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Abstract. Some high-level technical products are associated with transdisciplinary 

simulation-driven design processes. Therefore, their design process involves many 
stakeholders and is prone to frequent changes, leading to a highly iterative process 

with a long lead time. Despite the decades of statistical approximations and 

metamodeling techniques on prediction models, companies are still striving to 
achieve fully automated real-time predictions in early design phases. The literature 

study shows a gap in existing methods such as not being fully real-time or suffering 

from high dimensionality. This paper presents a generic model for the development 
process of such described products and motivation for such modeling through a 

series of semi-structured interviews with an automotive sub-supplier company. The 

proposed process model points to the digital verification in every design loop as the 
bottleneck which is then confirmed by interviewees. As alternative solutions to 

overcome the problems, a method for data-driven and real-time prediction models 

is presented to enable the designer to foresee the consequence of their decision in 
the design phase. To evaluate the method, two examples of such real-time meta-

modeling techniques, developed in an ongoing research project are discussed. The 
proposed examples confirm that the framework can reduce lead time spent on digital 

verification and therefore accelerate the design process in such products. 

Keywords. Data-driven, Prediction models, Design automation, Simulation-driven 

design, CAD/CAE 

Introduction 

For many industries, long development lead time has been one of the critical issues, and 

reducing this time has been a goal for decades. For instance, by the late 1980s, leading 

Japanese auto firms (most notably Toyota and Honda) were developing major new car 

platforms in 36 months and replacing existing product generations every four years. 

European and US auto firms were taking approximately 60 months to develop similar 

products, expending considerably more resources and replacing existing product 

generations every eight or more years [1]. This rapid development gave the leading 

Japanese firms significant advantages in forecasting consumer preferences and offering 

newer designs (on average), faster paybacks, and more innovative products incorporating 

newer technologies [2].  

The development lead time has been also aggravated by the emergence of some 

high-level technical products that are highly dependent on digital engineering tools in 

their development process. For these products, virtual models and simulations are the 

only means of validation before production [3]. Simulations range in a broad spectrum 
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with different granularity levels, from the simulation of a component under a specific 

load, contact, and boundary conditions to the process simulation in product development 

loops. Simulations are usually considered where observing the real-world case is 

expensive or impossible, where analytical solutions are too complicated, or costly to be 

validated. The granularity level of a simulation is coupled to its model, which is defined 

as a simpler representation of a system and is used to study the behavior and performance 

of a system, for instance, to reduce the chances of failure in meeting requirements [4]. 

Simulations are powerful transdisciplinary tools for digitally verifying the design in early 

conceptual phases, before moving to physical prototyping or full extent production [5]. 

Approaching step by step to the solution and repeating each completed step to 

incorporate new information [6, 7] makes the nature of the development work with 

simulations iterative. It can be argued that increased reliance on simulations leads to 

repeating them more often. Additionally, the traditional design-build-test iterations are 

shifting to incorporate simulation verifications in as early stages of the product 

development process as possible which introduces even more iterations. As a result, the 

highly iterative product development process exacerbates the long-existing developing 

lead-time problem.  

This paper studies a group of high-level technical products with transdisciplinary, 

highly iterative, and simulation-driven design processes and aims to increase the 

knowledge on certain characteristics associated with these types of design processes. The 

research question is to identify the problems associated with such design processes and 

review what current strategies and supports exist to address those identified problems in 

such design processes. Section 2 presents performed interviews with an automotive 

supplier company which resulted in a generic design process model for the design 

process that is presented in section 3. Results indicate major characteristics as well as the 

bottleneck for such development processes. Section 4 presents a potential solution as a 

generic method that can be used in the early stages of the design process. The method is 

validated by the case company as they expect this envisioned solution to improve the 

development lead time in their design process. The last section includes current strategies 

and supports and categorizes them into two umbrella groups. Shortcomings with each of 

the groups are studied and suggestions for future work that can address each shortcoming 

are presented. 

1. Related work 

All intelligent systems fall into the category of the soft computing approach that helps 

the designers' decision-making process, with rough but fast estimation. There are many 

definitions of what is considered intelligent behavior. But most of them agree on having 

previous data as verified facts and some kind of reasoning engine as the starting points 

[8]. Metamodeling or surrogate modeling techniques such as response surface, inductive 

learning, kriging, etc are considered soft computational techniques [9, 10]. Unlike hard 

computational methods that use numeric modeling, symbolic logic and reasoning, and 

precise models, soft computational-based methods use imprecise models and 

approximate reasoning and functional optimization and random search to reach for a 

solution [11].  

