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Abstract

We are concerned with a phase field system consisting of two partial differential

equations in terms of the variables thermal displacement, that is basically the time

integration of temperature, and phase parameter. The system is a generalization

of the well-known Caginalp model for phase transitions, when including a diffu-

sive term for the thermal displacement in the balance equation and when dealing

with an arbitrary maximal monotone graph, along with a smooth anti-monotone

function, in the phase equation. A Cauchy-Neumann problem has been studied for

such a system in [7], by proving well-posedness and regularity results, as well as

convergence of the problem as the coefficient of the diffusive term for the thermal

displacement tends to zero. The aim of this contribution is rather to investigate the

asymptotic behaviour of the problem as the coefficient in front of the Laplacian of

the temperature goes to 0: this analysis is motivated by the types III and II cases

in the thermomechanical theory of Green and Naghdi. Under minimal assumptions

on the data of the problems, we show a convergence result. Then, with the help of

uniform regularity estimates, we discuss the rate of convergence for the difference

of the solutions in suitable norms.
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1 Introduction

In this paper we consider the initial and boundary value problem

wtt − α∆wt − β∆w + ut = f in Ω× (0, T ) (1.1)

ut −∆u+ γ(u) + g(u) ∋ wt in Ω× (0, T ) (1.2)
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2 Convergence properties for a phase field system

∂nw = ∂nu = 0 on Γ× (0, T ) (1.3)

w(· , 0) = w0 , wt(· , 0) = v0 , u(· , 0) = u0 in Ω (1.4)

where Ω ⊂ R
3 is a bounded domain with smooth boundary Γ, T > 0 represents some finite

time, and ∂n denotes the outward normal derivative on Γ. Moreover, f is a given source
term in equation (1.1), g : R → R is a Lipschitz-continuous function, and γ : R → 2R is a
maximal monotone graph (cf., e.g., [4] or [3]): as γ can be multivalued, in (1.2) there is
the inclusion instead of the equality. Finally, w0, v0, u0 stand for initial data.

Problem (1.1)–(1.4) has been studied in the paper [7] when α and β are two positive
coefficients; also, still in [7] the asymptotic behaviour of the problem as β ց 0 has
been investigated. The interest of this new contribution is to examine the asymptotic
properties of (1.1)–(1.4) as α ց 0, being β > 0 fixed once and for all. Indeed, both
asymptotic investigations are interesting and deserve to be investigated, in such a way
that the results proved in this paper give a completion to those of [7].

Let us point out that the coupled equations (1.1)–(1.2) form a system of phase field
type. From the seminal work of Caginalp and coworkers (see, e.g., [5, 6]) it became
clear that phase field systems are particularly suited to represent the dynamics of moving
interfaces arising in thermally induced phase transitions. In our case, we consider the
following expression for the total free energy

Ψ(θ, u) =

∫

Ω

(
−1

2
θ2 − θu+ φ(u) +G(u) +

1

2
|∇u|2

)
(1.5)

where the variables θ and u denote the (relative) temperature and the order parameter,
respectively. We remark at once that our w represents the thermal displacement variable,
related to θ by

w(·, t) = w0 + (1 ∗ θ)(·, t) = w0 +

∫ t

0

θ(·, s) ds, t ∈ [0, T ]. (1.6)

The integrand in (1.5) is characterized by the presence of different terms: the first one
yields the concave purely caloric contribution, the second is the only term coupling the two
variables, φ+G is a function acting on u and the last one is accounting for surface effects.
The convex and lower semicontinuous function φ : [0,+∞] → R satisfies φ(0) = 0 = minφ
and its subdifferential ∂φ coincides with γ, whileG stands for a smooth, in general concave,
function such that G′ = g. A typical example for φ(u) + G(u) is offered by the double
obstacle case, in which

φ(u) = I[−1,+1](u) =

{
0 if |u| ≤ 1

+∞ if |u| > 1
, G(u) = 1− u2, (1.7)

the two wells of φ+G being located in −1 and +1: actually, one of the two is preferred as
minimum of the potential in (1.5), according to whether the temperature θ is negative or
positive. The above example perfectly fits with the systematic view and designs of Michel
Frémond in non-smooth Thermomechanics [12]. In the case of (1.7), the subdifferential
of the indicator function of the interval [−1,+1] reads

ξ ∈ ∂I[−1,+1](u) if and only if ξ





≤ 0 if u = −1

= 0 if |u| < 1

≥ 0 if u = +1
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so that here γ = ∂I[−1,+1] is really a graph with vertical lines. Let us also note that even
a multi-well potential may be considered in (1.5): indeed, it turns out that the function
u 7→ −θu+ φ(u) +G(u) can exhibit different wells according especially to the shape of G
in the region where φ 6= +∞.

A different word used for the variable w in (1.6) is “freezing index”: this terminology is
motivated by earlier studies on the Stefan problem [11, 1] and preferred by some authors
(cf. [17, 12]). We notice that a meaningful variable of the Stefan problem is the enthalpy
e, which is defined as minus the variational derivative of Ψ with respect to θ:

e = −dθΨ, whence e = θ + u = wt + u. (1.8)

Then, the governing balance and phase equations are given by

et + divq = f (1.9)

ut + duΨ = 0 (1.10)

where q denotes the thermal flux vector and duΨ stands for the variational derivative
of Ψ with respect to u. Hence, (1.10) reduces exactly to (1.2) along with the Neumann
homogeneous boundary condition for u. On the other hand, if we assume the classical
Fourier law

q = −∇θ = −∇wt

(for the moment let us take the heat conductivity coefficient just equal to 1), then (1.9) is
nothing but the usual energy balance equation as in the Caginalp model [5]. One obtains
the same equation as in the weak formulation of the Stefan problem, in which however

(1.2) is replaced by the mere pointwise inclusion u ∈
(
∂I[−1,+1]

)−1
(θ), that equivalently

reads ∂I[−1,+1](u) ∋ wt.

An alternative approach to the Fourier diffusive law consists in adopting the so-called
Cattaneo-Maxwell law (see, e.g., [8, 10, 18] and references therein) in which a time deriva-
tive of the flux appears:

q+ εqt = −∇θ, for ε > 0 small. (1.11)

The Cattaneo-Maxwell law leads to the following equation

εθtt + θt −∆θ + ut + εutt = f + εft in Ω× (0, T ),

which has been investigated in [18, 22]. On the other hand, solving (1.11) with respect
to q yields

q = q0 + kε ∗ ∇θ, where (kε ∗ ∇θ)(x, t) :=

∫ t

0

kε(t− s)∇θ(x, s)ds;

q0(x, t) is known and can be incorporated in the source term, while kε(t) is a given kernel
depending on ε. Then, from (1.9) and a prescription like q = q0 + k ∗ ∇θ for some fixed
kernel k, we obtain the balance equation for the standard phase field model with memory
which has a hyperbolic character and has been extensively studied in [8, 9].

Green and Naghdi (see [13, 14, 15, 16]) presented an alternative treatment for a ther-
momechanical theory of deformable media. This theory takes advantage of an entropy
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balance rather than the usual entropy inequality. If we restrict our attention to the heat
conduction, these authors proposed three different hypotheses, labeled as type I, type II
and type III, respectively. In particular, when type I is linearized, we recover the classical
Fourier law (in terms of thermal displacement)

q = −α∇wt, α > 0. (1.12)

Type II is characterized by
q = −β∇w, β > 0. (1.13)

Moreover, a linearized version of type III reads

q = −α∇wt − β∇w. (1.14)

We point out that (1.13)–(1.14) laws have been recently discussed, applied and compared
by Miranville and Quintanilla in [19, 20, 21] (there the reader can find a rich list of
references as well). In particular, our equation (1.1) reflects the use of (1.14), along with
(1.9) and (1.8), in deriving it; further, a no flux boundary condition for q yields ∂nw = 0
in (1.3).

