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Abstract. With this contribution, the quantification of verbal knowledge is being 

discussed. This quantification is particularly necessary in composite structural 
design, as mechanical, economical and technical aspects are strongly intertwined. 

Hence, modelling technical and economical aspects becomes relevant in context of 

structural design optimization of composites. With this paper, the decision on 
whether to utilize machine learning or fuzzy inference systems is clarified in case 

complex composite manufacturing techniques such as braiding are in light.  
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Introduction 

In design of composite structures, structural performance, hence stiffness and strength 

w.r.t. mass, are evidently linked with manufacturing. One of the most obvious links is 

given by the orientation of carbon fibers, where conflicts of manufacturability and light-

weighting arise. However, there are many more parameters, yielding different outcomes 

in terms of manufacturing cost and light-weight metrics such as stiffness and strength 

per mass ratio.  

As for lifting most of the inherent light-weight potential of composites, it is key, to 

strike optimal compromise in-between multiple criteria such as manufacturing cost, 

being as lightweight as possible and carbon footprint over product life span for instance. 

Evidently, these criteria are quite likely to conflict, which is why a numerical procedure 

for deriving optimal composite designs is key. In order to realize this, each aspect of the 

design process is to be captured via models. Therefore, aside from structural mechanics 

models, the technical aspects are to be modelled as well.  

Particularly, design associated costs and production metrics like scrap rate are 

essential, but rather challenging to model. In case simulating the whole manufacturing 

process considering all relevant steps and allow a certain depth in complexity is not 

always feasible in light of composite structures. Therefore, capturing these aspects via 

neural nets or fuzzy systems is ideal for many reasons. This research work focuses on 

how to capture, model and predict responses being vague in nature and, in that sense, 

associated with soft computing. Moreover, a brief discussion on why a certain technique 

shall be acquired is realized as well. 
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1. Literature review 

It is evidently the case, that in engineering multiple disciplines ought to be considered. 

Hofer, Sturm and Wehrle [1], for instance did recently show how aside from mechanics, 

uncertainties arising from load variations do have an imprint on actual design. Broading 

this understanding, it becomes obvious, how important the consideration of all relevant 

disciplines is.  

In product design, aside from mechanics, manufacturing of course contributes a lot. 

This is case, as manufacturing as a technical discipline does influence material properties 

and – in many cases – residual stress state. This is highlighted by M. Jabbari, I. Baran et 

al. [2], where a clear link of manufacturing to mechanical quantities like deformation and 

stress has been drawn. However, there is more, as manufacturing is also strongly linked 

to economical aspects like lead time or costs. Particularly the latter, is of high relevance 

when it comes to composite design (see [3] for instance). With former research work of 

the author like [4] and [5], it has been shown, how structural design optimization might 

be used in order to balance conflicting criteria like for instance light-weight design and 

cost. However, in order to do so, manufacturing in terms of economical aspects is to be 

captured. 

There are basically three different approaches for modelling manufacturing in 

context of optimization. First, one could directly abstract the problem in hand, by using 

analytics; like Henderson et al. [6] or Ghiasi et al [7]. This is by the most efficient and 

robust way of considering manufacturing aspects. However, this method is limited to 

processes allowing for a certain simplification. Secondly, one could directly simulate 

manufacturing as for instance realized by Picket, Sirtatas and Erber in [8]. Of course, this 

approach yields the most accurate predictions of process times, costs and serves best as 

basis for deriving material properties like stiffness and strength. However, this approach 

also comes along with great efforts results in time consuming modelling and simulation 

phases, where – on top – thorough tests, so as to characterize key parameters, shall be 

performed prior to any simulation. So, summing up, this approach might be difficult to 

be set-up within an industrial frame. For this reason, the third approach might be the one 

of choice; namely soft computing. Soft computing comprising all methods, that model 

the underlying nature of the problem via methods being opposed to sharp analytical or 

numerical ones (see [9]). So as to name a few; neural computing, evolutionary strategies 

or fuzzy logic shall be mentioned here. This third branch is of light in this paper as well. 

For more literature in this context, please consult [10]. 