Metamodeling or surrogate modeling techniques have been historically used to 

reduce computational time in design processes by building approximation models, 

mapping design space inputs to objective outputs. However, two issues usually challenge 

the research field. On one hand, a high number of design requirements and constraints 

make the decision space large and highly nonlinear which challenges the mentioned 

mapping. On the other hand, for high-level technical products, the requirements are not 
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very solid (often the designers have a vague view of them) in the early phases which 

makes the process prone to curse of dimensionality.  

Data-driven design is about making design decisions based on data analysis and 

interpretation. Chiarello et al defined data-driven as “Using computational systems to 

extract knowledge from structured and unstructured data” [12]. In the literature, this 

definition that attempts to take advantage of past solutions is considered data-driven. An 

example of taking advantage of past solutions is the case-based reasoning (CBR) 

paradigm, which was firstly introduced in design by [13]. CBR helps to find a good 

starting point for design by searching among past solutions and finding the closest 

alternative to the problem at hand and therefore it is considered among decision support 

systems (DSS) [14]. Engineering design not only aims to consider past solutions but to 

go further and generate a new alternative, the ones that never existed, in a feasible design 

space.  

There has been a lot of other efforts to introduce data science into the design process. 

Fan et al. [15] constructed a prediction model for the vehicles' shape design. First, the 

profile curves of the side view for a large number of existing product samples in the 

marketplace were collected based on the required criteria an evaluation score is attributed 

to each concept. A support vector machine was trained using the 35 control point 

coordinates of the vehicle profiles as input data and the evaluated scores as the output 

value. Optimal training parameters of the regression model were determined using a grid 

search of cross-validation. In another attempt to use Artificial Neural Networks (ANN) 

as a shape design tool, Wang et al. [16] used a type of unsupervised ANN (i.e. with no 

feedback) namely, a self-organizing map (SOM) for constructing a topological feature 

map in designing sneakers. SOM is a data visualization technique that can be used to 

deal with high-dimensional data, consolidate the relationship between requirements from 

customers and formal elements from designers and formulate a customer-oriented 

product concept. A feature-based shape-morphing process was implemented for the 

design of a new style of sneakers. A model to blend the features was constructed in 

SolidWorks CAD by choosing any two different shapes from the SOM map. This 

research added a vast variety of shapes and designs of sneakers from the selected SOM 

feature map to help designers create many different styles in a short amount of time. 

Additionally, there are other reports in the literature [17] that Variational Auto Encoders, 

Generative Adversarial Networks, Convolutional Neural Networks, and several other 

AI-based methods have been employed to model a simulation or shape forming process. 

2. Research design and the interviews 

A case study approach is used together with design research methodology (DRM) to 

investigate the challenges of the design process in the case company. The DRM 

methodology is used to support a more rigorous research approach by helping to plan 

and implement design research [18]. In this way, this study is mainly presenting the 

results of the two initial phases of the research project in DRM, ‘Research Clarification’ 

and ‘Descriptive Study 1’. The discussion includes suggested areas for future research 

that can be further developed for the next two phases i.e., ‘Prescriptive Study’ and 

‘Descriptive Study 2’. 

The studied company is an automotive supplier that owns a large share of the market 

for specific safety-related products in the world. Based in northern Europe, the company 

has manufacturing plants in more than 50 countries and more than 70000 employees 

worldwide. The important safety-related products are of standard and customizable types 

and can meet all various demands in the competitive automobile industry. This company 

is referred to as the case company throughout this paper. 
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As shown in Table 1 fourteen people were interviewed for a wide range of roles 

involved with the development and production work in the company. The interviews 

were one hour each and held online. This was for two reasons, first and for most, it was 

due to the ongoing Corona pandemic situation around the world, and second, some of 

the respondent employees were located in different countries.  

Table 1. Roles of the staff interviewed in the case company. 

1 Senior Simulation Engineer 8 Project Engineering Leader 

2 Quality Coordinator 9 Tech Center Group Manager 

3 Simulation Group Team Leader 10 Customer Technical Manager 

4 Simulation & System Engineering Manager 11 Development Group Leader  

5 Project Engineering Leader 12 Senior Design Engineer 

6 Simulation Engineer 13 Customer technical manager 

7 Product Manager Quotation Leader 14 Simulation engineer 

 

The semi-structured interview method is used to allow the interviewer to express their 

feelings and give distinct examples instead of solely shallow answers and add in-depth 

insight into the challenges. Some characteristics for a semi-structured interview that were 

taken into consideration are; flexible questions, specific data gathering from all 

respondents, a large part of the interview guided by a list of questions or issues to be 

explored, no predetermined wording or order exists [19]. A typical process after data 

collection via interviews involves identifying challenges that are mentioned by different 

interviewers. The identified challenges were at the end presented to the respondents and 

the received feedback was taken into the consideration. Moreover, a process model for 

the identified challenge was produced to enable understanding and in-depth study of it. 