Here we are: the system (1.1)–(1.4) comes as a consequence of (1.9)–(1.10) when
(1.5) and (1.14) are postulated. Existence, continuous dependence, and regularity of
the solution to the initial-boundary value problem (1.1)–(1.4) have been studied in [7].
Observe that γ is an arbitrary maximal monotone graph, therefore γ may be multivalued,
singular and with bounded domain. To this concern, in addition to the example (1.7) we
also mention the singular case investigated in [21] for a convex potential φ with the same
interval [−1,+1] as domain, but with

φ(u) = κ1

(
(1 + u) ln(1 + u) + (1− u) ln(1− u)

)
,

and for g(u) = G′(u) = −2κ0u, where the meaningful constants κ0, κ1 have to satisfy
0 < κ1 < κ0.

An interesting issue is of course the investigation of the asymptotic behaviour of the
solutions to problem (1.1)–(1.4) as one of the two parameters α or β tends to 0. In [7] we
have examined the limiting case β ց 0, keeping α > 0 fixed and obtaining convergence
of solutions to the analogous problem with β = 0, which corresponds to (1.12), i.e., the
type I case of Green and Naghdi. The paper [7] also deals with two error estimates of the
difference of solutions in suitable norms, showing a rate of convergence that is linear with
respect to β in both estimates.

When discussing the limit with α > 0 fixed, one can always exploit the properties of
the parabolic term −α∆wt. This is no longer possible in the study of the limit as α ց 0,
which is the objective of the present paper. Indeed, if we let α ց 0 and hold β > 0
fixed, we are led to the analog of problem (1.1)–(1.4) with α = 0, in which equation (1.1)
becomes hyperbolic. This limiting situation gives account of the type II hypothesis (1.13)
of Green and Naghdi.

A change of variable turns out to be useful in obtaining estimates which does not
depend on α. Let y denote the time-integrated enthalpy (cf. (1.8))

y = w + 1 ∗ u.
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Then, problem (1.1)–(1.4) appears to be equivalent, in terms of (y, u), to the problem

ytt − α∆yt − β∆y = −α∆u− β∆(1 ∗ u) + f in Ω× (0, T ) (1.15)

ut −∆u+ γ(u) + g(u) ∋ yt in Ω× (0, T ) (1.16)

∂ny = ∂nu = 0 on Γ× (0, T ) (1.17)

y(· , 0) = w0 , yt(· , 0) = v0 + u0 , u(· , 0) = u0 in Ω , (1.18)

where the function g is defined by g(s) = g(s) + s for all s ∈ R and results Lipschitz-
continuous whenever g is. Let us notice that in the case α = 0 problem (1.15)–(1.18)
reduces to a system for which well-posedness and regularity results have been proved
in [8, 9].

By this change of variables, and dealing with some technicalities, we are able to provide
a priori estimates on the solution of (1.15)–(1.18), independent of α, which allow us to
state a convergence result as α ց 0 and prove it via compactness arguments. Then we
investigate the bahaviour of the difference of the solutions to the problems with α > 0
and α = 0: a first estimate on the convergence rate is obtained, although it is not linear
but of order 1/2 in α. Stronger regularity estimates independent of α are then provided,
and they enable us to produce also a linear estimate for the convergence rate, but only
in the case when γ is a smooth single-valued function defined on the whole real line.
This assumption, although limitative, is not unrealistic, because it covers the physically
relevant case of the well-known ‘double-well’ potential [5] given by

φ(u) +G(u) =
κ

4
(u2 − 1)2 , so that γ(u) = κu3 and g(u) = (1− κ)u , (1.19)

for some positive coefficient κ.

The paper is organized as follows. In Section 2 we present the main results related to
the problem: the existence and uniqueness of a weak solution for both cases α > 0 and
α = 0, the convergence theorem as α ց 0, the regularity results yielding a strong solution
and the first error estimate, the further regularity properties on the phase variable u and
the enthalpy yt, and finally the second error estimate. Next, in Section 3 we recall a useful
lemma for parabolic problems and then prove the convergence result. Strong solutions and
the first estimate on the order of convergence are discussed in Section 4. The concluding
Section 5 is devoted to the case of a smooth potential φ and it contains the proofs of the
additional regularity estimates and of the linear rate of convergence for the difference of
solutions in suitable norms.

2 Notation and main results

Before stating clearly the formulation of the problem and the main results we achieve, we
recall some notation. Let Ω ⊆ R

3 be a bounded smooth domain, with boundary Γ = ∂Ω,
and let T > 0 be some final time. Set

Qt = Ω× (0, t) , Q = QT ,

H = L2(Ω) , V = H1(Ω) , W =
{
v ∈ H2(Ω) : ∂nv = 0 a.e. on Γ

}
.
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We embed H in V ′, by means of the L2(Ω) inner product:

〈h, v〉 = (h, v)H for all h ∈ H , v ∈ V ;

we warn that ‖·‖H means the norm of both H and H3. If a is a function of space and
time variables, we define the function 1 ∗ a by the formula

(1 ∗ a)(t) =
∫ t

0

a(s) ds , 0 ≤ t ≤ T .

The symbol c stands for different positive constants, depending on Ω, T and the data,
which stay bounded whenever α, β vary in a bounded subset of (0,+∞). In particular,
for the sake of simplicity let us assume that

0 < α ≤ 1. (2.1)

Any positive constant depending on the Ω, T and the data, which may tend to +∞ when
β ց 0 but stays bounded as α ց 0, will be denoted by cβ.

For the sake of clarity, we call Dα = {w0,α, v0,α, u0,α, fα}, (yα, uα, ξα) the family of
data and the solution of the problem (1.15)–(1.18) (cf. also (1.1)–(1.4)), while D =
{w0, u0, v0, f} and (y, u, ξ) will denote the variables of related problem with α = 0.

Now we deal with the assumptions on data. We require that

0 < α ≤ 1 , β > 0 (2.2)

γ ⊆ R× R maximal monotone graph, with γ(0) ∋ 0 (2.3)

φ : R −→ [0,+∞] convex and lower semicontinuous, with φ(0) = 0 and ∂φ = γ (2.4)

g : R −→ R Lipschitz-continuous (2.5)

fα ∈ W 1,1(0, T ;V ′) + L1(0, T ;H) (2.6)

w0,α ∈ V , v0,α ∈ H , u0,α ∈ H , φ(u0,α) ∈ L1(Ω) ; (2.7)

we also assume, for the norms of the data, a bound independent of α:

‖fα‖W 1,1(0,T ;V ′)+L1(0,T ;H) + ‖w0,α‖V + ‖v0,α‖H + ‖u0,α‖H + ‖φ(u0,α)‖L1(Ω) ≤ c . (2.8)

We denote the effective domain of γ with D(γ). Now, we are ready to formulate precisely
the problem as subsequent to the change of variable.

Problem (Pα,β). Find (yα, uα, ξα) satisfying

yα ∈ W 2,1(0, T ;V ′) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ) (2.9)

uα ∈ H1(0, T ;V ′) ∩ C0 ([0, T ]; H) ∩ L2(0, T ;V ) (2.10)

ξα ∈ L2(Q) , uα ∈ D(γ) and ξα ∈ γ(uα) a.e. in Q (2.11)
〈
∂2
t yα(t), v

〉
+ α (∇∂tyα(t),∇v)H + β (∇yα(t),∇v)H = α (∇uα(t),∇v)H

+β (∇(1 ∗ uα)(t),∇v)H + 〈fα(t), v〉 for all v ∈ V and a.a. t ∈ (0, T )
(2.12)
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〈∂tuα(t), v〉+ (∇uα(t),∇v)H + (ξα(t), v)H + (g(uα)(t), v)H = (∂tyα(t), v)H
for all v ∈ V and a.a. t ∈ (0, T )

(2.13)

yα(0) = w0,α in V , ∂tyα(0) = v0,α + u0,α in V ′ , uα(0) = u0,α in H. (2.14)

We obtain the formulation of problem (Pβ) by setting α = 0 in problem (Pα,β).

