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Abstract. Subways and other rapid transit systems are marked symbols of the 

modern metropolis. As a transdisciplinary service, accurately and safely positioning 

and tracking the metro trains helps the passengers to plan their travels and provides 
the operators with auxiliary information about the trains to enhance the metro 

system’s resilience. However, many general-purpose positioning technologies, such 

as Global Navigation Satellite Systems (GNSS) and Wi-Fi signals, do not apply to 
the situations of underground metro trains. In this paper, we propose a two-stage 

framework for automatic real-time tracking of metro cars implemented only with 

low-cost accelerometers, saving the expense for complicated infrastructures. In the 
off-line stage, reference maps are developed for station-to-station track sections 

using the onboard acceleration data. To handle the missing data and uncalibrated 

consumer-grade sensors, Gaussian process regression (GPR) is adopted to denoise 
and interpolate the online acceleration readings, followed by the application of the 

Kalman filter algorithm to track the cars in real-time with the help of the reference 

map. We tested the proposed system in Wuhan Metro Line 2, and the results showed 
that our system achieved an error below 5% in positioning. 
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Introduction 

Since its birth in 1863 in London, England, the subway has become the most efficient 

and convenient public transport means for commuters in many metropolitan areas in the 

world. And the trend of its rapid growth sustains in recent years along with urbanization 

in the emerging economies. For example, in 2019 alone, China added over 800 

kilometers to the mileage of its subway systems. There are many critical applications for 

the real-time positioning and tracking of metro trains, including control and positioning 

of repair trains (and other engineering vehicles), autonomous locomotives, collision 

warning systems, diagnosis and maintenance of abnormal defects, etc. In the meantime, 

the passengers are keen to know their whereabouts after getting on board for many 

possible reasons. However, even given its role to ensure the safe and efficient operations 

of the metro systems, the real-time positioning and tracking of metro vehicles remain a 

challenging problem. 

Conventionally, most vehicular positioning systems rely on global navigation 

satellite systems (GNSS) such as the global positioning system (GPS) to provide the 

basis for positioning, navigation, and timing (PNT) services. Regardless of the advantage 

of high precision, high-speed, and availability in all-weather, the GPS-based positioning 
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suffers in complex environmental conditions (e.g. tunnels and forests). However, a 

majority of metro lines contain a large portion of tunnels. As an alternative, the inertial 

measurement unit (IMU) also serves as the fundamental sensory technique for mobile 

objects’ positioning. In particular, the high-precision IMUs provide proper localization 

and good autonomy at an extra cost. The advances in micro-electro-mechanical systems 

(MEMS) brought the trade-off between performance, size, and cost, making the 

acceleration sensors integrated into today’s mainstream smartphones. Due to their 

affordability, we may install consumer-grade IMUs on the metro cars to collect the data 

needed in the positioning applications. 

Data fusion of multiple sensor signals proves to improve the positioning 

performance by compensating for the drawbacks of a single sensor. Autonomous 

vehicles usually take advantage of a collection of sensors, like GPS receivers, frontal and 

lateral video cameras, LiDARs, and many more [1]. In addition to heterogeneous sensors, 

a priori knowledge can also be integrated to achieve higher positioning accuracy. Various 

forms of maps and visual landscapes give critical information to adjust the sensor’s 

prediction. Kalman filter algorithm and particle filter algorithm are two widely used data 

fusion techniques. Aiming at reducing the uncertainty of error covariance and state noise 

in the system, the Kalman filter integrates the model-based prediction and the state 

measurement. [2] introduced a sensor fusion method for unmanned surface vehicle 

navigation based on fuzzy adaptive Unscented Kalman filter (UKF).  [3] surveys the 

research on train positioning with the fusion of GNSS, INS, and Doppler radar signals. 

Also, surveillance images help to detect the position of a vehicle and can be integrated 

into the tracking system [4]. Recent research showed the application of some deep 

learning models in vehicle positioning, and [5] specifically examined the problem of 

inertial system drift with the help of a deep neural network. 