Aside from these interviews, three workshops with engineers in the company were 

designed to closely study how they work in practice. Two workshops with CAD 

designers and one with a simulation engineer in the company. These workshops overall 

helped to add depth to our understanding of the development process in the case 

company.  

3. Challenges in the current design process  

This section presents challenges that are faced by the development work and are raised 

during the interviews. All of the interviewees unanimously exerted that the long 

development lead time is the most challenging aspect of their work today. Managerial 

level interviewees claimed that they are doing a lot of manual work within the 

development process and therefore sought to automate tedious manual tasks. On the 

other hand, interviewees with engineering and more practical roles argued that they are 

doing a lot of development loops and therefore sought to reduce the number of iterations 

on the tasks. Iterations are historically considered a major source of increased product 

development lead time [20]. In the interviews, it was also mentioned that because of the 

nature of the products, developers strive for flawless launch by continuously correlating 

design with virtual and physical testing. Which leads to performing these verifications 

iteratively. Therefore, a product with such an iterative process in the case company takes 

two years to be developed and launched. To understand where this long developing lead 

time is initiated this research focused on the design process of the case company as an 

example to identify the reason behind this lag. It was understood that the design process 

for these products is experiencing 50-60 loops in the design process. In the simplest form, 

a three-step product development process i.e. Design-Build-Test cycles, [2] is used as 
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inspiration to build a development process model of these high-level technical products 

and the result is shown in Figure 1.  

 
 The generic product development model for iterative and simulation-driven products. 

As it can be inferred from the figure, the work from design space constraints to 

objective requirements is iterative (inner loop). This can be due to the complexity of the 

product, difficulty at satisfying all the design requirements simultaneously, or having 

constraints with opposite effects on one requirement. As an example, when a CAD model 

parameter is changed, and the objective CAE simulation result fails in satisfaction of the 

requirements. This loop is concerned with the requirement satisfaction in digital tools 

and therefore it is called the Digital Verification loop. Moreover, the work between 

prototype testing and the development process is also iterative (outer loop) which is 

usually due to the dynamic nature of the customer requirements or lack of correlation 

with physical tests. For example, failure in physical prototyping or zero series can be 

visualized with the outer loop. The naming Physical Verification follows the same 

convention as most performed requirement satisfaction tests are physical in this loop. 

Overall, the two loops constitute a highly iterative process (two loops, 5-10 each) for the 

case company which is a common property among those groups of products under study 

in this research.  

In the early design phases (conceptual phase) many requirements from customers are 

not yet solid and they are prone to change as the design becomes mature. After many 

design loops and digital verifications and when the requirements are better shaped the 

design process moves to physical verifications as well and a hybrid form of the process 

is continued. Within later iterations where the concept is solidified the process changes 

to physical verification only, and in the process no digital verification is performed 

anymore. The transition from digital verification to physical verification is not crisp and 

well-cut, but more of a grayscale. As the development matures more physical tests are 

performed. These physical tests are simplified tests that are being performed on test rigs. 

But toward the end of the process, real-world scenarios with real products are used for 

physical verification. 

Another discussion point that was raised during the conducted interviews was the 

envisioned solution for the mentioned challenge. In total 10 out of 14 respondents 

expressed that at least one of the solutions below for this accelerating or shortening the 

long development lead time.  

1. Design automation to do the iterations automatically.  

2. Data-driven approaches to avoid iterating.  
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Both tracks are part of a bigger category namely intelligent systems for engineering 

design which was mentioned in the previous section but the application and their final 

result are different. In the design automation path, computerized engineering supports 

such as code scripts are utilized to connect engineers' knowledge and reasoning to the 

design process. Automation levels are different and range from the built-in coding 

environment of the CAD and CAE software to the utilizing external APIs that connect 

different engineering supporting tools to each other. However, the main goal is to 

accelerate the process of digital verification (see Figure 1).   