Problem (Pβ). Find (y, u, ξ) satisfying

y ∈ W 2,1(0, T ;V ′) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ) (2.15)

u ∈ H1(0, T ;V ′) ∩ C0 ([0, T ]; H) ∩ L2(0, T ;V ) (2.16)

ξ ∈ L2(Q) , u ∈ D(γ) and ξ ∈ γ(u) a.e. in Q (2.17)
〈
∂2
t y(t), v

〉
+ β (∇y(t),∇v)H = β (∇(1 ∗ u)(t),∇v)H + 〈f(t), v〉

for all v ∈ V and a.a. t ∈ (0, T )
(2.18)

〈∂tu(t), v〉+ (∇u(t),∇v)H + (ξ(t), v)H + (g(u)(t), v)H = (∂ty(t), v)H
for all v ∈ V and a.a. t ∈ (0, T )

(2.19)

y(0) = w0 in V , ∂ty(0) = v0 + u0 in V ′ , u(0) = u0 in H. (2.20)

Proposition 2.1 (Well-posedness). Under the assumptions (2.2)–(2.7) for both the

families of data Dα and D, the two problems (Pα,β) and (Pβ) admit unique solutions

(yα, uα, ξα) and (y, u, ξ), respectively.

For the well-posedness of problem (Pα,β) we refer to [7, Theorem 2.1], while the proof
of the corresponding result for (Pβ) can be found in [9], with the warning that the reader
should argue with y−w0 (in place of y) since in the framework of [9] the initial value for
the related variable is 0.

In this work, we are interested in the limit as α ց 0 for problem (Pα,β); so, what really
affect us are the estimates for (yα, uα, ξα) independent of α, rather then mere regularity
results for problem (Pβ). For this reason, all the results are stated in terms of the two
families of data Dα and D.

Theorem 2.2 (Convergence as α ց 0). Assume (2.2)–(2.8) and let the families of

data Dα and D satisfy

fα ⇀ f in W 1,1(0, T ;V ′) + L1(0, T ;H) (2.21)

w0,α ⇀ w0 in V , v0,α ⇀ v0 , u0,α ⇀ u0 in H . (2.22)

Then, the convergences

yα ⇀∗ y in W 1,∞(0, T ;H) ∩ L∞(0, T ;V )

uα ⇀ u in H1(0, T ;V ′) ∩ L2(0, T ;V ) , ξα ⇀ ξ in L2(Q)

hold as α ց 0.
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Now, we strenghten the hypotheses on the initial data and on f , in order to obtain a
strong solution to problem (Pβ). In addition, we are able to provide an estimate on the
convergence error, when α ց 0. Let us suppose that

fα ∈ W 1,1(0, T ;H) + L1(0, T ;V ) (2.23)

w0,α ∈ W , v0,α ∈ V , u0,α ∈ V (2.24)

‖fα‖W 1,1(0,T ;H)+L1(0,T ;V ) + ‖w0,α‖W + ‖v0,α‖V + ‖u0,α‖V ≤ c . (2.25)

Theorem 2.3 (Regularity and strong solution). Assume (2.2)–(2.8). In addition,

let (2.21)–(2.25) hold for Dα and D. Then the solution (y, u, ξ) of problem (Pβ)

fulfills

y ∈ W 2,1(0, T ;H) ∩W 1,∞(0, T ;V ) ∩ L∞(0, T ;W ) (2.26)

u ∈ H1(0, T ;H) ∩ C0 ([0, T ]; V ) ∩ L2(0, T ;W ) . (2.27)

In particular, (y, u, ξ) solves a strong reformulation of problem (Pβ), namely,

∂2
t y − β∆y = −β∆(1 ∗ u) + f a.e. in Q (2.28)

∂tu−∆u+ ξ + g(u) = ∂ty , ξ ∈ γ(u) a.e. in Q (2.29)

∂ny = ∂nu = 0 a.e. on Γ× [0, T ] . (2.30)

Theorem 2.4 (First error estimate). Let the assumptions (2.2)–(2.8) and (2.23)–

(2.25) hold; if the inequalities

‖fα − f‖W 1,1(0,T ;V ′)+L1(0,T ;H) ≤ c α1/2 (2.31)

‖w0,α − w0‖V + ‖v0,α − v0‖H + ‖u0,α − u0‖H ≤ c α1/2 (2.32)

are fulfilled, then the following estimate

‖yα − y‖W 1,∞(0,T ;H)∩L∞(0,T ;V ) + ‖uα − u‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ cβ α
1/2

holds for the convergence error.

Remark 2.5. Thanks to the informations we get on uα − u, and being y = w + 1 ∗ u, the
estimate for yα − y entails an analogous one for wα − w, which was the original variable

of the problem. The same will happen for all the estimates presented in the paper.

The subsequent result provides an L∞ estimate on u. For s ∈ D(γ), let γ0(s) be the
element of γ(s) having minimum modulus; we ask that

u0,α ∈ W , u0,α ∈ D(γ) a.e. in Ω , γ0(u0,α) ∈ H (2.33)

‖u0,α‖W +
∥∥γ0(u0,α)

∥∥
H
≤ c . (2.34)
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Theorem 2.6 (Regularity for u). Assume (2.2)–(2.8) and let Dα, D satisfy the

conditions (2.21)–(2.25), (2.33)–(2.34). Then the solutions (yα, uα, ξα), (y, u, ξ) of

the respective problems (Pα,β) , (Pβ) fulfill

uα, u ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) . (2.35)

All the results stated above hold for a domain Ω ⊆ R
N , where the dimension N is

arbitrary. Note in particular that (2.35) implies uα, u ∈ C0([0, T ]; Hs(Ω)) for all s < 2
(cf., e.g., [23, Sect. 8, Cor. 4]). On the other hand, il we let N ≤ 3, the Sobolev embedding
Hs(Ω) →֒ C0(Ω), holding for s > 3/2, ensures that

u ∈ C0(Q) .

The subsequent results deal with the particular case, which is still physically significa-
tive, in which γ is a smooth function, defined on the whole of R. We require that

γ : R −→ R is single-valued and locally Lipschitz-continuous (2.36)

fα ∈ L2(Q) , u0,α ∈ H3(Ω) ∩W , ‖fα‖L2(Q) + ‖u0,α‖H3(Ω) ≤ c . (2.37)

Let us point out that the conditions (2.36) and (2.37) together entail (2.33)–(2.34), because
γ0(u0,α) = γ(u0,α) remains bounded in L∞(Ω) (→֒ H).

Theorem 2.7 (Further regularity on u). Assume (2.2)–(2.8) and let Dα and D

fulfill (2.21)–(2.25) and (2.37); we also ask that γ satisfy (2.36). Then the solutions

(yα, uα, ξα) and (y, u, ξ) of the respective problems (Pα,β) and (Pβ) satisfy

uα, u ∈ H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W ) .

