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Abstract. Ultra-light unmanned aerial vehicles (UAV) benefit from use of 

composite materials due to weight savings and ease of manufacturing for piece 

production. However, complex shape and internal structure of wings limits the use 
of hand calculations that can be employed to optimize the structure. Therefore, 

design process can greatly benefit from the FEM (Finite Element Method) 

calculations coupled with CFD (Computational Fluid Dynamics), composite 
mechanics and composite failure theories. This multi-physics approach allows to 

accurately describe behavior of a wing during flight. Due to nonlinear response of a 

system after changes in wing design and flight characteristics, we present a method 
of optimization using artificial neural networks. This allows to accurately describe 

influence of given parameters on the stress and strain distribution as well as reduce 

number of design points. Material data has been gathered from experimental tests of 
simple specimens. Based on this data more complex elements were designed using 

FEM and tested experimentally in order to validate numerical calculations in a 

transdisciplinary rapid prototyping exercise. Advanced failure criteria not only 
predicted failure but also failure mechanism, thus catastrophic failure can be 

prevented. In the future this multi-physics approach can incorporate numerical 

analysis of manufacturing and curing process therefore reducing need for 
experimental validations. Further development of neural networks will lead to them 

being directly implemented into FEM codes. 
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Introduction 

The design process of modern ultra-light unmanned aerial vehicles (UAV) in smaller 

companies, that develop and manufacture single series aircrafts, begins by hand 

calculations. Calculations are backed by standards and recommendations, but in many 

cases aircrafts that are being designed do not fit in those design brackets. Combined with 

the fact that aerodynamic forces acting upon wings are hard to predict and that UAV are 

made out of sandwich-structured composites which deform nonlinearly makes design 

process an ideal place to introduce Finite Element Method coupled with a optimization 

scheme.  

This is particularly important for ultra-light structures, such as the High Altitude 

Long Endurance Unmanned Aerial Vehicle Twin Stratos (HALE UAV TS) family (Fig. 
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1), which includes the TS12 and TS17, being built by the scientific and technical 

consortium [1]. TS is a UAV in a double-hull with A-type tail. The drive is made of 

electric motors and the hybrid power source is photovoltaic cells connected to a buffer 

lithium-ion battery. The distinguishing features are: very large size and low weight, 

which forces the use of a special design methodology including energy optimization 

through the use of Model -Based Design, the use of ultra-light construction. The design 

methodologies used in this case were tested by consortium members in aviation [2, 3] as 

well as automotive [4] and robotic [5] applications. Design methods for thin-walled 

structures, on the other hand, were implemented through the use of generative design [6]. 

The structural optimization of the structure is a particular challenge.  

In this article we present a way of overcoming difficulties associated with FEM 

calculations, mainly focusing on reducing calculation time and number of calculations 

needed to land on optimal design. Previous works [7-10] show multiobjective 

optimization where ply-order, ply-number and slight changes to geometry were analyzed. 

This work extends complexity of composite structure analysis by including more failure 

criterions, better suited for this specific case according to [11], as well as combining 

multiple load cases in one optimization scheme. Another improvement is the use of 

nonlinear material behavior based on experimental data. Composite structure has been 

recreated in ANSYS ACP software as it supports number of most used failure criterions 

and advanced fiber orientation tools [12]. Being part of ANSYS product family it also 

benefits from seamless integration with FEM solvers such as ANSYS Mechanical and 

LS-DYNA. For optimization process LS-OPT software was used [13]. Coupling between 

FEM and optimization calculations was achieved using Excel spreadsheet, thus 

minimizing the need for self-developed scripts to a minimum. Neural networks were 

used in this work due to inability to fit response surfaces based on polynomial functions 

to design points [14]. The overarching goal of this paper is to increase strength of wing 

structure without drastically increasing its mass as to allow unlimited flight duration at 

the altitude of 20 km resulting from the positive energy balance of the power supply 

system. 

