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Abstract. In recent years, the idea of personal mobility devices (PMD) has gained 
prominence globally for different contexts, for diverse types and extent of uses. The 
advantages of owning a PMD allows users to cover the short distance in between 
stops where they have access to long distance transportation, establishing a full end 
to end transport system for many. The rise in usage of PMDs also came along the 
rise in accidents. One of the reasons that could result in this phenomenon is the lack 
of calibration of PMD towards how users use it. Currently, most user experience 
(UX) methodologies are based on subjective questionnaires rather than by objective 
quantitative data. While there exists a few that studies wheelchair and electronic 
bicycles, UX concerning this specific device is a field not many studies have delved 
into. Therefore, in this project, we seek to propose a data-driven model to explore 
electronic scooter user’s riding profile based on psychophysiological data such as 
galvanic skin response (GSR) and kinematics data such as the speed and acceleration. 
Upon retrieving the stress status of the user when he or she is riding, the dataset 
undergoes a data analysis pipeline that cleans, process and analyse data with 
Random Forest machine learning algorithms. With the ability to create customised 
profiles, the model can be adopted to serve the needs of PMD sharing service 
stakeholders or PMD design companies to ensure good user experience for their 
customers in the future. 

Keywords. Data-driven, User Experience (UX), Personal Mobility Devices (PMD), 
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Introduction 

Personal Mobility Device (PMD) refers to ‘Smart Mobility’ or ‘Micro Mobility’ for one 
or two persons, and it is appreciated as an environmental-friendly means operated by 
electric resources [1]. They are commonly regarded as the ‘first and last mile’ solution, 
with increasing adoption of 2-wheel electric-scooter (e-scooter) sharing services in many 
countries. Therefore, user experience (UX) for PMDs has become a prominent feature to 
encourage the use of PMDs, with ongoing research that are revolving mostly around 
safety and usability. From the methodological view, user experience from PMD usage 
was usually evaluated subjectively rather than objectively, based heavily on self-
reporting questionnaires rather than unconscious data. Nonetheless, it was shown that 
objective measurements can be implemented to measure PMD use satisfaction, such as 
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electroencephalograph (EEG), heart rate invariability (HRV) and galvanic skin response 
(GSR) [2]. The usage of the psychophysiological method of UX measurement has been 
used in cases of wheelchairs to predict emotional states and therefore user experience. 

Unlike wheelchairs, e-scooters generally demand better motor control abilities of its 
users especially since the stability of the device depends on how users shift their weight. 
Acceleration, speed and rate of turn within the six degrees of freedoms simultaneously 
determines the ability of the user to sustain a comfortable ride that is well-balanced and 
safe. Each user will consequently have different riding profiles that they are comfortable 
with since they each have different centres of gravity. Therefore, a holistic solution that 
improves and customise riding profiles for everyone must be invented to ensure a good 
user experience.  

1. Literature Review  

Psychophysiological methods offer objective data during the experiential process, 
replacing subjective reports that are deemed to be disadvantageous due to their inherent 
obstructiveness. McCarthy and Wright's [3] theory of enhancement describes user 
experience as four threads: sensual, emotional, compositional and spacio-temporal. 
Psychophysiology uses physiological signals that are detected by electrodes attached to 
the skin, quantifying the psychological state of the subject. Because such measurement 
is not intrusive nor obtrusive, they are suitable in the case of e-scooters where user 
experience has to be quantified and measured. Specifically, we are interested in the users’ 
stress level through Galvanic Skin Responses (GSR) during the riding process. GSR also 
known as electrodermal activity, is regulated by production of sweat in the eccrine sweat 
glands, where increased sweat gland activity is related to electrical skin conductance 
level and is associated with physical arousal and often used as an indicator of attention, 
cognitive and effort [4].  

To understand the signal characteristics, statistical correlations of different signal 
characteristics and/or task-events are often performed to strengthen direct interpretations 
and/or confirm task response behaviour [5, 6]. Another popular analysis approach is 
supervised classification, where many relevant signal measures are characterized and 
used as features to discriminate between two or more internal states [7]. Correlation and 
supervised classification approaches are effective for classical stimulus-driven controlled 
tasks, where stimulus versus non-stimulus (i.e. presence of a stressor versus absence of 
a stressor) periods are defined. It is noted that during complex real-life situations, such 
as driving, there are no predefined stressor/non-stressor periods. Similarly, everyone may 
experience stressors differently at different periods of time. Hence, the absolute values 
is neglected and the deviations from the session average should be used instead.  