Finally, we provide regularity enough to obtain an L∞ bound on ∂ty and a better
estimate on the convergence error. Let

fα ∈ W 2,1(0, T ;H) +W 1,1(0, T ;V ) (2.38)

v0,α ∈ W , α∆v0,α + β∆w0,α + fα(0) ∈ V (2.39)

‖fα‖W 2,1(0,T ;H)+W 1,1(0,T ;V ) + ‖v0,α‖W + ‖α∆v0,α + β∆w0,α + fα(0)‖V ≤ c . (2.40)

Theorem 2.8 (Further regularity on y). Let (2.2)–(2.8), (2.21)–(2.25) and (2.36)–

(2.40) hold. Then the solutions (yα, uα, ξα) and (y, u, ξ) of the respective problems

(Pα,β) and (Pβ) satisfy

yα, y ∈ W 2,∞(0, T ;V ) ∩W 1,∞(0, T ;W ) . (2.41)
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Theorem 2.9 (Second error estimate). Assume (2.2)–(2.8), (2.23)–(2.25), (2.36)–

(2.40) and let the inequalities

‖fα − f‖W 1,1(0,T ;V ′)+L1(0,T ;H) ≤ c α (2.42)

‖w0,α − w0‖V + ‖v0,α − v0‖H + ‖u0,α − u0‖V ≤ c α (2.43)

be satisfied. Then, the following estimate

‖yα − y‖W 1,∞(0,T ;H)∩L∞(0,T ;V )

+ ‖uα − u‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) ≤ cβ α
(2.44)

holds true for the convergence error. Moreover, if

‖fα − f‖W 1,1(0,T ;H)+L1(0,T ;V ) + ‖w0,α − w0‖W + ‖v0,α − v0‖V ≤ c α1/2 , (2.45)

then we also have

‖yα − y‖W 1,∞(0,T ;V )∩L∞(0,T ;W ) ≤ cβ α
1/2 . (2.46)

Remark 2.10. Focusing on regularity of the domain Ω, all the proofs contained in this

paper work if standards results on Sobolev embedding and elliptic regularity apply. For

instance, if Ω ⊆ R
3 is a convex polyhedron, then all the results of this paper remain true.

3 Preliminary results and convergence as α ց 0

For the reader’s convenience, let us recall some results widely exploited in this paper. If
a, b ∈ L2(Q) and σ > 0 is an arbitrary parameter, by the Hölder and Young inequalities
it is easy to infer that

∫

Qt

ab ≤ 1

2σ

∫ t

0

‖a(s)‖2H ds+
σ

2

∫ t

0

‖b(s)‖2H ds . (3.1)

Furthermore, if a ∈ H1(0, T ;H), by the fundamental theorem of calculus and the Hölder
inequality we have

‖a(t)‖2H =

∥∥∥∥a(0) +
∫ t

0

∂ta(s)ds

∥∥∥∥
2

H

≤ 2 ‖a(0)‖2H + 2T

∫ t

0

‖∂ta(s)‖2H ds . (3.2)

Finally, the following lemma states a well-known property of parabolic problems. For the
sake of completeness, let us report a short proof.

Lemma 3.1. Let h ∈ L2(Q) and z0 ∈ V . Then, the problem

∂tz −∆z = h a.e. in Q

∂nz = 0 a.e. on Γ× [0, T ] , z(0) = z0 a.e. in Ω

admits exactly one solution, which fulfills

‖z‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) ≤ c
{
‖z0‖V + ‖h‖L2(Q)

}
. (3.3)
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Proof. The existence of a solution for this problem can be proved via an approximation-

passage to the limit scheme, such as, for instance, the Faedo-Galerkin method. The esti-

mates needed to pass to the limit, by compactness arguments, are now formally provided.

We test the equation with ∂tz and integrate over Qt, obtaining:

∫ t

0

‖∂tz(s)‖2H ds+
1

2
‖∇z(t)‖2H ≤ 1

2
‖∇z0‖2H +

1

2

∫ t

0

‖h(s)‖2H ds+
1

2

∫ t

0

‖∂tz(s)‖2H ds .

Such an inequality, combined with (3.2), directly yields

‖z‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c
{
‖z0‖V + ‖h‖L2(Q)

}
.

Then, by comparison in the equation and on account of the homogeneous boundary

conditions, we obtain the estimate on ‖z‖L2(0,T ;W ) as well. Setting f ≡ 0 and z0 = 0, the

previous inequality imply z ≡ 0, thus entailing the uniqueness of solutions.

Now we are ready to face the proof of Theorem 2.2. Firstly, we establish estimates
independent of α on the solution (yα, uα, ξα) of problem (Pα,β); then, we pass to the limit
for a suitable subsequence, with compactness arguments. As we already know (cf. [9])
that Problem (Pβ) has a unique solution, we will obtain the convergence of the whole
family (yα, uα, ξα).

First a priori estimate We aim to test (2.12) by ∂tyα and (2.13) by uα: as the
former could be only formal due to regularity (2.9), we adopt the technique of singular
perturbations to regularize yα; all the results we need can be found, for example, in [9,
Prop. 6.1 and 6.2, p. 505, Prop. 6.3, p. 506]. Hence, for ε > 0 and a.a. t ∈ (0, T ), we
define yα,ε(t) ∈ V as the solution of the elliptic problem

yα,ε(t) + ε2Jyα,ε(t) = yα(t) ,

where J is the Riesz isomorphism V −→ V ′. Since

yα ∈ W 2,1(0, T ;V ′) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V ) ,

then it follows that yα,ε ∈ W 2,1(0, T ;V ) and moreover, as ε ց 0,

yα,ε ⇀
∗ yα in W 1,∞(0, T ;H) (3.4)

yα,ε ⇀ yα in H1(0, T ;V ) , whence yα,ε −→ yα in C0 ([0, T ]; V ) . (3.5)

We begin with testing equation (2.13) with uα(t) ∈ V and integrating over Qt. Recalling
that γ is monotone and g is Lipschitz-continuous, it is straightforward to get

1

2
‖uα(t)‖2H +

∫ t

0

‖∇uα(s)‖2H ds

≤ 1

2
‖u0,α‖2H +

1

2

∫ t

0

‖∂tyα(s)‖2H ds+ c

∫ t

0

‖uα(s)‖2H ds+ c .

(3.6)
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Now we test equation (2.12) with ∂tyα,ε(t), integrate over Qt, and pass to the limit as
εց0; it is convenient to treat each term separately. Thus, by [9, Prop. 6.2] and (3.5), we
have

lim
εց0

∫ t

0

〈
∂2
t yα(s), ∂tyα,ε(s)

〉
ds =

1

2
‖∂tyα(t)‖2H − 1

2
‖v0,α + u0,α‖2H ,

lim
εց0

α

∫

Qt

∇∂tyα · ∇∂tyα,ε = α

∫ t

0

‖∇∂tyα(s)‖2H ds ,

and, since (v, z) 7→ (∇v,∇z)H gives a bilinear, symmetric, continuous and weakly coercive
form in V × V , by [9, Prop. 6.3] we find out that

lim
εց0

β

∫

Qt

∇yα · ∇∂tyα,ε =
β

2
‖∇yα(t)‖2H − β

2
‖∇w0,α‖2H .

Before dealing with the terms on the right-hand side, let us sum up and see that

1

2
‖∂tyα(t)‖2H + α

∫ t

0

‖∇∂tyα(s)‖2H ds+
β

2
‖yα(t)‖2V

≤ 1

2
‖v0,α + u0,α‖2H +

β

2
‖∇w0,α‖2H +

β

2
‖yα(t)‖2H

+ lim
εց0

{
α

∫

Qt

∇uα · ∇∂tyα,ε + β

∫

Qt

∇(1 ∗ uα) · ∇∂tyα,ε +

∫ t

0

〈fα(s), ∂tyα,ε(s)〉 ds
}

,

(3.7)

where we have added the same quantity (cf. (3.2))

β

2
‖yα(t)‖2H

(
≤ β ‖w0,α‖2H + Tβ

∫ t

0

‖∂tyα(s)‖2H ds

)

to both sides. We now deal with the right-hand side of (3.7) and note that

lim
εց0

α

∫

Qt

∇uα ·∇∂tyα,ε = α

∫

Qt

∇uα∇∂tyα ≤ α

∫ t

0

‖∇uα(s)‖2H ds+
α

4

∫ t

0

‖∇∂tyα(s)‖2H ds .