Unlike other solutions that depend on the fusion of several different types of sensors 

(for example, making available extra information in case one type of sensor fails or 

severely degrades), in this investigation, we develop a metro car tracking and positioning 

framework using only low-cost MEMS acceleration sensors. The acceleration readings 

collected by the low-cost IMUs usually contain significant noise, are compromised by 

nonlinear gains, and suffer zero-shift errors. To solve these problems, we collect the data 

from multiple sensors for redundancy to alleviate the negative impacts in the absence of 

expensive labor-demanding sensor calibration. More specifically, we face two major 

challenges in the tracking of metro cars: first, the sensory readings are susceptible to 

unreliable wireless link and might be missing from time to time; second, it is impractical 

to obtain the real-time speed and distance observations in a realistic operating metro 

system, and thus we can only find sparse feedback information at the stations. The main 

contributions of our work include: by placing Bluetooth Low Energy (BLE) beacons at 

the station platforms, we develop a framework to track the relative displacement of metro 

cars between stations, using only the accelerometer readings; to handle the problem of 

lacking real-time speed and distance measurement, we design a simple reference map 

learned by optimization with the observed acceleration data and the fixed terminal 

conditions on velocity and displacement. The fusion of IMU data and map matching 

improves the positioning performance. 

The rest of this paper is organized as follows. In Section 1, we briefly review the 

recent development in the related areas; and then in Section 2, we introduce the denoising 

and tracking algorithms along with the creation of the reference map. Section 3 discusses 

the setup of the experiments, data acquisition, and experimental results. Section 4 

concludes the current research and provides remarks on our future investigation.  

C. Zhou and G. Shen / Tracking Underground Metro Cars with Low-Cost Acceleration Sensors244



1. Related Work 

A positioning and tracking system allows its users to estimate an object’s location within 

a constrained space, with the help of a variety of sensors including those embedded in 

smartphones and other mobile devices. In typical outdoor environments, GPS has found 

extensive success in locating stationary and moving objects [6]. In a challenging 

environment where the GPS signal does not work well, or some special needs have to be 

satisfied, IMU provides complementary or alternative solutions, without the need for 

expensive infrastructure. Since MEMS has made remarkable progress recently, IMU 

becomes an important component in many positioning applications. But the IMU is 

susceptible to measurement noise, external disturbances, and needs integration over time 

to estimate the speed and distance states, so the system relying on IMU alone suffers 

from accumulative errors. Therefore, people exploit particular forms of learned 

knowledge together with the IMU measurement to jointly improve the positioning results 

[7]. Visual features, magnometers, and maps help correct the estimation drifts of the IMU 

[8, 9, 10]. [11] proposed to track the surface train by integrating the BeiDou navigation 

satellite system and an inertial navigation system and taking odometer and track map 

matching to compensate for the INS degradation and the blocked BDS signals.  

Indoor positioning scenario extends the selection of sensor technologies: Wi-Fi, 

BLE, UWB, light, and ultrasound signals all bear the underlying information for distance 

estimation. While some parameters like Angle of Arrival and Time of Arrival need a 

specialized device to analyze, Wi-Fi and Bluetooth Received Signal Strength Indicators 

can be detected by regular smartphones [12, 13]. Fingerprinting maps the radio signal 

strengths to the coordinates of a location. Once the offline radio map gets established, 

matching the observed RSSIs with the entries in the fingerprints generates the online 

position prediction. 

Both Gaussian process regression and Kalman filter are Bayesian approaches that 

learn the uncertainty from the temporal samples and derive the optimal decision based 

on statistical assumptions [14, 15]. In [16], the authors adapted GPR to denoise the CT 

images taking advantage of the temporal labels. While the non-parametric nature of the 

Gaussian process makes GPR apply to plenty of functions, the computational load grows 

fast when the data size increases. [17] introduced a recursive version of GPR, enabling 

the online regression incorporating new data. By iterative model-based forecast and data 

assimilation, the Kalman filter facilitates the integration of the information from different 

sources, and thus applies to the fusion of sensor data and other evidence reflecting the 

states of interest. The classic Kalman filter theory makes assumptions on the linearity of 

the system dynamic and Gaussian distribution of the errors. As the Kalman filter variants, 

extended Kalman filter (EKF) and error-state Kalman filter (ESKF) propagate the state 

distribution by the first-order linearization of the nonlinear system [18]. On the other 

hand, the Unscented Kalman Filter (UKF) is a derivative-free alternative only using a 

deterministic sampling approach to represent the state distributionwith a set selected 

sample points [19, 2]. Various forms of the Kalman filters are extensively used in multi-

sensor fusion for positioning and tracking applications. To overcome the problem of high 

nonlinearity, in [5], the authors proposed a multi-sensor fusion algorithm for underwater 

vehicle localization by a radial basis function (RBF) neural network augmented ESKF.  