Design Automation (DA) can be used to address repetitive design tasks, integrate 

tools and datasets, and simplify and standardize more complicated processes, achieving 

significant savings in development lead time and cost [21]. A mapping between 

approaches in design automation eases the understanding in the industry concerning what 

type of tasks can be automated. And what approaches in DA are suitable for what kind 

of tasks [22]. However, the development of DA applications is generally undertaken by 

domain engineers who may not have formal knowledge in engineering or software 

development training, with subsequent development processes lacking the structure of 

formalized methodologies, and important principles can be neglected [23]. Another 

shortcoming with this path is that in practice even if everything in the development 

becomes automated, each task still needs to be performed by the machine and that still 

would require the time for reading into the processor and processing and writing back 

the results. For instance, in a finite element analysis, even if everything is automated, a 

lot of time still is required for reading the geometry, discretization, solver run time, post-

processing, and creating a report. Therefore, this approach cannot resolve the problem of 

long development lead time. 

In the Machine learning path, the engineering knowledge and reasoning are captured 

in a statistical function like a black box. In this way, the trained machine learning 

algorithm will be able to prevent iterative simulations by predicting their results. For 

instance, meta-modeling techniques use statistical methods to map some inputs to 

simulation output and the resulting network can predict a result for the suggested design 

within an acceptable error margin.   

4. The proposed solution 

This section presents envisioned solutions for addressing the long development lead time 

problem of the high-level technical products. The idea of the solution comes from the 

interviews, literature study, and the development process model presented in the previous 

section. As mentioned, many design loops are required for satisfying all of the 

requirements in the design process.  

In both mentioned tracks, a real-time prediction model right after design or 

simultaneously at the same time with the design will prevent a large amount of manual 

work and will accelerate the design process. Envisioned model for real-time prediction 

is shown in Figure 2. The objective with such a real-time prediction model is not only 

about the fast evaluation of different design alternatives which will be gained. This model 

can also help with cutting quotation lead-time, quality-ensure the design process, capture 

tacit design knowledge, ensure producibility and robustness. 

Since in the early phases, only the digital verification is being performed and the 

company does not have crisp information on the requirements, the precision of the 

proposed design does not require to be very high. This enables a Set-based working 

method, where the design space can be explored to find solutions that are feasible from 

several aspects [24]. For instance, these early design loops are aimed to estimate a rough 

cost or engineering analysis. In many situations, it is enough to know (with 70-80 percent 
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confidence) that the design will pass the requirement. This fact enables designers to use 

approximating methods to predict the performance of a proposed concept within an 

acceptable precision. This approximation capability is well aligned with the second path 

because using machine learning leads to prediction models. Therefore, an embedded 

data-driven and real-time prediction model is the heart of this method that can perform 

the digital verification loops while the design task is under development.  

 
 Envision model for addressing lead time with embedded real-time prediction ability. 

A data-driven solution is about decisions making based on data analysis and 

interpretation or “Using computational systems to extract knowledge from structured and 

unstructured data” [12]. Our proposed method will be placed in a CAD environment and 

act as a traffic light for each requirement. When the designer gets the green light for all 

the requirements the design will move into the physical verification loop. This can be 

seen as a prototyping sprint that will generate agility for development work. 

Using such models in the design process can help to map the design inputs to outputs 

just as performing the digital verifications. Moreover, it will potentially reduce the lead 

time as it will prevent many iterations in the design loop. Asking the company 

representatives about the proposed method, they confirmed that this can help them 

“avoid all the simulations” and “reduce the number of iteration loops” and therefore 

reduce the development lead time in the conceptual design phase. To overcome these 

problems there are several approaches in the literature that we categorize and give 

examples for each of them and also mention shortcomings of each category and future 

improvement that can be focused on in next studies. 

5. Discussion and examples  

The embedded data-driven and real-time prediction model during the design process, 

without any need for simulating the product’s behavior, can evaluate the objective output 

in real-time. As discussed in previous sections, early versions of the data-driven 

prediction models were metamodeling or surrogate modeling methods that have been 

around for quite a long time. They are mainly aimed to reduce the computational cost by 

mapping a simulation and creating an alternative model to replace CAE work. However, 

seldom metamodeling techniques rarely rely only on CAD as input, and they usually 

incorporate many types of data types. The difference between our proposed method and 

the conventional techniques is highlighted when considering hindrances for applying a 

prediction tool in the design process namely Dimensionality and Parameterization which 

are identified during the performed workshops with the case company. It was discovered 

that the engineers in the case company are not using fully defined parameterized CAD 
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models because it will limit them in addressing the requirements and lower their 

flexibility.  