The other term involving uα is treated by time integration by parts: thanks to (3.2) and
(3.1) we have that

lim
εց0

β

∫

Qt

∇(1 ∗ uα) · ∇∂tyα,ε = β lim
εց0

{
(∇(1 ∗ uα)(t),∇yα,ε(t))H −

∫

Qt

∇uα · ∇yα,ε

}

≤ 5βT

∫ t

0

‖∇uα(s)‖2H ds+
β

8
‖∇yα(t)‖2H +

β

4T

∫ t

0

‖∇yα(s)‖2H ds

Finally, we fix a decomposition

fα = f (1)
α + f (2)

α , with
∥∥f (1)

α

∥∥
W 1,1(0,T ;V ′)

+
∥∥f (2)

α

∥∥
L1(0,T ;H)

≤ c . (3.8)
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We integrate by parts in time the term containing f (1) and exploit (2.14) and (3.4)–(3.5)
to obtain

lim
εց0

∫ t

0

〈
f (1)
α (s), ∂tyα,ε(s)

〉
ds

= lim
εց0

{〈
f (1)
α (t), yα,ε(t)

〉
−
〈
f (1)
α (0), yα,ε(0)

〉
−
∫ t

0

〈
∂tf

(1)
α (s), yα,ε(s)

〉
ds

}

≤ 2

β

∥∥f (1)
α (t)

∥∥2

V ′
+

β

8
‖yα(t)‖2V +

1

2

∥∥f (1)
α (0)

∥∥2

V ′

+
1

2
‖w0,α‖2V +

∫ t

0

∥∥∂tf (1)
α (s)

∥∥
V ′

‖yα(s)‖V ds

≤ cβ
∥∥f (1)

α

∥∥2

L∞(0,T ;V ′)
+

β

8
‖yα(t)‖2V +

1

2
‖w0,α‖2V +

∫ t

0

∥∥∂tf (1)
α (s)

∥∥
V ′

‖yα(t)‖V ds .

(3.9)

Recalling (3.4), we easily get

lim
εց0

∫ t

0

〈
f (2)
α (s), ∂tyα,ε(s)

〉
ds =

∫

Qt

f (2)
α ∂tyα ≤

∫ t

0

∥∥f (2)
α (s)

∥∥
H
‖∂tyα(s)‖H ds .

Now, we collect all the inequalities referring to (3.7). Owing to (2.1), (2.8) and (3.8), we
infer that

1

2
‖∂tyα(t)‖2H +

3α

4

∫ t

0

‖∇∂tyα(s)‖2H ds+
β

4
‖yα(t)‖2V

≤ cβ + c

∫ t

0

‖∂tyα(s)‖2H ds+ (1 + 5βT )

∫ t

0

‖∇uα(s)‖2H ds+ c

∫ t

0

‖∇yα(s)‖2H ds

+

∫ t

0

∥∥∂tf (1)
α (s)

∥∥
V ′

‖yα(t)‖V ds+

∫ t

0

∥∥f (2)
α (s)

∥∥
H
‖∂tyα(s)‖H ds .

(3.10)

Then, let us multiply (3.6) by (2 + 5βT ) and add the resulting inequality to (3.10),
obtaining

‖uα(t)‖2H +

∫ t

0

‖∇uα(s)‖2H ds+
1

2
‖∂tyα(t)‖2H +

α

2

∫ t

0

‖∇∂tyα(s)‖2H ds+
β

4
‖yα(t)‖2V

≤ cβ

{
1 +

∫ t

0

‖uα(s)‖2H ds+

∫ t

0

‖∂tyα(s)‖2H ds+

∫ t

0

‖∇yα(s)‖2H ds

}

+

∫ t

0

∥∥∂tf (1)
α (s)

∥∥
V ′

‖yα(t)‖V ds+

∫ t

0

∥∥f (2)
α (s)

∥∥
H
‖∂tyα(s)‖H ds ;

at this point, a generalised version of the Gronwall lemma, which is stated in [2, Teo-
rema 2.1, p. 245], allows us to conclude that

‖yα‖W 1,∞(0,T ;H)∩L∞(0,T ;V ) +
√
α ‖yα‖H1(0,T ;V ) + ‖uα‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ cβ . (3.11)

Remark 3.2. Estimate (3.11) can be easily modified in order to provide the continuous

dependence on the data for problem (Pα,β). Indeed, taking the difference between the

equations associated with two sets of data Dα,1 and Dα,2, the resulting system is formally

analougous to (Pα,β) and can be treated similarly; the only difference is the term in g(uα),

which is replaced by g(uα,1)− g(uα,2). We obtain an estimate where the constant in the

right-hand side is independent of α.
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Second a priori estimate. In order to prove the next estimate, we need to approx-
imate the graph γ with its Yosida regularization; therefore, for all ε > 0 we define

γε :=
1

ε

{
I − (I + εγ)−1} and φε(s) := min

τ∈R

{
1

2ε
|τ − s|2 + φ(τ)

}
for s ∈ R ,

where I denotes the identity on R. We remind that φε is a nonnegative and differentiable
function, γε is increasing and Lipschitz-continuous: moreover, we have that

φ′
ε(s) = γε(s) , 0 ≤ γ′

ε(s) ≤
1

ε
, 0 ≤ φε(s) ≤ φ(s) for all s ∈ R and ε > 0 (3.12)

(see, e.g., [4, Prop. 2.6, p. 28 and Prop. 2.11, p. 39] or [3, pp. 57–58]). We establish an
estimate for the solution (yα, uα, ξα) to problem (Pα,β), in which we have replaced γ by
γε; then, the same estimate will hold for the original problem, because of the passage to
the limit as ε ց 0 already detailed in [7].

We notice that γε(u)(t) ∈ V for a.a. t, due to the Lipschitz-continuity of γε, and so it
is an admissible test function for equation (2.13). The Lipschitz-continuity of g and the
formula

γε(uα) ∂tuα =
∂

∂t
φε(uα)

allow us to write

‖φε(uα)(t)‖L1(Ω) +

∫ t

0

γ′
ε(uα) |∇uα|2 +

∫ t

0

‖γε(uα)(s)‖2H ds

≤ ‖φε(u0,α)‖L1(Ω) +

∫ t

0

‖∂tyα(s)‖2H ds+ c

∫ t

0

‖uα(s)‖2H ds+ c+
1

2

∫ t

0

‖γε(uα)(s)‖2H ds .

We ignore the second term in the left-hand side, which is positive because of γ′
ε ≥ 0, and

use (3.12), (2.8) and (3.11) to get

‖φε(uα)(t)‖L1(Ω) +
1

2

∫ t

0

‖γε(uα)(s)‖2H ds ≤ cβ .

As φε −→ φ pointwise (see [4, Prop. 2.11, p. 39]), by applying the Fatou lemma to the
first term and passing to the limit as ε ց 0 we obtain

‖φ(uα)‖L∞(0,T ;L1(Ω)) + ‖ξα‖L2(Q) ≤ cβ . (3.13)

By comparison in the equation (2.13), we also deduce that

‖∂uα‖L2(0,T ;V ′) ≤ cβ . (3.14)

Passage to the limit as α ց 0. According to the estimates (3.11), (3.13) and (3.14),
it is fair to assume, up to subsequences,

yα ⇀∗ y in W 1,∞(0, T ;H) ∩ L∞(0, T ;V )

uα ⇀ u in H1(0, T ;V ′) ∩ L2(0, T ;V ) , ξα ⇀ ξ in L2(Q) .