2. Problem description 

With this section, the problem in hand will be described.  

2.1. Multidisciplinary vector optimization 

Obviously, economical and technical criteria – manufacturing cost, time and quality – 

may conflict with each other and with mechanical design metrics such as strength or 

being as lightweight as feasible. Nowadays, structural optimization becomes more and 

more relevant in many industry disciplines, as by utilizing algorithms, optimal 

compromises are to be found.  
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Yet, in order to deploy an optimization strategy allowing to find an optimal 

compromise in-between technical (e.g. manufacturing quality), economical (e.g. 

manufacturing costs) and mechanical (e.g. stiffness), each discipline has to be modelled 

at first. This does therefore yield problems being of multi-disciplinary nature as depicted 

with figure 1. Secondly, the underlying optimization problem then does necessitate the 

minimization of a vector of criteria as given by equation set (1),  

 (1) 

where ,  and  are the vector of criteria, in-equality constraints and design 

variables. Please note, that one seeks for an argument  minimizing the vector of criteria 

(mass, cost, time), while fullfilling all in-equality constraints (e.g. stiffness and/or 

strength requirements) and side constraints, i.e. being within the lower  and upper 

bound . 

With figure 2 an example of vector optimization result is given, where the black line 

indicate the pareto frontier as a set of optimal compromises derived via gradient-based 

vector optimization [5] and the dots are results derived via the genetic algorithm NSGA-

II.  

 

 

Figure 1. Multidisciplinary of optimization 

problem. 

 

Figure 2. Exemplary result of vector optimization in-

between natural frequency and mass [4]. 

2.2. Manufacturing and quantification through manufacturing effort 

The following gathering of figures (figure 3 to 6), provides an overview on some of the 

key elements making efficient and goal-oriented manufacturing demanding. One of the 

most obvious aspects is the handling of scrap, as half-goods are to be manufactured. So 

for instance, within tape laying, the orientation of fibers is linked to scrap and in cost of 

cost-driven design vice versa (see figure 3). 

In the frame of composite design numerical design optimization shall ideally be 

utilized in order to dose each of the many parameters being involved so as to balance 

overall criteria such as costs, mass, stiffness and alike. However, in doing so, one has to 

acknowledge, that these parameters such as fiber orientation, thickness of each ply, patch 

region, geometry and number of different plies (layers) are not only linked to mechanics, 

but to economical implications and restrictions due to manufacturing. This becomes clear, 

when considering (figure 4) that two neighboring plies shall ideally share the same 

orientation allowing continuous manufacturing and proper load transmission (even for 
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half-goods prior to curing). Figure 5 depicts two aspects, one being the patches in terms 

of number and size and, secondly, how plies shall be dropped. Last but not least, figure 

6 displays how, in general, the two dimensions complexity of lengthwise geometry and 

complexity of profile geometry do limit each other or in other words cause high 

manufacturing efforts.  

 

Figure 3. Tape lay-out for scrap consideration. 

 

Figure 4. Judging continuity. 

 

Figure 5. Ply drop-off zones. 

 

Figure 6. Complexity of braiding. 

 

Based on the idea of having not only restrictions but mutual dependencies, the 

definition of effort as a measure of manufacturing complexity and rise in costs, has 

proved to be ideal. On top, this may also be understood as a generalization, since effort 

does not depend on industry (e.g. cost-driven automotive versus performance-driven 

aerospace), country (e.g. local tax schemes) or company (e.g. global player with many 

sites and capacities versus small sized with tight bounds on investment and limited 

available capacities). In this work, the manufacturing technique shall be braiding. 

However, the underlying math may be applied to others – such as tape laying [5] – as 

well. 

3. Modelling manufacturing effort 

3.1. Knowledge engineering 

Prior to any actual modelling or predicting of manufacturing effort, the underlying 

mechanisms have to be understood. For realizing this, knowledge engineering serves as 

methodology. With figure 7, a general process flow from deriving knowledge from 

manufacturing experts and literature down into the knowledge base (KB) for being able 

to judge and predict manufacturing effort in real world examples. Figure 8 provides more 

insight, as it makes transparent, that a sequence of interviews basically allows to define 

the knowledge base. For more details on this process, the reader may be redirected to 

published work [5].  
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Figure 7. Flow of knowledge engineering. 