Though people have made solid progress in tracking and locating mobile objects, 

most solutions in the related research rely on multiple advanced sensors to obtain reliable 

measurements and sophisticated site survey for the reference fingerprints. 
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2. Proposed Method 

2.1. System Architecture 

Table 1 summarizes the workflow of the proposed underground metro car tracking 

system. The system's hardware consists of the accelerometers, Bluetooth Low Energy 

(BLE) beacons, and the onboard computer equipped with a BLE probe. Several 

IMU/BLE devices are attached to the interior walls of a metro car. Each IMU sensor 

samples the three-dimensional accelerations at a predetermined frequency, and the built-

in BLE unit then broadcasts the readings. On the platform of each station, separate BLE 

beacons are fixed to identify the station.   

Instead of estimating the train’s absolute position through complex measurement 

infrastructure, in this study, we only attempt to determine the train’s location relative to 

its previous full stop at a station using the low-cost accelerometers. To simplify, we treat 

a subway train as a longitudinal rigid body and further approximate a car as a particle. 

Then the moving train is constrained by a one-dimensional track. Therefore, we only 

need to solve a one-dimensional dynamic problem, i.e., finding the trains’ displacement 

and velocity. Given the subway track details, this one-dimensional solution can be 

converted to a three-dimensional earth frame, and then the train can be marked with the 

absolute coordinates. In the data acquisition setup, the sensors periodically send the 

three-axis acceleration data through BLE connections to a smartphone or a computer for 

processing. In a realistic situation, the passengers might be blocking the wireless signal’s 

propagation paths in a crowded metro car. Because the BLE broadcast is prone to 

interference, there is no guarantee that the probe receives every message transmitted by 

the BLE beacons. Therefore, besides the measurement noise and variable zero shifts, we 

also need to handle the data-missing problem. Assuming the underlining properties about 

acceleration’s smoothness and continuity, as shown in Figure 1, we apply Gaussian 

process regression (GPR) to interpolate in case of missing data. Additionally, we adopt 

the Kalman filter algorithm to handle the inertial drifts and estimate the train’s states by 

look up the speed and displacement references in a learned map. 

Table 1. Metro car online positioning algorithm 

Inputs Offline reference maps for all subway sections 

Step 1 Section identification: read platform beacon’s ID, find the corresponding 

section 

Step 2 Model-based prediction: use the current GPR result as input to the 

dynamic model, update the state estimates 

Step 3 Map-matching: use the segment of historical and current data to search 

for the closest reference point, return the matched result 

Step 4 Fusion: apply Kalman filter to update the state prediction and parameters 

Outputs Predicted state values 

As stated before, we deploy just a simplified type of IMUs (without gyroscopes) in 

the positioning and tracking of metro cars to save cost. Since the sensors only measure 

the three-axis accelerations at low precision, different sensors may disagree on the 

estimates of velocity and displacement as the accumulative errors grow over time. To 

obtain a better system state estimation, we need to introduce an independent feedback 

mechanism to provide additional evidence on the train’s location. The metro operator 
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has to comply with a strict protocol to serve the public, and therefore a train properly 

running between two stations stays in three modes: accelerating, maintaining, 

decelerating. Each stage presents a similar pattern that will be repeatedly followed in the 

same subway section. We take advantage of these patterns to find the train’s mode for 

the improvement of state prediction. However, since it is unrealistic to survey the running 

trains for state annotations, we derive the reference patterns by optimizing the functionals 

satisfying the terminal conditions as well as being in line with the observed data. 

2.2. Gaussian process regression and signal preprocessing 

Gaussian process regression is a machine learning method using nonparametric models 

based on strict statistical theory instead of specific domain knowledge. Using Gaussian 

process regression for interpolation, not only can we predict the optimal acceleration 

value at each time instant, but we can determine the uncertainty of the data as well. As 

required by car tracking, we need to estimate the longitudinal acceleration value . 

First, a set of data measured by the IMUs is selected. Then, this data set is taken as the 

training set of Gaussian process regression, to denoise the original signal and interpolate 

for the missing ones. 

The critical component in Gaussian process regression is the covariance among 

variables. The most common forms of covariance functions include Gaussian kernel, 

linear kernel, and periodic kernel. In this paper, we use the Gaussian kernel functions in 

the following form: 

, 

where parameters  and  controls the shape of the curve fitting the observed data points, 

in particular, the scaling factor  influences the curve’s smoothness. 