Giacomo Canevari and Pierluigi Colli 15

The generalised Ascoli theorem and the Aubin-Lions lemma (see, e.g., [23, Sect. 8, Cor. 4])
thus imply

yα −→ y strongly in C0 ([0, T ]; H)

uα −→ u strongly in C0 ([0, T ]; V ′) and in L2(Q) ,

and the Lipschitz-continuity of g yields

g(uα) −→ g(u) strongly in L2(Q)

as α ց 0. With all this information and in view of (2.21), (2.22) it is not difficult to
check that the limits y, u, ξ form a triplet solving problem (Pβ). The proof is analogous
to the one developed in [7, Section 5]: in particular, let us point out that

lim
αց0

∫

Q

ξαuα =

∫

Q

ξu

which entails (see, e.g., [3, Prop. 1.1, p. 42]) (2.17). Moreover, the regularityW 2,1(0, T ;V ′)
for y can be recovered a posteriori by comparing terms of (2.18).

4 Strong solutions and first error estimate

This section is devoted to the proofs of Theorems 2.3 and 2.4. Regularity results for
problem (Pβ) are obtained by establishing estimates for (yα, uα, ξα) independent of α;
then Theorem 2.2 and the weak or weak star compactness yield the desired regularity for
(y, u, ξ). About the end of the section, we also discuss briefly how the thesis of Theorem 2.6
follows from the furher requirements in (2.33)–(2.34).

We assume that Dα and D satisfy hypotheses (2.23)–(2.25). Under these assumptions,
from [7, Theorem 2.2] we know that

yα ∈ W 2,1(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W ) (4.1)

uα ∈ H1(0, T ;H) ∩ C0 ([0, T ]; V ) ∩ L2(0, T ;W ) (4.2)

and (yα, uα, ξα) solves Problem (Pα,β) in a strong sense, that is, yα and uα satisfy

∂2
t yα − α∆∂tyα − β∆yα = −α∆uα − β∆(1 ∗ uα) + fα a.e. in Q (4.3)

∂tuα −∆uα + ξα + g(uα) = ∂tyα, ξα ∈ γ(uα) a.e. in Q (4.4)

∂nyα = ∂nuα = 0 a.e. on Γ× (0, T ) (4.5)

along with (2.14), for every α ∈ (0, 1).

Third a priori estimate. Thanks to (4.4)–(4.5), we can apply Lemma 3.1 with
z = uα, z0 = u0,α, and h = ∂tyα − ξα − g(uα). Indeed, in view of the condition in (2.25)
for the initial datum, and owing to (2.5) and to estimates (3.11) and (3.13), from (3.3) it
follows that

‖uα‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ cβ . (4.6)
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Fourth a priori estimate. By virtue of (4.2), we can plainly multiply equation (4.4)
by −∆∂tyα and integrate over Qt. Thus, we obtain

1

2
‖∇∂tyα(t)‖2H + α

∫ t

0

‖∆∂tyα(s)‖2H ds+
β

2
‖∆yα(t)‖2H ≤ 1

2
‖∇(v0,α + u0,α)‖2H

+
β

2
‖∆w0,α‖2H + α

∫

Qt

∆uα∆∂tyα + β

∫

Qt

∆(1 ∗ uα)∆∂tyα −
∫

Qt

fα∆∂tyα .

(4.7)

A simple application of the Hölder inequality allow us to infer that

α

∫

Qt

∆uα∆∂tyα ≤ α

2

∫ t

0

‖∆uα(s)‖2H ds+
α

2

∫ t

0

‖∆∂tyα(s)‖2H ds .

We deal with the subsequent term integrating by parts in time:

β

∫

Qt

∆(1 ∗ uα)∆∂tyα ≤ 2β ‖1 ∗∆uα(t)‖2H +
β

8
‖∆yα(t)‖2H − β

∫

Qt

∆uα∆yα

≤ β (4T + 1)

∫ t

0

‖∆uα(s)‖2H ds+
β

8
‖∆yα(t)‖2H +

β

4

∫ t

0

‖∆yα(s)‖2H ds .

Now, we choose a split

fα = f (1)
α + f (2)

α , with
∥∥f (1)

α

∥∥
W 1,1(0,T ;H)

+
∥∥f (2)

α

∥∥
L1(0,T ;V )

≤ c , (4.8)

in order to estimate the term with fα. Concerning f
(1)
α , we integrate by parts in time and

recall (2.25):

−
∫

Qt

f (1)
α ∆∂tyα = −

(
f (1)
α (t),∆yα(t)

)
H
+
(
f (1)
α (0),∆w0,α

)
H
+

∫

Qt

∂tf
(1)
α ∆yα

≤ 2

β

∥∥f (1)
α (t)

∥∥2

H
+

β

8
‖∆yα(t)‖2H +

∫ t

0

∥∥∂tf (1)
α (s)

∥∥
H
‖∆yα(s)‖H ds+ c .

An integration by parts in space leads to

−
∫

Qt

f (2)
α ∆∂tyα ≤

∫ t

0

∥∥∇f (2)
α (s)

∥∥
H
‖∇∂tyα(s)‖H ds .

Collecting all these inequalities and taking advantage of (2.25), (2.1), (4.6) and (4.8),
from (4.7) we derive

1

2
‖∇∂tyα(t)‖2H +

α

2

∫ t

0

‖∆∂tyα(s)‖2H ds+
β

4
‖∆yα(t)‖2H ≤ cβ + c

∫ t

0

‖∆yα(s)‖2H ds

+

∫ t

0

∥∥∂tf (1)
α (s)

∥∥
H
‖∆yα(s)‖H ds+

∫ t

0

∥∥∇f (2)
α (s)

∥∥
H
‖∇∂tyα(s)‖H ds .

(4.9)

Hence, by means of the generalised Gronwall lemma (see, e.g., [2]) and regularity proper-
ties for elliptic problems, we obtain

‖yα‖W 1,∞(0,T ;V )∩L∞(0,T ;W ) +
√
α ‖yα‖H1(0,T ;W ) ≤ cβ . (4.10)
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Next, a comparison in equation (4.4) gives
∥∥∂2

t yα − f (2)
α

∥∥
L2(0,T ;H)

≤ cβ . (4.11)

Thus, we have collected all the estimates needed to prove Theorem 2.3. In particular,
note that the regularity (2.26)-(2.27) is enssured for the limit functions y and u, which
actually satisfy (2.28)-(2.30).

Error equations. We have already shown the convergence as α ց 0 for the solu-
tions to problem (Pα,β); as we want to study the speed of convergence, we start writing
explicitely the equations for the error. We set

ŷα = yα − y , ûα = uα − u , ξ̂α = ξα − ξ

f̂α = fα − f , ŵ0,α = w0,α − w0 , v̂0,α = v0,α − v0 , û0,α = u0,α − u0

and subtract side by side the equations of the problems (Pα,β) and (Pβ), in their strong
formulations:

∂2
t ŷα − β∆ŷα = α∆∂tyα − α∆uα − β∆(1 ∗ ûα) + f̂α a.e. in Q (4.12)

∂tûα −∆ûα + ξ̂α + g(uα)− g(u) = ∂tŷα a.e. in Q (4.13)

∂nŷα = 0 , ∂nûα = 0 a.e. on Γ× (0, T ) (4.14)

ŷα(0) = ŵ0,α , ∂tŷα(0) = v̂0,α + û0,α , ûα(0) = û0,α a.e. in Ω . (4.15)

When necessary, we also split f̂α = f̂
(1)
α + f̂

(2)
α , where f

(1)
α , f

(2)
α (and also f (1), f (2)) fulfill

(4.8), f̂
(i)
α = f

(i)
α − f (i) for i = 1, 2, and

∥∥∥f̂ (1)
α

∥∥∥
W 1,1(0,T ;V ′)

+
∥∥∥f̂ (2)

α

∥∥∥
L1(0,T ;H)

≤ c α1/2. (4.16)

First error estimate. Now we want to show Theorem 2.4. We multiply equation
(4.13) by ûα and integrate over Qt; on account of the monotonicity of γ and the Lipschitz-
continuity of g, it is straightforward to get

1

2
‖ûα(t)‖2H +

∫ t

0

‖∇ûα(s)‖2H ds

≤ 1

2
‖û0,α‖2H + c

∫ t

0

‖ûα(s)‖2H ds+
1

2

∫ t

0

‖∂tŷα(s)‖2H ds .