In the field of psychophysiology behaviour, R-squared values (linear regression) are 
typically lower than 50%. Manually removing non-linear segments of the time series can 
result in the introduction of bias into the analysis. Therefore, given the stochastic nature 
and variability of psychophysiological data, many of the methods used in studies are 
under the umbrella of machine learning [8]. One of the most essential advantages 
Random Forest has is its versatility, capable of running both regression and classification 
tasks. It is an ensemble of Decision Trees, increasing overall result because of the 
aggregation of learning models, otherwise known as the ‘bagging’ method. Another 
benefit that it offers is that random decision forests can mitigate independent decision 
trees’ tendency to overfit to the training set. Cross-validation with questionnaires are 
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eventually employed to evaluate the accuracy of models compare to actual perceived 
stress. 

To collect psychophysiological data, a biosignal measurement system is required. 
Many studies employ devices readily available commercially, constructed by established 
companies. While regarded as reputable and user-friendly, these devices tend to have 
predefined configurations that cannot be modified for data manipulation. Alternatively, 
studies have also developed their own stress measurement systems. For example, to 
maintain their continuous operability and portability, systems based on Zigbee [9] and 
Arduino platforms have been used. Most psychophysiological measurements have been 
made inside an indoor laboratory or controlled space. Even for personal mobility 
wheelchairs [10], it is possible for various equipment to be continuously attached to the 
user for medical purposes. For the context of e-scooters, these setups can also be 
intuitively infeasible because they are designed to be compact, thin and obtrusive to the 
regular e-scooter rider. Nevertheless, there had not been existing studies concerning the 
measurement of psychophysiological signals of e-scooter users.  

To measure the dynamics of the e-scooter while the user is operating, the usage of 
Inertial Measurement Unit (IMU) should be considered. The IMU is an electronic device 
that measures the acceleration and angular rate of the body along three axes using a 
combination of accelerometer and gyroscope. Integration of acceleration data to compute 
speed is possible. However, depending on the accuracy and precision of the 
accelerometer, a bias in acceleration becomes a linear error in speed and speed drift is 
compounded over long time and distances. Additional filtering such as the Kalman filter 
can be implemented to address these problems for speed computation. With an integral 
GPS module, the usage of the smartphone is considered for speed measurement. Study 
has shown that speed measurement using smartphone’s GPS data can prove to be a good 
alternative, using the OBD2 speed measurement of a vehicle as a benchmark [11].  

2. Methodology 

2.1. Phase 1: Assembly of the stress measurement device  

The stress measurement device is assembled using Seeeduino V4.2 as the core 
microcontroller, which has been in the context of measuring gaming experience 
producing reliable results [8]. It consists of 8 components, including a 6x AA battery 
holder to power, the sensors, the shields (Base Shield V2, SD Card Shield V4.0) and a 
GPS module that allows time syncing of data with the smartphone (Figure 1). The 
sampling frequency is programmed to be at 2 Hz. 

 

Figure 1. Components of the stress measurement device. 

Base Shield V2 allows for neat organisation of the hardware assembly especially 
since our setup will involve three sensors, namely GSR sensor, HR sensor and IMU. The 
shield removes the need of breadboard and jump wires, which reduces the complexity of 
wiring and therefore eliminates potential connection issues. It comprises of the necessary 
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analog connectors to be used for the GSR sensor which is an analog reader and I2C buses 
for HR sensor and IMU. One limitation of using a microcontroller is that since it 
possesses a single processing chip, multithreading will not be possible and only one line 
of code can be run at any point of time. This will introduce the processing latency during 
the datalogging, reducing sampling frequency to be less than the stipulated 2 Hz. 
Nonetheless, the variables used in the study are not time dependent, eliminating the 
concerns of computations requiring time as part of the function. 