 
 

Figure 1. Geometry prepared for optimalization in ANSYS SpaceClaim. 
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1. Methodology of numerical calculations  

Hand calculations can only roughly predict magnitude of stresses in a wing structural 

members, thus requiring large factors of safety when choosing their size and location. 

However modern lithium-ion batteries do not possess enough energy density to justify 

implementation of such high factors of safety. One of more economical solutions for 

acquiring accurate stress distribution is to use numerical calculations based on Finite 

Element Method. Those numerical calculations are grounded on set of assumptions and 

simplifications. Their goal is to approximate real life model behavior using least 

computing power together with minimizing time needed to prepare calculations. This 

however requires adequate experience and know-how frequently coupled with 

debugging process. The reason is that advanced numerical simulation preparation 

process has not been streamlined and there are large differences between each process. 

Wing design simulation is especially prone to errors resulting from bad numerical 

modeling as it requires combination of multi-physics calculations (one way coupling 

between fluid and wing structure) with advanced material models that need to be 

calibrated by experiments.   

1.1.  Starting geometry 

Starting geometry was received from researchers tasked with developing preliminary 

structural design. Weight and location of electric equipment was received from another 

group of engineers specializing in electric propulsion. First step in reduction of amount 

calculations needed is clever geometry preparation. Due to existence of symmetry plane 

geometry can be reduced in half. Wing structure is made out of multiple material layers 

that do not have uniform thickness across whole wing. Instead of modeling the thickness 

as a geometric feature it can be included in material definition of each composite layer. 

Therefore, wing structure is modeled as a thin shell. This approach is only valid for 

structures where thickness is much smaller than width and length as well as radius of 

curvature being reasonably large. Any instrumentation located inside the UAV was 

reduced to point mass and connected to wing structure in a way that does not arbitrarily 

increase stresses around a connection. 

1.2. Aerodynamic data 

In order to fully understand the response of a wing during a flight data from most critical 

flight phases has to be gathered. This data can take a form of static pressure distribution 

over a wing and hull computed using CFD (Computational Fluid Dynamics). Three 

different flight phases have been calculated by aerospace engineer, where values of wing 

angle of attack and UAV horizontal speed were taken from standards. Table 1 shows 

those values. 

Table 1. Flight parameters for different phases. 

Name of phase  Speed [m/s] Angle of attack [deg] 

Max speed  37,95 0 

Max angle of attack  10,97 14,9 

Upside down  24,81 7,45 
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Calculations have been carried out in ANSYS Fluent which is leading software when it 

comes to CFD. Because the analyzed fluid was air at normal conditions the flow is 

turbulent and adequate turbulence model had to be chosen. Most commonly k-ω SST 

turbulence model [9] is used, that uses blending function to apply k-ε model at domain 

inlets, k-ω in a vicinity of walls and blends those models in space between those 

boundary conditions. Meshed domain included enough space in front and after the UAV 

to allow stream stabilization and eddy formation. Additionally polyhedral mesh was 

generated to reduce number of cells. In order to properly capture boundary layer, that is 

responsible for pressure and viscous forces acting upon the wing, inflation layers were 

used. Results of static pressure distribution for max angle of attack flight are presented 

on figure 2. 

 

 

 

Figure 2. Static pressure distribution over UAV for max angle of attack flight.

 

 

 

1.3. Parameter identification 

 

The need for experimental material 

parameters for composite materials is 

higher than for metals due to significant 

influence of manufacturing process on 

resultant material properties. In this paper 

we present semi-automatic method of 

acquiring material data form tensile testing 

by curve fitting using LS-OPT functionality 

coupled with calculations in LS-DYNA. 

Multiple tensile tests of simple rectangular 

specimens with different fiber directions 

were performed by group of researches 

specializing in composite manufacturing 

and testing. Each test produced a  

Figure 3. Experimental specimens and 

corresponding numerical model. 
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unique stress-strain plot. Those plots were then imported into LS-OPT and numerical 

models imitating real samples were prepared. By optimizing numerous parameters using 

different fiber direction simultaneously it was possible to acquire one set of material 

input parameters. Figure 4 shows LS-OPT flowchart that uses two different fiber 

orientation analyses and iterative optimization scheme. 