(4.17)

Next, we add βŷα to both sides of (4.12), then test with ∂tŷα and integrate over Qt. With
the help of (4.15) and (3.2) we easily obtain

1

2
‖∂tŷα(t)‖2H +

β

2
‖ŷα(s)‖2V ≤ 1

2
‖v̂0,α + û0,α‖2H +

β

2
‖ŵ0,α‖2V

+ β ‖ŵ0,α‖2H + Tβ

∫ t

0

‖∂tŷα(s)‖2H ds+ α

∫

Qt

(∆∂tyα −∆uα) ∂tŷα

− β

∫

Qt

∆(1 ∗ ûα) ∂tŷα +

∫ t

0

〈
f̂ (1)
α (s), ∂tŷα(s)

〉
ds+

∫

Qt

f̂ (2)
α ∂tŷα .

(4.18)
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The term involving α is easily treated by the Hölder inequality and estimates (4.6), (4.10):

α

∫

Qt

(∆∂tyα −∆uα) ∂tŷα ≤ α

2

∫ t

0

α ‖∆∂tyα(s)‖2H ds+
α2

2

∫ t

0

‖∆uα(s)‖2H ds

+

∫ t

0

‖∂tŷα(s)‖2H ds ≤ cβ α +

∫ t

0

‖∂tŷα(s)‖2H ds .

(4.19)

Here, (2.1) has been used in the control of α2 by α. For the subsequent term, we integrate
by parts in space and time and recall (3.2):

− β

∫

Qt

∆(1 ∗ ûα) ∂tŷα ≤ β (∇(1 ∗ ûα)(t),∇ŷα(t))− β

∫

Qt

∇ûα · ∇ŷα

≤ 5βT

∫ t

0

‖∇ûα(s)‖2H ds+
β

8
‖∇ŷα(t)‖2H +

β

4T

∫ t

0

‖∇ŷα(s)‖2H ds .

(4.20)

The next term in (4.18) is treated similarly as in (3.9). We infer that

∫ t

0

〈
f̂ (1)
α (s), ∂tŷα(s)

〉
ds ≤ cβ

∥∥∥f̂ (1)
α

∥∥∥
2

L∞(0,T ;V ′)
+

β

8
‖∇ŷα(t)‖2H +

β

4
‖ŵ0,α‖2H

+
βT

4

∫ t

0

‖∂tŷα(s)‖2H ds+
1

2
‖ŵ0,α‖2V +

∫ t

0

∥∥∥∂tf̂ (1)
α (s)

∥∥∥
V ′

‖ŷα(s)‖V ds ,

(4.21)

while the other contribution of the source term is easily estimated by the Hölder inequality:

∫

Qt

f̂ (2)
α ∂tŷα ≤

∫ t

0

∥∥∥f̂ (2)
α (s)

∥∥∥
H
‖∂tŷα(s)‖H ds . (4.22)

Now we multiply (4.17) by (1 + 5βT ) and add the resulting inequality to (4.18), side
by side. In view of (4.19)–(4.22) and thanks to (2.31)–(2.32), we deduce that

1

2
‖ûα(t)‖2H +

∫ t

0

‖∇ûα(s)‖2H ds+
1

2
‖∂tŷα(t)‖2H +

β

4
‖ŷα(t)‖2V

≤ cβ α + c

∫ t

0

‖ûα(s)‖2H ds+ c

∫ t

0

‖∂tŷα(s)‖2H ds+ c

∫ t

0

‖∇ŷα(s)‖2H ds

+

∫ t

0

∥∥∥∂tf̂ (1)
α (s)

∥∥∥
V ′

‖ŷα(s)‖V ds+

∫ t

0

∥∥∥f̂ (2)
α (s)

∥∥∥
H
‖∂tŷα(s)‖H ds ;

(4.23)

hence, the generalised Gronwall lemma (see, e.g., [2]) and (2.31) again entail the thesis of
Theorem 2.4.

A regularity result on u. Let us formally describe how Theorem 2.6 can be proved:
you differentiate the equation in (4.4) with respect to time and then test by ∂tyα, inte-
grating over Qt with the help of the further initial condition for ∂tyα(0). Such a condition
can be still inferred from (4.4) and, thanks to (2.34), the initial values ∂tyα(0) turn out
to be bounded in H . Moreover, you exploit the facts that

∫

Qt

∂tξα ∂tyα ≥ 0
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and that ∂2
t yα stays uniformly bounded in L1(0, T ;H) (cf. (4.11) and (2.23)).

However, for a rigorous proof we refer to [7, Section 7], where the sketched estimate
is carried out properly, in the setting provided by the Faedo-Galerkin approximation and
the Yosida regularisation of the graph γ. Since the estimate is independent of α, for the
proof, as a by-product we have the desired inequality

‖uα‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) ≤ cβ , (4.24)

which pass to the limit as α ց 0 via compactness argument.

5 The case of a smooth potential

In what follows, we assume that γ is a single-valued, non decreasing, locally Lipschitz-
continuous function, defined on the whole of R (see (2.3) and (2.36)). We have already
pointed out that this assumption is restrictive but not unrealistic, as the example of the
‘double-well’ potential (1.19) shows.

Since the hypotheses we consider on the data are strong enough to guarantee (4.24),
and consequently the estimate

‖uα‖L∞(Q) ≤ cβ ,

we have that ξα = γ(uα) is bounded independently of α in L∞(Q). Furthermore, by the
local Lipschitz-continuity of γ, without loss of generality we can set ξα = 0 in (2.13) (and

(4.4)), ξ = 0 in (2.19) (and (2.29)), ξ̂α = 0 in (4.13) by modifying g in order to take
account of γ too.

Further regularity on u. As we are interested in showing Theorem 2.7, we consider
equation (2.13) and derive it, with respect to time. We get a first-order equation for
a new unknown zα = ∂tuα, which is complemented by Neumann homogeneus boundary
conditions and the suitable initial condition, obtained by setting t = 0 in (4.4):

∂tzα −∆zα = −∂t(g(uα)) + ∂2
t yα a.e. in Q ,

∂nzα = 0 a.e. in Γ× (0, T )

zα(0) = ∆u0,α − g(u0,α) + v0,α + u0,α a.e. in Ω .