2.2. Phase 2: Data collection for e-scooter ride 

The experiment involved eight healthy male students aged from 21 to 26 years, with 
monetary voucher incentives for participation. Participants had little or no experience in 
riding e-scooter. This is so that greater variances of emotional stress were recorded 
because of the inexperience in riding. The experiment is divided into two parts, where 
the first aims to collect a psychophysiological stress template of each participant, while 
the second aims to collect real-time data during the ride.  

First, participants had a resting (non-stress) period of 1 minute. During this minute, 
participants are also briefed about the task, which is part of the Maastricht Acute Stress 
Test [12] for inducing psychological stress. It involved backwards counting starting at 
1000 in steps of 13 as fast and accurately as possible within the time limit of 3 minutes. 
The timer was shown to be running on a screen, with the experimenter reminding the 
participant of time pressure every 30 seconds after the 1-minute mark. Negative feedback 
by halting the process was also given to participants when they make an error, and 
participants were forced to start over at 1000. 

 

Figure 2. Predefined routes and the e-scooter used in the experiment. 

Next, participants rode the e-scooter in a predefined route scouted by the author. It 
consisted of various route forms that come in 5 upslopes and downslopes, 2 right-angled 
turns, 1 roundabout and 2 different types of path (Tartan and concrete). They were meant 
to encompass a large range of kinematic quantities produced by e-scooter manoeuvres. 
The distance of the route is approximately 5.6 km, which takes an estimated 20 to 25 
minutes per trip completion. The experiment sought to retrieve ride data based on the 
user’s natural riding habit. Participants were asked to keep up with the route navigation 
personnel. A minimum distance between the navigator and the participant was 
maintained to minimise ride obstruction. 

� The e-scooter maximum motor speed goes up to 25 km/h, reaching a terminal 
speed of 28 km/h when going down slopes belonging to the route. The stress 
sensor assembly was attached at the middle of the e-scooter. The IMU was fixed 
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in the middle of the handles and on the axis parallel to the vertical support of 
the scooter. The directional vectors of the scooter are illustrated in Figure 2. 

� The psychophysiological sensors were attached to the participant and GPS data 
is also recorded using the smartphone (left with the participant) throughout the 
ride. They were removed at the end of the ride, and the participant returned to 
the lab to complete a stress perception questionnaire. 

� The stress perception questionnaire sought to retrieve user perceived stress 
when they experience certain dynamics. These include unexpected 
acceleration/braking, making turns and moving at high speeds. The results of 
the questionnaire will be used as a validation for the data model derived in the 
analysis.  

2.3. Phase 3: Data analysis and imputation 

This phase is responsible for converting raw data into a clean and ready-to-process 
dataset, used to establish the relationship between user stress and riding profile with the 
aid of machine learning algorithm. For this study where inputs are essentially the force 
and rotation within 6 degrees of freedom coupled with speed data. In order to improve 
the accuracy of actual test data from e-scooter riding, stress test under a controlled 
environment will be performed to collect a stress template prior to the test itself. 
Subsequently, controlled data will serve as the training data required as part of supervised 
learning methods that will be explored in this subsection. In addition, a partial 
dependence plot (short PDP or PD plot) will be generated when using Random Forest 
Regressor to be able to observe how each feature relates to continuous values of GSR. 
Also, applying K-fold Cross Validation (CV) by dividing the data into folds and ensuring 
that each fold is used as a testing set at some point. 

The identification of erroneous data is done by setting a constraint for both GSR and 
HR values in the test dataset. The GSR analog value has a negative correlation against 
stress, while HR value has a positive correlation. Since the calibration test was conducted 
in a laboratory setting, the first minute of relaxation will record the GSR and HR value 
when the participant in his most relaxed state. Riding an e-scooter is an activity that 
requires physical exertion and mental concentration. It is therefore surmised that GSR 
and HR values will not be able to go beyond a value such that they suggest that the 
participant is in a greater state of relaxation. These erroneous data are classified as 
artefacts and given a null value. 