Gaussian distribution can be used to estimate the mean value and covariance, and 

the mean value is taken as the predicted longitudinal acceleration value at each moment, 

and the covariance is taken as the uncertainty. 
  

where  represents the mean function, returning the mean value of each dimension; 

 is the covariance function, representing the correlation of data points.   

2.3. System dynamic model  

Let , , and  represent the displacement, velocity, and acceleration of the 

metro car respectively at time instant ; let  and  represent the system noise 

contained in the displacement and velocity at time ; and denote the sampling period . 

The state can be modeled in the vector form: 

  

We rewrite the state equation as, 
  

where the state vector ,  is the state transition matrix 

from time point  to instant . Given the current state and the measured acceleration 

value, we may derive the next state prediction using the system model. 
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2.4. Reference map generation and online matching 

Since there is no direct measurement available for the car’s velocity and displacement in 

between two stations, we have to find an additional estimation of  and  

independent of the ones predicted by the model. Moreover, for the same reason, we 

cannot take fingerprinting-like site survey on a running train. Alternatively, we generate 

a reference state-acceleration map for the subway section between two consecutive 

stations using an optimization scheme. 

Let  be the measured acceleration data in a section, we 

know that the state starts at  and the velocity goes back to 0 after a train comes to 

a full stop. In our system setup, the BLE beacons installed on the platforms give us a 

clear indicator of a station’s identity. Denote the unknown reference states as 

. Hence we have the terminal conditions 

 and , where  is the known distance between two 

stations.  Within all functionals , we require the reference to hold a few important 

properties: smoothness, conforming to the observation and meeting the terminal 

conditions. 

Consequently, we find the values  for by optimizaing the constrained quadratic 

form: 

  

where  is the state propagated by the model using ,  is the Gaussian weighted 

average of the reference states in a specified time interval, and parameter  balances the 

importance of data term and smoothness term. This quadratic problem can be solved with 

the simple matrix operations. 

We project the data in  into a -dimensional delayed coordinate phase space  to 

make the data points spread in that space. 

The movement of the train is divided into three portions along the time axis: speed-up, 

gentle change, and slow-down. The center of each portion is calculated then. In the online 

stage, we first find the coarse match of the measured data by searching the shortest 

distance to the portion centers; subsequently, we refine the match by the shortest distance 

to a phase space point within the selected portion. The state in  corresponding to that 

point is returned as the state estimation. Now we have established a reference map for 

the section as a mapping . 

In practice, the two-step reference map lookup requires little computation and 

storage because a subway section contains the observation data sampled at low frequency 

in the period lasting only a couple of minutes.  

2.5. Kalman filter and data fusion 

Kalman filter is a recursive linear estimator. Relying on the periodic observations of 

the state, it continuously estimates the state value changes over time. The recursive steps 

involved in the Kalman filter algorithm of distance and speed estimation include: 

predicting the new state using the dynamic model and the previous state; then using the 

reference map match result to correct the prediction for the optimal estimation of the next 

state; finally updating the parameters in the dynamic state equation. 
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Then Kalman filtering can be expressed as the following process: 

(1) Temporal updating 
  

  

(2) Measurement updating 
 

 

 

where,  represents the predicted value of the state based on information 

available at time ,  is the Kalman gain, and  represents the error 

covariance with respect to ;  is the estimation error variance matrix 

at time ;  is the sensor measurement matrix,  stands for the identity matrix, and 

 represents the reference map matching values at instant . 

The positioning and tracking routine works as follows: given the initial state  

of the metro car and the arbitrarily set initial error , the optimal state estimation 

 is achieved with the update of Kalman gain  based on the sensor 

measurement. As mentioned earlier, the consumer-grade low-cost sensors may have 

different uncalibrated zero shifts, therefore, we deploy multiple sensors at the same time, 

and take the average value of the online GPR processed reults as the acceleration input. 

3. Experiment Results 

We tested the tracking system in Wuhan Metro Line 2. Wuhan Metro Line 2 is the first 

metro line crossing the Yangtze River via a tunnel in China. Wuhan Metro Line 2, 

starting from Tianhe Airport Station and ending at the Fozuling station, has a length of 

60.8km, with 38 stations in total. The number of daily average passengers is over 100,000. 