 

Figure 4. Flowchart for composite parameter identification. 

1.4. Failure theories 

Failure analysis of composites is significantly more complex than for isotropic materials 

due to multiple failure modes and orthotropic material behavior. This fact leads to large 

number of available failure criteria. It is the engineer's duty to correctly select adequate 

criterion or to apply multiple criterions simultaneously. Structure of a wing presented in 

this paper consist of Carbon/Epoxy woven a unidirectional composites and sandwich 

structure composites with honeycomb core and Carbon/Epoxy face skin. One of the 

objectives of optimization is making sure that most likely failure mode will not lead to 

catastrophic failure. Therefore Tsai-Hill and Tsai-Wu were excluded as they do not 

differentiate between different failure modes. Because of moderate curvature on most 

critical parts of wing the Puck 2-D failure criterion was chosen. To evaluate sandwich 

composite behavior additional face skin wrinkling and core failure criterions were added. 

As a result, it was possible to predict 7 different failure modes. The preferable failure 

mode in tension was fiber failure and in compression it was face wrinkling. 

1.5. Mesh generation and calculations 

Shell mesh with quadratic shape functions was generated once and used for every 

calculation. As a result, big chunk of computational time was saved. Due to complex 

shape of some bodies small percentage of mesh used triangular elements although 

quadrilateral elements are strongly recommended. Mesh sensivity study was performed 

to generate coarsest mesh that did not differ in results from very fine mesh more than 

5%. As a result, number of elements was decreased from around 2 million to only 130 

thousand. This approach was combined with densification of mesh in areas with high 

gradients of stresses. Nonlinearities in the model exist in form of geometric and material 
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nonlinearities, thus Newton-Raphson method was used to iteratively solve each case. 

This significantly increases calculation time but getting good quality results without 

including nonlinearities is impossible. Each case took approximately 90 minutes to solve 

on machine using 4 core Intel Core i7-6700HQ 2.60GHz CPU and 16 GB of RAM. 

2. Optimization  

2.1. Rule-based parametrization 

ANSYS ACP allows many different ways to change layer stackup, composite layer 

thickness, fiber orientation and layer connections. In order to minimalize number of 

variables rule-based parametrization was used. This approach is based on generating 

virtual 3D entities or importing geometries from external sources, that combined with 

Boolean operations can select arbitrary set of elements. Figure 5 shows combined planar 

and tube rule-based element selection which was parametrized to change width or length 

of green stripe. This stripe was then used to lay additional unidirectional carbon 

composite layer. By combining rule-based parametrization with shell elements it was 

possible to completely skip mesh generation step. In order to control fiber direction in 

each optimized layer Excel spreadsheet was used with added functionality of logical 

operators. 

 

 

Figure 5. Rule-based element selection example. 

 

2.2. Design parameters 

Crucial point of every optimization calculation is identification of input and output 

parameters that are important in terms of their influence on analyzed model and set of 

goals that have been established. As a results of material types and parameters being 

imposed in advance as well as approach that does not allow changes in location of ribs, 

spars and modifications to airfoil profile this task was somewhat facilitated. Nevertheless, 

almost infinite number of layer stackups, fiber orientations and rule-based selections was 
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possible. It was necessary to make some input parameters dependent on one another and 

make sure that physically impossible combinations were eliminated (for example a 

stackup layer where two plies are separated by void). Also rule-based selection shapes 

were reduced to simple rectangular areas as to further cut down on parameter number. 

Output parameters included most likely to occur failure mode, area of carbon/epoxy 

composite, number of elements that fulfill one of failure criterion in more than 90% and 

maximum vertical displacement of hull and wing tip. Figure 6 shows integration of each 

used module inside ANSYS Workbench together with imports of external pressure data 

generated from CFD calculations and integration of Excel spreadsheet that is used to 

exchange data with LS-OPT. 