 

Figure 8. Level of knowledge engineering. 

3.2. Approach via machine learning 

With the prior discussed methodology of knowledge engineering, a thorough knowledge 

base may be deduced, which could be transferred into model being rule-based with ease. 

However, the deduction of such a base may be regarded as cumbersome. For this reason, 

an alternative approach may be followed. One could simply gather data and utilize 

machine learning so as to derive a manufacturing effort model. In order to do so, one 

shall first inspect the data in hand. By following this, one seeks for uniform statistical 

distribution, probing for data in all relevant regions and cross correlation. For achieving 

comparability, standard implementations for both methods have been considered. In case 

of machine learning, python´s module tensorflow was considered.  

3.3. Approach via fuzzy inference system 

In case one already has successfully derived a knowledge basis (see section 3.1), the 

transformation into a fuzzy inference system or fuzzy rule-based system is straight 

forward, as one already has the rules, ranges and all parameters are linked. Figure 9 

depicts the fuzzy inference system as deployed in this work. It shall be noted, that one 

may incorporate fuzzy inference system within each other (see three FIS within box) or 

incorporate known analytics as well with ease. This is mainly due to the fact, that the 

fuzzy arithmetic is that close to human perception and understanding of physics.  

 

Figure 9. Fuzzy inference system of composite manufacturing [4]. 
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4. Contrasting both approaches 

4.1. General discussion 

With this section, both above discussed approaches are contrasted. First, the numerical 

effort and prediction quality shall be assessed. For fuzzy inference systems, predictions 

based on a certain knowledge base are as accurate as the knowledge base is. Following 

this, they may be regarded perfectly accurate. However, it is key to any prediction, that 

the knowledge base is holistic enough for predicting all scenarios in light.  

For machine learning, the exact same applies. Yet, as a weighted sequence of layers 

of neurons predict responses, their adaption in terms of weights (training) is in most cases 

more costly. This is mainly due to the fact, that the underlying math via projection type, 

variable links and nature is not considered. Exactly this element makes machine learning 

that general as well, as it may be deployed in any case where sufficient data is available 

with ease. On the contrary, one has to ensure, that one has enough data so as to train the 

model. This is visualized with the following sets of figures ranging from figure 10 to 12 

and where each figure is divided into one subfigure providing response quality and the 

other a error histogram. In this specific case of composite preform braiding, the amount 

of data was pinned down to well above 5,000 sample points and ideally as close as 

possible to 10,000.  

 

 (a) Response quality (b) Prediction error histogram 

Figure 10. Quality of neural net with 100 data points in total. 

(a) Response quality (b) Prediction error histogram 

Figure 11. Quality of neural net with 1,000 data points in total. 
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(a) Response quality (b) Prediction error histogram 

Figure 12. Quality of neural net with 10,000 data points in total. 
 

At this point, it shall be emphasized, that the more accurate prediction of fuzzy 

inference systems for a given knowledge base, comes with a huge effort; namely 

knowledge engineering. Therefore, in case one is able to gather 10,000 sample points for 

a given braiding process, machine learning is certainly superior. Nonetheless, one has to 

ensure, that all relevant links in-between design variables and projections to relevant 

criteria are observable by this data set.   

The knowledge base comes along with another advantage. This advantage is 

visualized with figure 13. One can for instance use the underlying arithmetic to not only 

calculate the direct response, here, effort , but moreover provide reasoning  why this 

level of effort has been predicted and an elaboration advice  on what to alter in order 

to improve the situation.  

 

 

Figure 13. Reasoning and elaboration advices provided by fuzzy inference system. 

 

On top, there are many more soft computing methods. However, the two 

representatives being investigated herewith, do each represent a sub-class; namely with 

extensive knowledge engineering or without. A comprehensive overview on both 

approaches is given with table 1. 
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Table 1. Contrasting both approaches. 

