <()))O_j£)(g)j(t) }] dyc. (3.37)

As the integrand in the right hand side bf (3.37) is a positivection, Fatou’s lemma yields the following

inequality,
toNT _
hin_gglf? / / yu(y, Y, t)p°(y, Y, 1) [( (yr (()t) (()))( )] dydt.

1
—§€2A(t) +

As A(t) > 0, we get

(3.38)

Note that in[(3.3B) the right hand side may-bec. For IS, sincet > to A T, there is no singularity at= 0.
Therefore, taking the limit 015/6 we obtain

wt%Yt Oy, Y, t)(yr(t) — Yh(t))
i f= [ 2Ot (339

which is finite. Note that

[T b :
1= = [ty v o




is finite. Indeed, from the expansion kft) we have that locally in time
h(t)
ay(t)o(t)
is bounded. Moreover froni (3.36) above

T 0
- / / yu(y, Y, t)p°(y, Y, t)dydt < cc.
0 —00

Collecting results we can assert that

I T P r(uly, Y, H)pP(y, Y, t)dydt
liminf — 3.40
e—0 € Z/0 /_OO (1-— P2(t))0y(t)02(t) ( )

N 11 v
[ @ ~ 2oy </wy i (y’Y’”dy> o

The second integral is finite. Now, let us show that the firggral is+o0o. We check that
0
: 2 0
lim v u(y,Y,t)p (y, Y, t)dy > 0.
The functionu(y, z, t) is increasing irt. Indeed, from the probabilistic representation we have
U(y, Zatl) = P[H(ya Z) >T— tl] < P[H(ya Z) >T— t2] = U(y7 Z7t2)7 th <ts.

Therefore, we have

lim _io yhu(y, Y, 0)p°(y, Y, t)dy < lim /_ OOO yPuly, Y, )p°(y, Y, t)dy (3.41)
Now,
uy(0—,Y,0) <0.
Indeed,vc > 0, wu(—c,Y,0) > 0andu(0,Y,0) = 0. So,
uy(0—,Y,0) <0.

It cannot be equal t0, otherwise the derivative exists angi(0, Y, 0) = 0. But then by minimum properties
we haveu,, (0,Y,0) > 0, that contradicts
1
—u(0,Y,0) — 51y, (0,,0) =0.
Therefore fory < 0 close to0 we have
u(y,Y,0) ~ay, a<D0.

On the interval —7, 0), we can assume(y, Y, 0) > $y. So,

0

0
lim [ y*u(y,Y,0)p"(y, Y, t)dy > lim/ S0y, Y, t)dy.
t—=0 J_, t—0 _,72

From [3.40), sincq’OT (l_pQ(t)")(Z -t = +oo, itis sufficient to check the property

0

lim [ y*p°(y, Y, t)dy < 0.
t—0 —n

Set
p()Y (1 — f(t))oy(t)
o(t) 7

Go(t) == qo(t) +
11



then
0 _ ! e (_AY2A—F@?N (= @o(t)?
) = e — ) p( 2 o2 ) p( 2(1—p2<t>>ag<t>>'
Hence,denoting

y3

e O Go(t))?
L= /_,7 V2roy (1) (1 — p2(t))1/2 P ( 2(1— p%ﬂ)oi(ﬂ) W

’ _ 1 1Y2(1 = f(t))?
/ y?p°(y, Y, t)dy = om0 P <_5W> L,. (3.42)

-n
In addition, by change of variables, we have
#1@/)2
=02 2oy (t) , -
Ly= [ @) + (1= g (1) oy ()’ exp(—3
(1-p2() 20y (1)

Therefore, fort close to0 we havegy(t) ~ Y’“ and we can check using formu[a(342) and (B.43) that

0
. 1 f 3 Ly
lim ny Sy, Y, t)dy = e _Oou exp(—gu”)du.

we get

(3.43)

Finally, smce% %(1 + ‘%t + o(t)), the first integral in the right hand side [n_(3140Hisc. We

thus have proven
[E
lim — = +4o0.
e—0 €

Next, consider from{2.19) the term

Jo 1 T oo 1 e(yr(t) = YI(t))
? - E/O /0 yu(:% _Y7 t)p(](:% _Y7 t) |:6Xp {_§€2A(t) + ( (t)} o 1:| dydt
From [2.12) we have

1

0 _ — ex - ! (y
p(y,—Y.1) _27T0'Z(t)0'y(t)(1 _ p2(t))1/2 p{ 2(1 — p2(1)) |: Ug(t) i 0

L 20y = " @)Y + mo(t))} } '
ay(t)o-(t)
Due to the ternexp{— %} we do not have a singularity becauseroft). Indeed,Y +m°(t) >

Y (1 —exp(—%7)), and fort close to0 we have

L (Y mi (@)
o (1) p( 2<1—p2<t>>az<t>>

21— p2(1)) Y 4+ mO(t) (Y +m(t))?
S (e W))( 2(1—p2<t>>az<t>>“p< 2(1—p2<t>>az<t>>
(¥ +mO(t)?
= Cow (‘4(1 - p2<t>>az<t>>

whereC > 0 is a constant depending @h From the above equation and recalling the asymptotjcs) ~
/'t for t close to0, we deduce that the quantity

(yr(t) - Y1)
/ | vty Y08 Yt”(l—p?(t))aya)az(t)]dydt




is well defined. In the same way

He 1

- :_/ (Pe(%Z’T)—pO(yaZaT)) dZdZ%

€ €JD
has a well defined limitTherefore, from[(Z.18), we deduce
u(0,Y —¢€,0)
€
As before, let us assume tha0) = —Y +e. Itis easy to see that(—y, —z,t) = u(y, z,t). This yields
PO >T)=u(0,Y —¢,t) =u(0,-Y +¢,0),

— +o0 as well. This completes the proof.

— 400 as e—0. (3.44)

u(0,—Y +¢,0)

€

SO
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