 

 

Figure 6. Graphical workflow representation in ANSYS Workbench. 

 

2.3. Neural networks 

In general, neural networks can be thought of as computing devices consisting of 

numerical units called neurons that are connected to each other in very specific way [16]. 

Each neuron can be located on so called layer shared with other neurons and connected 

to neurons in layer above and below. Those connections have specified weights and 

biases that change during “learning” based on information from training algorithm. In 

this case training algorithm steered network parameters towards minimizing mean 

squared error between generated response surfaces and design points. Quality of training 

data greatly affect accuracy of generated response surfaces thus all previously mentioned 

steps were taken to minimalize numerical error that can occur due to badly prepared 

model. The minimal number of data points required for network training is related to the 

unknown complexity of the underlying response surface [16]. A large number of designs 

can lead to so-called “curse of dimensionality”. In case of this optimalization task we 

observer a large number of input parameters that do not significantly influence output 

parameters, as a result neural network-based approach performed better than one based 

on polynomial approximation due to ability to set outgoing weights from a particular 

input to zero, thus effectively ignoring this input parameter. Goodness of fit plots for 

neural network method and polynomial approximation method are given in figure 7. 
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Figure 7. Goodness of fit plot. 

 

2.4. Results 

Numerical calculations have shown that case regarding flight with maximum speed and 

zero angle of attack generates highest stresses and wing tip deformation. Optimization 

has produced three design point candidates in which most likely failure mode is face 

wrinkling on bottom part of the wing, and maximum value of failure criterion is around 

90%. Carbon/Epoxy composite layers on spars have been drastically rearranged but total 

area increased only slightly. Maximum wing tip deformation for max speed case has 

been reduced from 226 mm to 77 mm. Figure 8 shows comparison between starting 

design and one of design point candidates. Note that displacements were scaled 5 times 

for ease of comparison. 

3. Conclusion 

The presented method enables relatively easy optimization of complex composite 

structures without the use of high computational power. It takes into account structural, 

material, aerodynamic and flight mechanics aspects. In addition, the results are easily 

interpreted, which significantly increases the sense of understanding the phenomena 
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occurring during the operation of the UAV ANSYS ACP and LS-OPT are both very 

powerful tools that enable even unexperienced users to prepare complex numerical 

models and advanced optimization analysis. Performed numerical optimalization proves 

that it is possible to significantly improve UAV wing design without large geometric 

changes. It also shows that wing design parameters do not exhibit linear dependence, and 

their influence is hard to predict. The use of neural network approach for surface response 

generation is justified due to inability of standard polynomial approximation to generate 

satisfactory results. This work can be further expanded by including geometry 

transformations coupled with mesh morphing. Also honeycomb internal structure can 

incorporated into input parameters. Final and most difficult to achieve extension of this 

approach would be incorporation of CFD calculations for airfoil shape and dimensions 

optimization. Optimization of wing structure is only part of a larger project aimed to 

develop High Altitude Long Endurance Unmanned Aerial Vehicle called Twin Stratos 

[1]. This project is highly transdisciplinary and involves many stakeholders who 

specialize in fields such as aerodynamics, aviation, electric propulsion, electronics, 

structural design, material engineering and more. Optimized layer locations and 

orientations, as well as locations of high stress within structure will be passed back to 

researchers mentioned in subsection 1.1 for further processing and will lead to changes 

in structural design. Twin Stratos UAV is expected to serve as a platform for various 

types of sensors enabling the measurement of atmospheric pollutants both during the day 

and at night. As fossil fuel suppliers in Europe are being promptly replaced, it will be 

beneficial to observe how different grades of fuels from individual suppliers influence 

air quality over Europe. 

 

 

Figure 8. Displacement map for initial (top) and optimized (bottom) model. 
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