 Machine Learning (ML) Fuzzy Inference Systems (FIS) 
Advantages � No complex knowledge engineering 

� Feedback on quality through 

comparison of training and 

verification set 

� Accurate with few data 

� Information may be gathered via 

interviews 

� Reasoning for data is inherent 

(knowledge base) 

   

Disadvantages � In general, a lot of data needed 

� Curse of dimensionality (i.e. the 

more parameters exponentially more 
data is needed) 

 

� Cumbersome gathering of 

information (knowledge engineering) 

� A certain creativity is needed so as to 

interpret data (deducing rules etc.) 

4.2. Effect on vector optimization result 

As an exemplary structure, an automotive A pillar shall be optimized. The problem is 

sketched with figure 14, where sub-figure (a) of figure 14 provides the mechanical 

abstraction into the four load cases (LC 1 – roof crush in and LC 2-4 – stiffness describing 

driving dynamics). Sub-figure (b) of figure 14 depicts the parameterized model of the A 

pillar.  

 

 

 (a) Mechanical abstration 

 

(b) Parameterization 

Figure 14. Problem description of A pillar. 
 

In this example, the mass (criteria 1) and manufacturing effort (criteria 2) shall be 

minimized simultaneously. While doing so, the requirements towards stiffness (in-

equality constraints 1-4) and strength (remaining in-equality constraints) are fulfilled 

throughout.  

Figure 15 depicts how the A pillar transitions from initial design via sub-figure (a) 

towards the optimal variant sub-figure (b). In order to minimize mass and manufacturing 

effort simultaneously, the cross section, number of layers and fiber orientation (e.g. 

braiding angle ) is dosed in an optimal fashion along the A pillar profile.  
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In order to contrast the two approaches, the vector optimization is performed with 

both. Table 2 summarizes the findings. It shall be observed, that both yield the more or 

less same results, where the effort prediction via machine learning has a slightly greater 

effort level and needs 5 more iterations.  

 
Table 2. Contrasting both approaches in terms of vector optimization. 

 Machine Learning (ML) Fuzzy Inference Systems (FIS) 
Criteria � e of 43.5% 

� m of 5.9kg 

� e of 41.2% 

� m of 5.9kg 

   

Optimization 

Quantities 
� 19 iterations 

� Feasible optima – constraints 

fulfilled and (local) optimality given 

 

� 14 iterations 

� Feasible optima – constraints fulfilled 

and (local) optimality given 

 

 (a) Initial design 

 

(b) Optimum 

Figure 15. Vector optimization of an automotive structure (A pillar of a convertible). 
 

The sub-sequent figure 16 depicts the braiding width for the two cases. For the initial 

case, the braiding width succeeds 3.0mm (red regions), thereby clearly indicating, that 

the preform would open in this case. After convergence of the optimization, the braiding 

width relaxes to moderate values. 

 

 (a) Initial design 

 

(b) Optimum 

Figure 16. Detailed investigation of both designs in terms of braid width. 
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5. Conclusion 

With this work, the modelling of soft criteria arising from either economics or technics 

like costs or manufacturing time and/or quality has been discussed. Two of the most 

representative soft computing methodologies have been contrasted; machine learning 

and fuzzy inference systems. 

It has been shown, that – in order to achieve the necessary accuracy – by far greater 

sample sizes are needed if machine learning is pursuit. On the contrary, fuzzy inference 

systems are as accurate as their knowledge bases describes the physics of interest. The 

advantage is, that only a few interviews are sufficient so as to derive a knowledge base. 

This accuracy and efficiency, however comes with the costs of great efforts in pre and 

post processing of interviews. On top, a certain creativity – in understanding and probing 

the problem – is needed for instance when generalized rules are to be deduced.  

Last but not least, both modelled have been used within a vector optimization of an 

automotive A pillar. Mass and manufacturing effort were simultaneously optimized, 

while all constraints determined via strength and stiffness ought to be fulfilled throughout 

the optimization run.  

Again, both methods were contrasted. The difference between both methods were 

judged to be marginal, even though, the vector optimization based on manufacturing 

effort model formed via the fuzzy inference system was slightly more performant.  
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