We notice that the terms ∂t(g(uα)) and ∂2
t yα are bounded in L2(Q) due to (2.5), (4.6)

and (4.11), (2.37). Moreover, (2.25) and (2.37) imply that

∆u0,α − g(u0,α) + v0,α + u0,α is bounded in V

independently of α. Thus, we can apply Lemma 3.1 and, on account of (4.24), the
inequality (3.3) leads the estimate

‖uα‖H2(0,T ;H)∩W 1,∞(0,T ;V )∩H1(0,T ;W ) ≤ cβ , (5.1)

whence the thesis of Theorem 2.7 follows.
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Further regularity on ∂ty. Here, we want to prove Theorem 2.8, whose assumptions
are now supposed to be in force. Recalling (4.3), (4.5) and (2.14), it turns out that
vα = ∂tyα formally satisfies

∂2
t vα − α∆∂tvα − β∆vα = −α∆∂tuα − β∆uα + ∂tfα a.e. in Q (5.2)

∂nvα = 0 a.e. on Γ× (0, T ) (5.3)

vα(0) = v0,α + u0,α, ∂tvα(0) = α∆v0,α + β∆w0,α + fα(0) a.e. in Ω. (5.4)

Due to (5.1) and (2.38), the right-hand side in (5.2) has exactly the same regularity here
as its counterpart in (4.3) within the framework of Theorem 2.3. The same correspondence
holds for the initial data in (5.4) and the related ones in (2.14): indeed, v0,α + u0,α is in
W and α∆v0,α + β∆w0,α + fα(0) lies in V due to (2.37) and (2.39). Then, we have that
(cf. (4.1))

vα ∈ W 2,1(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W )

and vα actually satisfies (5.2)–(5.4). Then, we are allowed to test (5.2) by −∆∂tvα and
repeat the computations developed in the Fourth a priori estimate. Thanks to (2.37) and
(2.40), proceeding in this way we obtain (cf. (4.9))

1

2
‖∇∂tvα(t)‖2H +

α

2

∫ t

0

‖∆∂tvα(s)‖2H ds+
β

4
‖∆vα(t)‖2H ≤ cβ + c

∫ t

0

‖∆vα(s)‖2H ds

+

∫ t

0

∥∥∂2
t f

(1)
α (s)

∥∥
H
‖∆vα(s)‖H ds+

∫ t

0

∥∥∇∂tf
(2)
α (s)

∥∥
H
‖∇∂tvα(s)‖H ds .

By means of the generalised Gronwall lemma, stated in [2, Teorema 2.1, p. 245], recalling
(2.38), (2.40) and vα = ∂tyα, we can conclude

‖∂tyα‖W 1,∞(0,T ;V )∩L∞(0,T ;W ) +
√
α ‖∂tyα‖H1(0,T ;W ) ≤ cβ , (5.5)

which entails (2.41).

Second error estimate. We begin with revisiting the first estimate on the con-
vergence error. Assume all the hypotheses of Theorem 2.9, and reconsider the proof of
Theorem 2.4 we have given in Section 4. We leave unchanged all the estimates we have
already established, except the inequalities (4.19): indeed, from (4.6) and (5.5) it follows
that

α

∫

Qt

(∆∂tyα −∆uα) ∂tŷα ≤ α2

2

∫ t

0

‖∆∂tyα(s)‖2H ds+
α2

2

∫ t

0

‖∆uα(s)‖2H ds

+

∫ t

0

‖∂tŷα(s)‖2H ds ≤ cβ α
2 +

∫ t

0

‖∂tŷα(s)‖2H ds .

By this new estimate and the assumptions (2.42)–(2.43), inequality (4.23) now becomes

1

2
‖ûα(t)‖2H +

∫ t

0

‖∇ûα(s)‖2H ds+
1

2
‖∂tŷα(t)‖2H +

β

4
‖ŷα(t)‖2V

≤ cβ α
2 + c

∫ t

0

‖ûα(s)‖2H ds+ c

∫ t

0

‖∂tŷα(s)‖2H ds+ c

∫ t

0

‖∇ŷα(s)‖2H ds

+

∫ t

0

∥∥∥∂tf̂ (1)
α (s)

∥∥∥
V ′

‖ŷα(s)‖V ds+

∫ t

0

∥∥∥f̂ (2)
α (s)

∥∥∥
H
‖∂tŷα(s)‖H ds ;
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so that the generalised Gronwall lemma (cf., e.g., [2]) and (2.42) entail

‖ŷα‖W 1,∞(0,T ;H)∩L∞(0,T ;V ) + ‖ûα‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ cβ α . (5.6)

Next, we consider the equation (4.13), where we have set ξ̂α = 0, and apply Lemma 3.1;
by (2.43), the Lipschitz-continuity of g and (5.6) we obtain

‖ûα‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c
{
‖û0,α‖V + ‖ûα‖L2(Q) + ‖∂tŷα‖L2(Q)

}
≤ cβ α . (5.7)

Then (2.44) is entirely proved. In order to complete the proof of Theorem 2.9, we test
equation (4.12) with −∆∂tyα (which belongs to L2(Q) because of the estimate (5.5)) and
integrate over Qt:

1

2
‖∇∂tŷα(t)‖2H +

β

2
‖∆ŷα(t)‖2H ≤ 1

2
‖∇ (v̂0,α + û0,α)‖2H +

β

2
‖∆ŵ0,α‖2H

+α

∫

Qt

(∆uα −∆∂tyα) ∆∂tŷα + β

∫

Qt

∆(1 ∗ ûα)∆∂tŷα −
∫

Qt

f̂α∆∂tŷα .
(5.8)

We deal with the integral involving uα and yα, which is delicate to treat. By an application
of the Hölder inequality, (4.24), and (5.5) – which holds for y as well – we have

α

∫

Qt

(∆uα −∆∂tyα) ∆∂tŷα

≤ α
(
‖∆uα‖L2(Q) + ‖∆∂tyα‖L2(Q)

)(
‖∆∂tyα‖L2(Q) + ‖∆∂ty‖L2(Q)

)
≤ cβ α .

The subsequent term is estimated by integrating by parts, with respect to time, and
taking advantage of (3.2):

β

∫

Qt

∆(1 ∗ ûα)∆∂tŷα ≤ 2β ‖∆(1 ∗ ûα)(t)‖2H +
β

8
‖∆ŷα(t)‖2H − β

∫

Qt

∆ûα∆ŷα

≤ β (4T + 1)

∫ t

0

‖∆ûα(s)‖2H ds+
β

8
‖∆ŷα(t)‖2H +

β

4

∫ t

0

‖∆ŷα(s)‖2H ds .

Now we split f̂α = f̂
(1)
α + f̂

(2)
α , as usual, and deal on the respective terms separately,

integrating by parts the former in time and the latter in space. We obtain
∫

Qt

f̂ (1)
α ∆∂tŷα ≤ 2

β

∥∥∥f̂ (1)
α (t)

∥∥∥
2

H
+

β

8
‖∆ŷα(t)‖2H +

1

2

∥∥∥f̂ (1)
α (0)

∥∥∥
2

H

+
1

2
‖∆w0,α‖2H +

∫ t

0

∥∥∥f̂ (1)
α (s)

∥∥∥
H
‖∆ŷα(s)‖H ds

and
∫

Qt

f̂ (2)
α ∆∂tŷα ≤

∫ t

0

∥∥∥∇f̂ (2)
α (s)

∥∥∥
H
‖∇∂tŷα(s)‖H ds .

According to all these estimates, and taking (2.45), (5.7) and (2.1) into account, the
inequality (5.8) transforms into

1

2
‖∇∂tŷα(t)‖2H +

β

4
‖∆ŷα(t)‖2H ≤ cβ α+

β

2

∫ t

0

‖∆ŷα(s)‖2H ds

+

∫ t

0

∥∥∥f̂ (1)
α (s)

∥∥∥
H
‖∆ŷα(s)‖H ds+

∫ t

0

∥∥∥∇f̂ (2)
α (s)

∥∥∥
H
‖∇∂tŷα(s)‖H ds .
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In view of this inequality and (2.45), by the generalised Gronwall lemma (cf., e.g., [2]) we
deduce (2.46) and therefore conclude the proof of Theorem 2.9.
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