The null values that replaced erroneous data will then be imputed using the MICE 
package in R. Among the several methods of imputation available, the author decided to 
use predictive mean matching (PMM) to impute these missing values. PMM can impute 
data that resembles more closely to real values which is what psychophysiological data 
demands. Empirical evaluations have determined that PMM can produce results that 
have minimal bias and in greater precision than weaker imputation models [13]. To 
model against the stress stimulus during the ride, it is important to consider the response 
time of both HR and GSR signals. GSR and HR response time for a stress stimulus takes 
up to 5 seconds for onset [14]. A 10-second (to include the possibilities of different 
response time among different individuals) moving average will therefore be used in this 
case to smooth out short-term fluctuations and examine more accurately the relationship 
between the input stimulus and output psychophysiological signals. 
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For analysis, the use of both random forest classifier and regression algorithms will 
be considered. For classification, stress template retrieved in the first part of data 
collection will be labelled into binary values, where 0 is non-stressed and 1 is stressed. 
This set of data will be used as a training set, in which the features are equivalent to HR 
and GSR values. This data is further split up randomly into train: test in the ratio of 3:1 
to verify the trained model against the test model for robustness. Once the model is 
trained, it will be applied to predict the stress value according to the same features in the 
data from the ride. The prediction values (0 or 1) will be appended to the dataset. The 
second set of data will then undergo the same process of splitting up to 3:1 ratio and 
training again. In this iteration, the classifier score, feature importance and finally a 
partial dependence plot of each feature will be determined. 

For regression, first we pass the features and the GSR values of the dataset to the 
method created for the random forest regression model. We then use the grid search cross 
validation method from the sklearn library to determine the optimal values to be used for 
the hyperparameters of our model from a specified range of values. Here, we have chosen 
the two hyperparameters; max_depth and n_estimators, to be optimized. According to 
sklearn documentation, max_depth refers to the maximum depth of the tree and 
n_estimators, the number of trees in the forest. Ideally, more trees translate to better 
modelling. After creating a random forest regressor object, we pass it to the 
cross_val_score() function which performs K-Fold cross validation on the given data and 
provides as an output, an error metric value, which can be used to determine the model 
performance. Here we have used 10-fold cross validation where the negative Mean 
Absolute Error (MAE) is taken as the error metric (specified using the scoring parameter) 
to measure model performance. The lower the MAE is, the better. Feature importance 
and partial dependence plot will also be captured. 

3. Experimental Results and Discussion 

The goal of this study was to design a data analysis method to model user experience in 
terms of psychological stress during a ride. The stress values labelled as part of the 
calibration are binary. The independent variables in our modelling consist of 7 features 
extracted from our kinematic sensors and including speed data based on our 
smartphone’s GPS. To represent it as a regression model, we seek to predict GSR values 
that will be as close to the real values as possible given a certain set of input values. To 
represent it as a classification model, we seek to predict stress (0 or 1) based on 
instantaneous HR and GSR and explore each independent variable’s importance in 
predicting stress. The predicted class will also be matched up against the actual class to 
determine the accuracy of the classification model. To illustrate what is discussed, the 
result of a random participant will be used below as an example. 

3.1. Random Forest Regressor 

For the regression model, the K-fold cross validation method provides us with the 
optimal hyperparameters, max_depth and n_estimators, such that MSE is minimised 
(Figure 3). These hyperparameters are then replicated in the RandomForestRegressor 
and trained to determine the robustness of the model. It is easy to derive that max_depth 
has a positive relationship with regression score (Figure 4). This is mostly attributed to 
the fact that the greater the max_depth, the closer the model fits to existing data. One can 
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increase the max_depth indefinitely to improve on modelling score. However, this 
introduces the problem of overfitting, models itself so closely on existing data, it fails to 
consider anomalous data and therefore models according to them as illustrated on the 
right model. This results in the inability of the model to run on new datasets to give a 
similarly ‘good’ score. K-fold cross validation prevents this from happening by tuning 
the hyperparameters enough to optimise the model by validating k subsets of data against 
each other. 

Figure 3. Modelling GSR and predicted GSR with 
cross-validated hyperparameters. 

 

Figure 4. Modelling GSR and predicted GSR 
using score-maximising hyperparameters. 

Table 1 shows the feature importance of the model determines and how much each 
prediction is attributed to each independent variable. It can be observed that Z-axis 
acceleration which is basically gravity acting on IMU, is of least importance. X-axis rate 
of turn, which is the rolling of the e-scooter does not significantly affect the stress level 
of this participant as well. The larger effectors of the participant’s emotional state are 
speed, Z-axis rate of turn (yaw/turning of the e-scooter direction) and X-axis acceleration 
(braking/acceleration). The relationship can be validated as we are comparing these 
features according to the stress perception questionnaire done by the participant at the 
end of the experiment. 