In CAD work, dimensionality and parameterization are discussed to be the root cause 

of the iterative characteristics. The company does not use a fully defined CAD model for 

the design process, and this increases the dependency of the design work on the 

experience and creativity of the designer. The utilized geometrical shapes in high-level 

technical products are complex and making them defined will lead to high dimensionality 

and will consequently limit the designer and prevent flexibility in addressing the 

changing requirements. The CAE work is also highly dependent on the experience of the 

simulation engineer. Different employees have various comfort levels regarding the 

different meshing software and finite element solvers and thus employees are using 

different procedures to do the same work. This work also depends on the work culture in 

different countries. For example, one simulation could be done in two different ways in 

two different countries.  

In a complex design problem, mapping the output parameters to the input variables 

is not always a straightforward process. For instance, choosing the number of hidden 

layers to determine the complexity of the network if not chosen correctly may result in 

underfitting and overfitting the training data [25]. As another instance, it is difficult to 

see how changing one particular parameter, affects the output (Since we can have 

coupled parameters or variables). This limits the possibility to isolate and capture the 

relations between variables and reduces the chance of having a full model that truly 

represents the system. Another problem is the need for high accuracy in high-level 

technical products that requires a large number of training data available to train the 

network to the desired accuracy level. Due to the size of the system and the number of 

parameters affecting the output, it is not possible to train networks well, which often 

leads to simplification and generalization of the design knowledge. Consequently, the 

level of abstraction makes the model useless for real-life applications and practical 

industrial applications. Despite all aforementioned shortcomings, the majority of 

designers still express their convenience about getting every possible support during the 

design process, even when it comes to managing generalized or approximated design 

models [26]. 

Several approaches are identified in the literature that has tried to address mentioned 

shortcomings. These methods are categorized below and the advantages and 

disadvantages of each group are discussed through examples. Some potential 

improvements for each category as a form of future studies are proposed. 

5.1. Order reduction 

Order reduction is a category of methods that attempt to use better parameters in the 

studies which will result in using fewer parameters. Sensitivity analysis methods such as 

Principal Component Analysis [27] or analysis of variance (ANOVA) [28] together with 

Taguchi are widely used dimension reduction strategies to select the most important 

parameters and reduce the dimensionality of the models. Yet, there is a shortcoming with 

mentioned methods to avoid high dimensionality. It is not possible to use CAD model 

parameters as inputs and the designer usually selects a couple of the most effective 

parameters as input. Considering how large the number of parameters and constraints in 

a real CAD can be, and how small each of those parameters can affect the simulation 

output, running higher-order Taguchi arrays add up to existing computational 

complications. Order reduction methods need to be developed that are not focused on 

using the direct CAD model parameters but instead try to extract features that have a 
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higher correlation with objective output. Feature extraction has been used in data science 

to improve the quality of the inputs. This concept can also improve the engineering 

application of data science. This will enable much efficient mapping between input and 

output and will make the mapping independent from the parameterization.  

5.2. Avoiding parameterization 

Mapping inputs to output by avoiding parameterization can be done by training machine 

learning algorithms that are using other forms of inputs as their input. For example, 

Rahman et al. used the designer's sequential design behavioral data stored in the design 

action log file (.JSON) of a CAD program to train a machine-learning algorithm and 

predict the next stage in the process as immediate design action [29]. Another example 

to avoid parameterization is to use image regression to map some images of the design 

in the conceptual phase to the objective requirement. This method has been shown to 

have good performance in the literature on predicting the age of people from images of 

their faces [30] and also to predict house prices from input images of that house [31]. 

One suggestion for future work is to use images of the CAD design as input to map to 

simulation outputs. In this way, designers will be able to predict the consequences of the 

decisions in the design phase in real-time. For our future studies, we will focus on an 

image processing machine learning prediction model that for instance can be embedded 

into a button in CATIA so after every design concept, confirm or rejects the proposed 

design changed based on the predictions it is making for the objective outputs.  

Conclusion 

The design process of a group of high-level technical products with transdisciplinary, 

iterative, and simulation-driven characteristics is studied. Using semi-structured 

interviews, it was found out that these products suffer long development lead time. 

Studying the development process in the case company led to a generic process model 

for such iterative and simulation-driven design processes and their associated bottleneck. 

This model, literature, and further discussions and workshops, were utilized to envision 

a generic solution to overcome the identified problem with embedded real-time 

prediction capability. The solution is validated through experts. Examples of the 

solutions that can addresses the problem area are identified in the literature and 

categorized and shortcomings with each category are discussed. For each category, a 

suggestion for future studies is also proposed. 
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