Four low-cost MEMS accelerometers with built-in BLE transmitters were attached 

to the walls inside a car. A laptop computer connected with a signal receiver (probe) was 

used to collect the acceleration data. Both accelerometers and BLE units were 

commercial off-the-shelf products. In the experiments, three accelerometers were 

installed in the front, rear, and middle of the car on the same side, and the fourth one was 

installed in the middle of the car on the other side. The tests were carried out in 24 

sections (between 25 stations).  Throughout the experiments, we set the sampling 

frequency of the accelerometer to 1 Hz. To verify the effectiveness of this method, we 

conducted field tests in Wuhan Metro Line 2 and placed the beacon on the platforms of 

all stations of line 2 to identify the stations. The field tests were performed between 

December 2020 and March 2021 at different times of the day, and on different days in a 

week. In the actual experiments, our probe might fail to receive all data from a single 

beacon, but the redundancy in multiple sensors ensured at least one measurement be 

successfully received per second. 

Figure 1 displays the GPR smoothing result for a sensor's measurements in a section. 

The stages were partitioned by the end and the start of the steepest slope representing the 

beginning of decelerations. In Figure 2, we can find that the averaging outcome of the 

multiple sensors' readings has almost corrected the zero drifts. The coarse match of the 

reference map depends on the comparison of distances from the current IMU data to the 

centers of learned modes. By projecting to the high-dimensional space, each point in the 

phase space represents a segment of acceleration history. 
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Figure 1. GPR result for a single sensor (acceleration in , time in second) 

 

Figure 2. Sensor measurments and the GPR result  (acceleration in , time in second) 

 
Figure 3. Phase space representations of points in different stages (only showing 3 dimensions) 

 
Figure 4. Reference displacement (m) and velocity (m/s) 

Figure 3 shows that the points in different modes spread over a big area except for 

those in the speed-maintaining stage. In Figure 4 are the reference maps for speed and 
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distance. There was a fluctuation in periods for the trains running between two stations, 

as found in our tests. 

As illustrated in Figure 5, the model-based prediction depending only on IMU drifts 

severely over time. The fusion of IMU and reference map matching helps contain the 

estimate errors. 

 

Figure 5. Prediction errors of displacement (m) and velocity (m/s) 

Table 2. The predicted states at the end of each section 

Section 1 2 3 4 5 6 7 8 

v (m/s) Predicted 0.03 0.26 0.09 0.15 0.06 0.19 0.28 0.08 

s (m) 
Actual 
Predicted 

1021 

975 

1999 

1957 

1603 

1582 

2038 

2066 

1059 

1050 

1487 

1464 

1368 

1315 

817 

815 

 

Section 9 10 11 12 13 14 15 16 

v (m/s) Predicted 0.05 0.65 0.43 0.25 0.12 0.05 0.23 0.19 

s (m) 
Actual 
Predicted 

1009 

982 

1317 

1251 

1442 

1395 

794 

800 

1613 

1577 

951 

936 

1238 

1202 

1418 

1386 

 

Section 17 18 19 20 21 22 23 24 

v (m/s) Predicted 0.01 0.23 0.16 0.01 0.33 0.39 0.44 0.16 

s (m) 
Actual 
Predicted 

966 

953 

1168 

1112 

930 

905 

966 

953 

3292 

3205 

897 

889 

1543 

1499 

946 

922 

In the experiments, we randomly picked the data collected from one trip as the 

training set to learn the reference map and tested the proposed online tracking algorithm 

with the rest of the data. The cross-validation results listed in Table 2 indicate that the 

data fusion framework presented a distance estimation within a 5% error range, and the 

predicted velocity was close to 0 when the train stopped (with RMSE of about 0.4m/s). 

4. Discussion and Conclusions 

In this work, we proposed a framework for tracking underground metro cars, which can 

be extended into similar scenarios like a coal mine. Tracking and positioning metro trains 

are the foundation for many location-based services, including assisting the decision-
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making for the metro operators. Real-time positioning requires a balance among several 

factors, most importantly, cost and performance. In the proposal, we only deployed the 

consumer-grade low-cost acceleration sensors and BLE beacons in cars and on platforms. 

To confront the accumulative errors introduced by IMU and the dynamic model, we 

designed a reference map that took advantage of the train’s moving patterns in a between-

station track section. By applying a simple Kalman filter to integrate the model-IMU 

prediction and the map-matching outcome, we achieved a positioning accuracy at the 

error below 5% on arriving at the next stop. In the future, we will focus on improving 

the dynamic model and refining the online reference map for better tracking results. 
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