Table 1. Feature importance. 

Variable Feature 
Importance 

X Acceleration 0.158 

Y Acceleration 0.120 

Z Acceleration 0.045 

X rate of turn 0.068 

Y rate of turn 0.112 

Z rate of turn 0.165 

Speed 0.332 

 

The partial dependence plot also reveals how each variable varies with GSR while 
keeping all other variables constant (Figure 5). The red triangles illustrated attempts to 
highlight the inverse relationship between GSR and the variables. In these graphs, GSR 
is in analog form and in units of Ohm. Higher GSR translates to greater resistance, lower 
skin conductance and therefore lower psychophysiological stress. The partial 
dependence plots show that GSR tends towards the minimum as it moves towards the 
left and right of the equilibrium point. This could serve as a potential diagnostic tool to 
design personalised riding profiles based on user stress minimisation. Through the 
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Regressor model, we can establish the relationship between the features and GSR value 
in terms of the model scores, feature importance and partial dependence plots. Removal 
of features could potentially improve the modelling as well. 
 

 
Figure 5. Partial dependence plots of each variable. 

 

3.2. Random Forest Classifier 

For classification, the accuracy metric is defined as the percentage of the correctly 
predicted samples among the two classes. Like Regressor model, K-fold cross validation 
is used for hyperparameter tuning. The scoring method for cross validation is changed to 
AOC and cross validation scores ranged from 0.463 to 0.972. With the optimal 
max_depth and n_estimators at 4 and 100 respectively, the RandomForestClassifier 
score is at 0.9123. 
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Figure 6. Confusion matrix with 2 labels. 

The confusion matrix depicts how many times the predicted label matches the true 
label (Figure 6). Accuracy of 541 out of 591, the number of true positive is 535, true 
negative is 6 and false positive is 52. This model is therefore skewed towards making 
predictions that the user is stressed. Naturally, given a greater max_depth as with in 
Regressor will allow it to get a higher accuracy score. However, the author actively seeks 
to prevent overfitting since the data is understood to have existing artefacts. The score of 
0.9123 is satisfactory and cross-validation when k = 10 has accuracy ranging from 0.463 
to 0.972 with a standard deviation and mean of 0.148 and 0.723 respectively. Binary 
classification model of stress can therefore be evaluated as satisfactorily predictable. 
While both regressor and classification models have similarly good performances in 
predicting user stress when riding the e-scooter, they can be further optimised with other 
configurations unemployed in this study. 

4. Conclusions 

The studies and findings from this research have proven the added potential of using 
psychophysiological data to model user experience for different users. Machine learning 
methods Random Forest Regressor and Classifier have proven themselves to be suitable 
models to establishing the relationship between the kinematic capabilities of the e-
scooter and psychophysiological signals that translate to user stress. The use of k-fold 
cross-validation method allowed hyperparameter tuning to assure the robustness and 
optimisation of the learnt model while avoiding the overfitting of the model for 
futureproofing against new data. This pipeline of data analysis, starting from raw data 
collection, cleaning, processing and finally analysis can be easily replicated under 
different contexts to review in future psychophysiological studies for the usage of e-
scooter or even other forms of PMDs. 

Using this study, future applications develop from the possibility of incorporating 
such portable technology for real-time usage. One area of implementation would be for 
e-scooter sharing services. Embedded sensors can be incorporated in rental e-scooters to 
provide suitable and comfortable intervention when the system senses heightened stress 
levels from the user. This is made possible by IoT solutions by uploading said data to 
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cloud servers like Amazon Web Services which can then undergo a backend stress data 
analysis before sending suitable intervention instructions to ensure a better and safer user 
experience. Alternatively, the study can be utilised by businesses where e-scooter 
designs can be morphologically charted with specifications that translates to the 
kinematic quantities described (motor power, stiffness of rotation etc.). With sufficient 
data, businesses can determine the optimal range of kinematic settings that their e-
scooters should offer to appeal to the majority of the consumers. The ease and reliability 
of extracting psychophysiological signals with embedded and cloud technology will 
therefore transform the future of human factors engineering in the field of personal 
mobility device. 
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